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Fluid resonance in elastic-walled englacial
transport networks

Maria McQuillan and Leif Karlstrom

Department of Earth Sciences, University of Oregon, Eugene, OR, USA

Abstract

Englacial water transport is an integral part of the glacial hydrologic system, yet the geometry of
englacial structures remains largely unknown. In this study, we explore the excitation of fluid
resonance by small amplitude waves as a probe of englacial geometry. We model a hydraulic
network consisting of one or more tabular cracks that intersect a cylindrical conduit, subject
to oscillatory wave motion initiated at the water surface. Resulting resonant frequencies and qual-
ity factors are diagnostic of fluid properties and geometry of the englacial system. For a single
crack–conduit system, the fundamental mode involves gravity-driven fluid sloshing between
the conduit and the crack, at frequencies between 0.02 and 10 Hz for typical glacial parameters.
Higher frequency modes include dispersive Krauklis waves generated within the crack and tube
waves in the conduit. But we find that crack lengths are often well constrained by fundamental
mode frequency and damping rate alone for settings that include alpine glaciers and ice sheets.
Branching crack geometry and dip, ice thickness and source excitation function help define limits
of crack detectability for this mode. In general, we suggest that identification of eigenmodes asso-
ciated with wave motion in time series data may provide a pathway toward inferring englacial
hydrologic structures.

Introduction

The englacial hydrologic system controls water transport from the surface to the base of gla-
ciers, regulating the sensitivity of glaciers and ice sheets to environmental influences. The
geometry of water transport pathways is poorly understood, but it determines the efficacy
of water transport to the glacier base (Fountain and others, 2005) and thus strongly affects sub-
glacial drainage and ice flow dynamics (Schoof, 2010; Bartholomew and others, 2012; Banwell
and others, 2016). In this study, we investigate how the detection of fluid resonance in subsur-
face cracks (quasi-planar cavities at interfaces or arising from fractures, with small opening
compared to the other two dimensions) and conduits (long channels with roughly equant
cross-sectional dimensions) may be used to interrogate hidden water transport pathways in
glaciers and ice sheets.

The englacial system has been studied through various direct and indirect methods. Direct
speleological observations (e.g. Vatne, 2001), in situ monitoring of boreholes with cameras
(e.g. Fountain and others, 2005), as well as indirect imaging from various types of ice-
penetrating radar (e.g. Catania and others, 2008; Badgeley and others, 2017), suggest that
the englacial system can be composed of cracks, conduits or possibly both. However, these
methods are limited in their scope and generally fail to inform water transport dynamics or
internal geometry such as is predicted from theory (e.g. Röthlisberger, 1972; Shreve, 1972;
Spring and Hutter, 1982; Gulley and others, 2009). Therefore, we look to other methods
that may provide more insight.

Unsteady fluid motion has been used to probe the subglacial hydrologic system for decades.
For example, slug tests and borehole studies have been conducted to infer basal structures
(Stone and others, 1997; Kulessa and others, 2005), subglacial storage and subglacial drainage
efficiency (Iken and others, 1996; Kulessa and others, 2005; Kavanaugh and others, 2010; Rada
and Schoof, 2018). More recently, seismic and geodetic studies have used transients in internal
and basal water pressures on hour to day timescales, to infer basal sliding and ice flow dynam-
ics (Iken, 1972; Engelhardt and Kamb, 1997; Kavanaugh and Clarke, 2001; Kavanaugh and
others, 2010; Andrews and others, 2018).

Oscillatory fluid motions, generally at much higher frequencies, have also been leveraged to
infer subsurface transport structures. Fluid oscillations in a confining structure lead to reson-
ance at distinct frequencies or ‘eigenmodes’ that can be related to excitation mechanisms and
the geometry of a resonator. This phenomenon has seen application in oil and gas exploration
and volcanology (Aki and others, 1977; Holzhausen and Egan, 1986; Chouet, 1988; Chen and
others, 1996; Mondal, 2010; Liang and others, 2020), as well as some studies in the glacial
environment (Lipovsky and Dunham, 2015; Roeoesli and others, 2016; Podolskiy, 2020).
Here, we aim to advance this particular field of research, by investigating the limits to
which fluid resonance can be used to define a variety of englacial geometries.

Because the problem of fluid resonance in elastic-walled transport structures has been stud-
ied in other contexts, we present a synthesis of relevant results and an overview of resonant
modes using the englacial system to constrain parameters. Through this investigation we
find one mode – a coupled oscillation between a conduit and branching crack – of particular
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interest, and dedicate much of the subsequent text to understand-
ing this mode. In particular, we explore the limits to which the
coupled mode provides information about the geometry of cracks
branching from a central conduit connected to the surface, con-
sidering the influence of the flow regime within the conduit,
crack dip and the excitation function that initiates wave motion.
Finally, we apply our results to published high-frequency pressure
time series data, and discuss the limits of subsurface crack detect-
ability using fluid resonance in both alpine and ice-sheet
environments.

Theory

We model the englacial system as a vertical tube with a circular
cross section that may be connected to one or more dipping rect-
angular cracks, as seen in Fig. 1. Generalizations to conduits with
variable radii, non-circular cross-sectional geometry or along-axis
curvature are fairly straightforward extensions, but are not
explored here. We assume that the fluid in the englacial system
is pure water (no bubbles or sediment). Additionally, we neglect
any energy dissipation from elastic waves emitted from the
crack and tube walls and assume that the surrounding ice is
homogeneous (e.g. Tsai and Rice, 2010). This last assumption is
not strictly valid for cracks at the glacier bed between ice and
till or bedrock, but we do not consider bi-material interfaces or
inhomogeneous material properties here.

Governing equations: fluid-filled conduit

In the conduit, we solve the Navier–Stokes equations for flow of a
viscous, compressible fluid in a pipe. We linearize around a static
background state upon which small amplitude perturbations are
superimposed at long wavelengths compared to crack openings
and the conduit radius. Thus we can consider the fluid pressure
to be uniform in the radial direction and fluid velocity to be axisym-
metric and unidirectional. Finally, we assume a linearized equation
of state for water in the conduit, giving rise to a constant fluid sound
speed. The description and numerical implementation of equations
in this section essentially follows Liang and others (2020), which is
the modeling framework on which our study is built.

We use cross-sectionally averaged governing equations for
fluid motion in a conduit with a constant radius R and length

L, which could apply to distinct conduit sections as depicted in
Fig. 1. Cross-sectional averaging is defined by the operator 〈〉, act-
ing on a generic function Φ of vertical position z, radial coordin-
ate r and time t:

〈F(z, t)〉 = 2
R2

∫R
0
F(z, r, t)rdr. (1)

We will generally omit explicit listing of function arguments
except when necessary in what follows. Using this width-averaged
description we solve the following governing equations in the
conduit sections:

∂r

∂t
+ r0

∂uz
∂z

= 0, (2)

r0
∂uz
∂t

+ ∂p
∂z

= 〈∇ · t〉z , (3)

1
r0

∂r

∂t
= 1

Kf

∂p
∂t

(4)

where uz = 〈vz〉 is the cross-sectionally averaged vertical vel-
ocity, ρ is the fluid density with ρ0 its constant and uniform back-
ground value, p is the fluid pressure, τ is the viscous stress tensor
and Kf is the bulk modulus of water (numerical values for para-
meters are listed in Table 1). For our numerical experiments we
assume fluid flow is fully developed, and the vertical component
of the cross-sectionally averaged shear stress term becomes

〈∇ · t〉z = − 8m
R2

uz , (5)

with μ as the dynamic viscosity of water. The limits for which this
assumption is valid will be evaluated and discussed later for spe-
cific resonant modes.

To supplement the governing Eqns (2–4), we impose no slip
boundary conditions at the conduit walls to ensure no fluid is
transferred out or into the system. At the top of the conduit,
the water surface is allowed to move freely, resulting in the

Fig. 1. Idealized model of the englacial system showing multiple cracks branching from a central conduit. Cracks are defined by two length scales Lx and Ly and
opening w0. Conduit sections are defined by a length L and a radius R. Cracks may also be dipping at an angle θ with respect to the conduit axis. The free surface is
denoted by a red triangle. h(t) is the height of the water surface in reference to an unperturbed fluid surface at atmospheric pressure.
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linearized boundary condition:

p|z=L = r0 gh(t)+ Psource(t), (6)

where g is the gravity, Psource is an externally imposed source func-
tion and h(t) is the displacement of the fluid surface around
hydrostatic equilibrium. h(t) can be calculated using the cross-
sectionally averaged fluid velocity at the surface:

uz|z=L =
dh
dt

. (7)

Boundary conditions at the conduit base, assuming a basal
connection to a crack as depicted in Fig. 1, can be stated as

p|z=0 = pt ,

uz|z=0 = − q
Ac

.
(8)

where pt is the pressure in the crack evaluated at the conduit junc-
tion, q is the volumetric flux from the conduit into the crack and
Ac = πR2 is the conduit cross-sectional area. pt can be calculated
by considering the mass balance at the base of the conduit

dVcr

dt
= −Acruz , (9)

where Vc is the volume of the crack and ρ is fluid density. For long
period oscillatory perturbations (much longer than Lx/c0 with Lx a
crack length and c0 fluid sound speed), fluid compressibility
effects are negligible compared to crack volume changes and
Eqn (9) can be written as

dp
dt

∣∣∣∣
z=0

= −Acuz
Ct

. (10)

In Eqn (10), the storativity Ct is the characteristic response of
the crack volume to a uniform opening pressure, neglecting iner-
tia and viscous pressure drops within the crack. In general, it
depends on both fluid and crack bulk moduli (Segall, 2010).
However, the bulk modulus of water, Kf, is generally much larger
than Kc and we neglect its effects here. Crack storativity may then
be calculated as

Ct = dVc

dp
. (11)

The storativity of a symmetric crack can be represented in
terms of the effective elastic modulus G∗ = G/(1− n) of ice,
with shear modulus G and Poisson’s ratio ν, as well as crack
length Lx and a constant κ

Ct = k
L3x
G∗ . (12)

The scaling factor κ depends on the aspect ratio of the crack, a
purely geometric quantity. It is found by calculating dVc/dp
numerically using the displacement discontinuity method
described above, combining Eqns (11) and (12) and solving for
κ. dVc/dp is found by applying a uniform pressure to the crack
and calculating change in volume. For glacial parameters
(Table 1), κ = 0.4814 ± 0.0006 with respect to the variable crack
length. Note that Eqn (12) is strictly valid only for cracks in a
homogeneous elastic half space. To find pressure at the crack
mouth pt we integrate Eqn (10) in time. For low-frequency pertur-
bations the fluid is essentially incompressible, and pt can then be
written using Eqn (7) as

pt = −Ach
Ct

. (13)

For high-frequency perturbations, there is no flux into the crack
and the conduit bottom becomes a constant velocity boundary
condition, uz = 0. When cracks intersect the conduit between
the surface and its base, conservation of fluid momentum and
mass at the crack mouth gives rise to additional frequency
dependent junction conditions.

Governing equations: fluid-filled crack

For the crack, we consider a 3-D tabular cavity defined by the
coordinate system x, y and ξ, where ξ represents the direction
of opening for the crack as seen in Fig. 1. We use width-averaged
equations for fluid flow in a 3-D crack (Lipovsky and Dunham,
2015; Liang and others, 2020):

r0
∂ux
∂t

+ ∂p
∂x

= 〈∇ · t〉x , (14)

r0
∂uy
∂t

+ ∂p
∂y

= 〈∇ · t〉y, (15)

1
r0

∂r

∂t
+ ∂ux

∂x
+ ∂uy

∂y
+ 1

w0

∂w
∂t

= 0, (16)

1
r0

∂r

∂t
= 1

Kf

∂p
∂t

, (17)

where w is the perturbed crack opening in reference to the crack
center-line (perpendicular to the unperturbed opening dimension
w0). Width-averaged velocities ux and uy in the crack are
expressed as

ui(x, y, t) ; 〈vi〉 = 1
w0

∫w0

0
vi(x, y, j, t)dj (18)

with i = x, y. Similar to the conduit, we assume fully developed
flow in the crack for our numerical experiments, in which case

Table 1. Values for glacial parameters

Parameter symbol Name Value Units

g Gravitational acceleration 9.8 m s−2

L Conduit length 10–3000 m
R Conduit radius 0.01–1 m
Lx Crack length in x 1–3000 m
Ly Crack length in y 1–3000 m
w0 Unperturbed crack opening 1–200 mm
Kf Fluid bulk modulus 1.98 GPa
ρ0 Fluid density 1000 kg m−3

μ Dynamic viscosity 1.8 × 10−3 Pa s
G Shear modulus 3.5 GPa
ν Poisson’s ratio 0.31 –
κ Crack storativity constant 0.4808 –
cT Tube wave speed 1125 m s−1

c0 Acoustic wave speed 1400 m s−1
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the shear stress terms become

〈∇ · t〉i =
12m
w2
0
ui. (19)

To close our system of crack equations, we apply no slip
boundary conditions on the crack faces and zero normal velocity
boundary conditions at the edges of the crack.

The non-local response of crack walls to pressure perturba-
tions is modeled with quasi-static elasticity, using the displace-
ment discontinuity method (Crouch and others, 1983; Okada,
1985). This involves discretizing the crack into rectangular ele-
ments subject to opening-mode displacements, which are stitched
together to ensure displacement and stress continuity (Liang and
others, 2020). A symmetric and positive definite stiffness matrix
Ks then relates crack opening w(x, y, t) and pressure p(x, y, t)
on the mesh to evaluate Eqn (16), as

p = Ksw. (20)

We also use Ks to calculate the crack effective bulk modulus,
which is defined as

1
Kc

= 1
Vc,0

dVc

dp
, (21)

where Vc,0 = LxLyw0 is a reference volume and dVc/dp is approxi-
mated numerically as discussed above.

Coupling between conduit and crack

To simulate fluid flow between conduit and crack elements, we
couple the conduit and crack system of equations through pres-
sure continuity and a discontinuous jump in the velocity due to
the flux q into and out of the crack across each coupling point zc:

p(z+c , t)− p(z−c , t) = 0, (22)

q(z+c , t)− q(z−c , t) = −Afuz(zc, t), (23)

where Af = 2πR w0 is the cross-sectional area of the crack inter-
secting the conduit assuming crack dip is 0 °. For dipping cracks
the effective area increases with increasing dip as explained below.

Next, we incorporate the volume exchange between compo-
nents and crack elasticity into the governing equations.
Assuming wavelengths of the perturbation are long compared
to the crack opening, and combining Eqns (16), (17) and (20)
we get

1
�K
∂p
∂t

+ ∂ux
∂x

+ ∂uy
∂y

= q
w0

d(x − xc)d(y − yc), (24)

where 1/�K = 1/Kc + 1/Kf and q is the fluid flux into the crack
from the conduit. The fluid flux is modeled as a point source exci-
tation with a delta function δ(x− xc)δ( y− yc) at the coupling
point (xc, yc) of the conduit in the crack coordinate system.
This delta function is scaled by the calculated energy transfer
from the conduit into the crack seen in the right-hand-side of
Eqn (24).

If a crack is dipping at some angle θ with respect to the con-
duit, the energy exchange between the conduit and crack will
change as the cross section becomes elliptical instead of circular.
We account for this area change using an effective circular radius
(Tang and Cheng, 1993). If we consider the semi-minor axis of

the ellipse equal to the conduit radius, the semi-major axis can
be written as

R1 = R
cos (u)

+ w0 tan (u)
2

, (25)

using the ellipticity eE =
���������
R2
1 − R2

√
/R1, we can write the effective

radius as

Re = 2
pR1E(eE, p/2)

, (26)

where E(eE, π/2) is the complete elliptic integral of the second
kind: E(k, u) = �u

0

����������������
1− k2 sin2 (u′)

√
du′.

Excitation of wave motion

Natural excitation of oscillatory flows in the englacial environ-
ment could arise from impulsive sources (Gräff and others,
2019) or continuous sources (Roeoesli and others, 2016). We
largely focus on the impulsive case for this study and use a
Gaussian pressure pulse applied at the water surface to perturb
our system

Psource(t) = P0e
−(1/2)(t/DT)2 , (27)

with amplitude P0 and half width ΔT. Due to the linearity of our
problem, we assume unit forcing P0 = 1 Pa in this study. A wave-
length scale for the Gaussian function is calculated as λex = cT × ΔT
where ΔT is the full width at half maximum of the Gaussian in the
time domain (Eqn (27)) and cT is the tube wave speed (defined in
the next section). We note that Eqn (27) is used for its relative
simplicity, but other impulsive excitation functions might be
used to narrow the input frequency range, such as a chirp signal.

Numerical implementation

We solve the coupled system of equations using a 6th-order
summation-by-parts finite difference scheme in space and a
4th-order Runge–Kutta method in time (O’Reilly and others,
2017). Boundary conditions in the conduit are weakly enforced
using simultaneous approximation terms (Del Rey Fernández
and others, 2014; Erickson and others, 2019) and boundary con-
ditions in the crack are strongly enforced. Pressure and velocity in
the conduit are solved on regular collocated grids, while the crack
requires velocity grids to be staggered with respect to the pressure
grids to prevent a coordinate singularity at the crack center
(Prochnow and others, 2017). To maintain stability and high-
order accuracy, the viscosity term in Eqns (3), (14) and (15) are
solved implicitly in time (Liang and others, 2020).

Results

Interpreting resonant oscillations

The characteristics of eigenmodes depend on the geometry of the
resonating structure, the fluid properties and the source–time
function of excitation (e.g. Biot, 1952; Krauklis, 1962). We focus
on the characteristic frequencies of eigenmodes here as a discrim-
inator, noting that eigenmode damping rate and resulting time-
dependent deformation patterns in the ice, if detectable, provide
additional information.

In tube-like geometries, interface waves or ‘tube waves’ can
involve either local or non-local elastic coupling to the fluid
(Burridge and others, 1993; Sheriff and Geldart, 1995). In this
study, we focus on long wavelength excitation compared to the
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conduit radius, in which conduit walls deform quasi-statically and
a non-dispersive compressional wave results. The tube wave tra-
vels along the fluid–solid interface at a slightly slower speed
than the acoustic wave speed (Biot, 1952). For a straight circular
borehole, this speed is

cT =
�����������������
1
r0

1
Kf

+ 1
G

( )−1
√

. (28)

In this study, we neglect the effects of borehole along-axis
curvature and cross-sectional ellipticity. However, natural
englacial conduits can be sinuous along their axis and elliptical
in cross section. These effects modify the long wavelength tube
wave speed by changing the compliance of the borehole
(Norris, 1990; Burridge and others, 1993).

Tube waves in the conduit will resonate at ‘organ pipe’ fre-
quencies. These resonant frequencies depend on the tube wave
speed, the boundary conditions – whether the ends of the pipe
are considered open or closed – and the conduit length
(Lighthill, 1978)

fopen/open = ncT
2L

, (29)

fclosed/open = mcT
4L

, (30)

Here, n = 1, 2, 3… and m = 1, 3, 5… are integer harmonic num-
bers. For example, a vertical englacial conduit connected to a large
cavity could resonate like an organ pipe open at both ends since
both the conduit top and bottom are free pressure boundaries.
Conversely, a conduit terminating at the base of a glacier is
equivalent to an organ pipe with one end open (free surface at
the top of the conduit) and one end closed (solid boundary at
the bottom of the conduit).

Crack waves, also known as Krauklis waves, are a type of inter-
face wave that manifest in fluid-filled cracks where one dimension
is small compared to the other two (Krauklis, 1962; Ferrazzini and
Aki, 1987). Crack waves involve coupled fluid and elastic solid
motion and are excited when perturbation wavelengths exceed
the scale length for elastic coupling (e.g. Dunham and Ogden,
2012). For high-frequency perturbations, the crack will respond
rigidly to perturbations and crack waves will not be excited. At
low frequencies, crack walls become more compliant and crack
waves will manifest resulting in lower phase velocities with
decreasing frequency. Crack wave dispersion manifests as unequal
spacing of resonant harmonics in a crack. Lipovsky and Dunham
(2015) estimated the frequency spacing between crack wave
modes as fn/f1 = n3/2.

We calculate crack wave frequencies using the normalized
crack impedance, which is a transfer function between pressure
and fluid velocity at the crack mouth

F(v) = 1
r0c0

p̂(0, v)
ûz(0, v)

, (31)

where p̂ and ûz are the Fourier transformed pressure and vel-
ocity. The Fourier transform and its inverse are defined as

F̂(v) = 1
2p

∫1
−1

F(t)e−ivtdt,

F(t) =
∫1
−1

F̂(v)eivtdv.

(32)

Note that we define the normalized crack impedance as the
inverse of the crack transfer function in Liang and others
(2017). Frequencies where |F(ω)| is maximized represent the
most efficient exchange between the crack and conduit for crack
waves.

Coupled wave motion
In addition to crack and tube wave modes, coupled resonant
modes exist between the conduit and crack. One mode, identified
as the ‘conduit reservoir mode’ in Liang and others (2020), will be
referred to as the ‘coupled mode’ here. For the coupled mode,
fluid may be considered incompressible in the conduit, allowing
the entire fluid column to oscillate under the influence of gravity
in and out of the elastic crack. Liang and others (2020) derived
this resonant frequency accounting for fluid density stratification
in the conduit. We assume constant density here, however, we will
generalize the modeling of this mode by analytically solving for
non-fully developed flow regimes in the conduit.

Starting from our linearized momentum balance in the con-
duit, we integrate Eqn (3) in the incompressible limit from z = 0
to L:

r0
∂uz
∂t

+ 1
L

pL − p0
[ ] = 1

L

∫L
0
〈∇ · t〉zdz. (33)

For fully developed flow, the shear stress term 〈∇ · t〉z is Eqn (5)
and does not depend on conduit length or frequency. However, in
the boundary layer limit this shear stress term is more compli-
cated. To determine the shear stress term, we use the solution
of Womersley (1955) for flow in a tube subject to a driving pres-
sure variation ∂p/∂z that is harmonic in time with frequency ω.
The resulting velocity is

vz = Re
1

ir0v
∂p
∂z

1− J0(a(r/R)i3/2)
J0(ai3/2)

{ }[ ]
, (34)

where a(v) = R
��������
vr0/m

√
and Ji are Bessel functions of the first

kind, order i. Using the identity
�c
0 c

′J0(c′)dc′ = cJ1(c), the
cross-sectionally averaged velocity is

uz = 〈vz〉 = Re
1

ivr0

∂p
∂z

1− 2
c

J1(c)
J0(c)

( )[ ]
, (35)

where for notational convenience ψ(ω) = α(ω) i3/2. Shear stress
may then be computed using the Bessel function recurrence rela-
tion (2m/ψ) Jm(ψ) = Jm+1(ψ) + Jm−1(ψ) as

〈∇ · t〉z = −Re c
2m
R2

J1(c)
J2(c)

uz

[ ]
. (36)

Assuming quasi-static opening of the crack, if we substitute
Eqns (6) and (13) into Eqn (33) and rewrite in terms of the cross-
sectionally averaged fluid displacement (Eqn (7)), we obtain the
equation of a damped harmonic oscillator

d2h(t)
dt2

+ v2
0h(t)+ 2r0Lg

dh(t)
dt

= 0, (37)

with natural frequency

v0 =
�����������������
g
L

1+ Ac

r0 gCt

( )√
(38)
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and damping coefficient

g = m

r0R2
c
J1(c)
J2(c)

. (39)

For an under-damped harmonic oscillator the resulting resonant
frequency can be calculated as

v =
���������
v2
0 − g2

√
, (40)

and the quality factor can be calculated as the energy stored
divided by the energy lost in one oscillation

Q = v

2g
. (41)

If we consider the fully developed limit ψ≪ 1, so Jm(ψ)→ (ψ/2)
m(1/(Γ(m + 1))) with Γ(x) the Gamma function, Eqn (39) loses its
frequency dependence:

gdev = 4
m

r0R2
. (42)

If we neglect viscosity, Eqn (37) becomes a simple harmonic
oscillator and the coupled mode frequency reduces to the natural
frequency (Eqn (38)).

This coupled mode is derived for a crack intersecting at the
base of a conduit, however a similar oscillation can arise in a sys-
tem with a crack intersecting anywhere along the conduit. In that
case, we must account for partitioning of flow between the crack
and the conduit based on the relative cross-sectional areas of the
crack opening and the conduit. It is standard to express this
energy exchange in terms of reflection and transmission coeffi-
cients (Lighthill, 1978). For our system we use reflection and
transmission coefficients similar to those derived in Liang and
others (2017):

R(v) = − 1
1+ 2xF(v)

(43)

T(v) = 2xF(v)
1+ 2xF(v)

(44)

where χ = (c0/Af)/(cT/Ac). These reflection and transmission coef-
ficients are frequency dependent, implying selective interactions
of the crack with oscillatory flow in the conduit. In addition,
Eqn (26) implies that Af increases with crack dip, such that
|R|→ 1 and flux into the crack is maximized as dip angle θ→ 90°.

Numerical experiments

Here, we present and analyze model results based on the theory
and numerical approach outlined in the previous sections to
explore which resonant modes might manifest in typical englacial
systems, and how appropriate interpretation of frequency spectra
could lead to inference of hidden transport geometries. We first
present our analysis of crack resonance in isolation to connect
with previously published study, then we study wave motion in
three coupled englacial geometries: a conduit connected to a
basal crack, a conduit connected to a crack located somewhere
between the surface and the base and finally a multi-crack system.

We excite wave motion in our numerical experiments by initi-
ating a pressure pulse at the water surface, then analyze fluid pres-
sure and particle velocity time series at locations in the conduit and
in the crack. Frequency domain analysis permits an interpretation
of the resulting power spectrum to infer the resonant frequencies in
the system. All model parameters for our englacial system can be
found in Table 1 and were informed by studies of conduits and
cracks in the englacial system (Anandakrishnan and Alley, 1997;
Vatne, 2001; Petrenko and Whitworth, 2002; Fountain and others,
2005; Catania and others, 2008; West and others, 2010).

Crack resonance
We first focus on fluid resonance in cracks alone. Lipovsky and
Dunham (2015), assuming a symmetric 2-D crack, showed that
the period and quality factor (energy loss over an oscillation
cycle) for the fundamental resonant mode of a crack may be
used to infer crack length and opening. We reproduced their cal-
culation in Fig. 2A (red contours), demonstrating that an

a b

Fig. 2. Fundamental crack resonant frequencies for symmetric and asymmetric cracks. (A) Fundamental mode of a symmetric tabular crack, comparing the 2-D
model (one length dimension and opening) of Lipovsky and Dunham (2015) (red contours) to the 3-D model studied here (blue contours). The over-damped region
is determined from Lipovsky and Dunham (2015); no resonance occurs in this part of parameter space. (B) Variation of the fundamental mode for an asymmetric
3-D crack for two different crack length dimensions Lx and Ly. Where red contours represent a crack thickness of 0.005 m and blue contours represent results for a
crack thickness of 0.05 m. Undulations in the contours reflect finite numerical resolution of crack storativity, leading to �5% uncertainty in crack dimensions.
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extension to two length dimensions (a 3-D tabular crack) is com-
parable in the symmetric case (Fig. 2A). We note that the over-
damped region is determined from the Lipovsky and Dunham
(2015) analysis of quality factor. We do not consider boundary
layer effects in the crack and thus generally underpredict quality
factor for the crack in our model. Across this range of crack
dimensions, fundamental frequencies derived from our 3-D simu-
lations are up to two times smaller than in the 2-D simulations
presented in Lipovsky and Dunham (2015).

In the englacial environment, cracks are likely to be asymmet-
ric in their length dimensions. Figure 2B shows that crack asym-
metry can result in non-unique fundamental frequencies. For
example, if we consider a crack length of Lx = 10 m, and a crack
opening between 5 and 50 mm, the fundamental frequency
could vary between 0.4 and 30 Hz depending on Ly. This non-
uniqueness implies that higher order eigenmodes are required
to constrain both length scales of an asymmetric crack.

Basal crack
We next consider a coupled geometry with a conduit connected to
a crack at its base. This models a moulin or borehole connected to
a basal water cavity. For the calculations and model results shown
below we consider a 100 m conduit with a 10 cm radius, similar to
a borehole, and a symmetric basal crack of length Lx = 5 m with
an opening of 1 cm. We excite the system with a scale wavelength
(λex = cT/ΔT) of 10 m or ΔT = 0.0075 s (Eqn (27)), following the
crack resonance condition from Lipovsky and Dunham (2015).

Figure 3 shows a spatial time series of the water particle
velocity (uz) in response to a pressure perturbation at the water
surface, where velocity is scaled by the characteristic fluid pressure
magnitude, vscaled = (ρ0 c/P0) vz. This figure highlights how the
surface pressure perturbation affects the overall fluid motion in
the conduit through time. Multiple wave modes are evident but
somewhat complicated to disentangle in the time domain.
However, in the frequency domain these modes and their harmo-
nics are easily distinguished. In Fig. 4, we show pressure time ser-
ies and spectra associated with the simulation in Fig. 3. Figures 4A
and 4B show how pressure changes through time in the conduit

and the crack. Figure 4D shows the fast Fourier transform
(FFT) of a pressure time series taken at 50 m down the conduit
shown in Fig. 4C. In this time series, we see organ pipe modes
and harmonics beginning at 5.6 Hz, three crack wave modes at
41, 68 and 103 Hz, and the coupled mode at 0.75 Hz correspond-
ing to the fundamental eigenmode of the system. Crack modes
correspond to the peaks in the normalized crack impedance
defined in Eqn (31), seen in Fig. 4E.

The power spectrum for the basal crack case shows that the
coupled mode has the highest amplitude of all modes shown in
the conduit. High amplitude modes are most likely to be measur-
able in the field, as has been observed in the volcanic setting
(Chouet and Dawson, 2013). We therefore now focus on this
coupled mode as a possible tool for englacial geometric inference
and consider both fully developed and boundary layer effects. We
first note that the inviscid frequency Eqn (38) has two limits asso-
ciated with distinct restoring forces for the oscillation. If Ac/ρ0 Ct

g≫ 1, the frequency of the coupled mode does not depend on
gravity and equals fel = (1/2p)

��������������
(Ac/r0Ct)/L

√
. For Ac/ρ0 Ct g≪

1, Eqn (38) reduces to a gravity-dependent limit, fg =
����
g/L

√
where crack elasticity no longer matters. Figure 5 shows how
the coupled mode frequency and the damping rate scale for the
full range of englacial parameters described in Table 1. The
x-axis of Fig. 5A illustrates data collapse as the wavelength asso-
ciated with the elastic limit frequency, λel, is &1. For λel/L≫ 1,
the data collapse onto the gravity-dependent frequency fg plotted
as the dashed lines in Fig. 5A. The gravity-dominated limit does
not depend on crack parameters and thus it is not possible to
determine crack geometry when in this limit.

Quality factor for the coupled mode (Eqn (41)) depends on
resonant frequency ω and frequency-dependent damping rate γ
(ω) but not on flow inside the crack. Crack geometry enters the
coupled mode only through the crack storativity, which does
not constrain opening w0. Dissipation is thus governed by flow
in the conduit, where the low viscosity of water implies that
flow may not be fully developed at the periods of interest.
Figure 5B shows that the coupled mode for glacial parameters
mostly falls in the boundary layer limit. Fully developed flow is

Fig. 3. Fluid particle velocity (uz) throughout the conduit in time, for a basal crack system with conduit length L = 100 m, radius R = 10 cm, a symmetric crack of
length Lx = 5 m and opening of w0 = 1 cm. The center of the Gaussian excitation pulse is at 0 s model time with a scaled wavelength of 10 m. Following excitation we
follow the propagating tube wave down the conduit until it reaches the basal crack at 100 m. When the tube wave reaches the crack, most of the energy is reflected
and subsequently resonates at the fundamental organ pipe frequency. Energy that enters the crack is transmitted back into the conduit in the form of crack waves
(first seen from ∼0.1–0.3 s). Although wave motion becomes more complex through time, we note a full conduit velocity polarity change at ∼1–1.2 s. This bulk
motion in the fluid shows the long period coupled mode in the basal crack system.
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a

b

c

d

e

Fig. 4. Spatial time series and frequency spectra for resulting wave motion in an englacial geometry with a conduit connected to a basal crack (assuming fully
developed flow). (A) Similar to Fig. 3 but showing pressure time series throughout the conduit–crack network. (B) Spatial time series in the crack. (C) Pressure
time series in the conduit taken at 50 m depth noted as the dashed line in panel (A). (D) Frequency spectrum of the time series shown in (C). In this frequency
spectra, we note the coupled frequency at 0.75 Hz, crack wave modes at frequencies 41, 68 and 103 Hz, and many harmonics of the fundamental organ pipe fre-
quency at 5.6 Hz. (E) Normalized crack impedance |F| for the basal crack, where |F| maxima correspond to observed crack wave frequencies in the conduit.

Fig. 5. Coupled mode frequency and damping rate regimes. (A) Dominant restoring force as a function of frequency f for the coupled mode in a basal crack system.
In the elastic limit, the coupled mode frequency is fel = (1/2p)

�������������
(Ac/r0Ct )/L

√
, while in the gravity limit frequency follows fg = (1/2p)

����
g/L

√
. The x-axis shows the

wavelength λel = cT/fel normalized by conduit length L. The dashed lines represent the gravity limit frequency for three different conduit lengths of 10, 100 and
1000 m. This highlights where the data collapse onto the gravity limit. (B) Quality factor of the coupled mode is controlled by the ratio of mode period and momen-
tum diffusion time across the conduit Tvisc = R

2ρ0/μ. The y-axis shows cross-sectionally averaged shear stress in the conduit (Eqn (39)) normalized by the fully devel-
oped limit γdev = 4μ/ρ0 R2 = 4/Tvisc. This illustrates the importance of a boundary layer treatment of viscous damping for assessing quality factors in the glacial
environment.
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only a valid assumption for small conduit radii and long conduit
lengths.

We can determine the crack length from the coupled mode
using both the quality factor and frequency. We first note that
for very large cracks our model assumption of a uniform opening
pressure in the crack breaks down. Using Eqns (40) and (41), we
take 2-D slices through the 3-D parameter space (L, Lx, R) to
plot crack length versus period and conduit length, and contour
both the frequency and quality factor as shown in Fig. 6.
Alternatively, if one knew the conduit radius or conduit length
and the frequency or quality factor, the crack length could be
determined using a graphical approach similar to Fig. 6, with
parameters tailored to the specific case.

Middle crack
Next we examine a crack located between the base of the conduit
and the surface. Using the same parameters as the basal cavity
case, we place a horizontal crack 30 m from the base of the con-
duit. Figures 7A and 7B show these results for the fully developed
limit. Similar to the basal crack geometry, we see organ pipe
modes (in both conduit sections, due to reflection and transmis-
sion of energy past the crack mouth) as well as crack wave modes

and a coupled mode. The organ pipe mode associated with the
top conduit section is ∼8 Hz and is associated with a pipe open
at both ends (Eqn (29)). The organ pipe frequency associated
with the bottom conduit section is ∼9 Hz, and is equivalent to
a pipe open at one end and closed at the other (Eqn (30)). The
difference in these modes is due to the no slip boundary condition
at the conduit base versus the pressure boundary condition at the
crack and conduit interface. We also see a coupled mode asso-
ciated with flow from upper section of the conduit in and out
of the crack as the fundamental mode. We do not see a coupled
mode associated with the bottom section of the conduit because
it is closed to flow in the incompressible limit. Finally, we see
the same crack modes as those in the basal case since the crack
dimensions have not changed. The crack impedance used to iden-
tify these modes is the same as that in Fig. 4D.

The middle crack geometry provides an ideal test bed for the
role of crack dip. Englacial cracks are often observed to be dip-
ping at fairly steep angles, ∼ 70° (Fountain and others, 2005).
Figure 8 shows how dip angle affects the reflection and trans-
mission of waves, using the same crack geometry as all previous
experiments. The normalized crack impedance for this crack is
shown in Fig. 4E and is used to calculate the reflection

a

c d

b

Fig. 6. Coupled mode frequency and quality factor for the range of glacial parameters in Table 1. (A and B) Frequency contours for R = 0.1 and 0.5 m, and L = 100
and 1000 m. (C and D) Quality factor contours for R = 0.1 and 0.5 m, and L = 100 and 1000 m. In all panels, transitions to the gravity-dominated limit can be seen
where the frequency and quality factor lose crack length dependence. Panel (B) in particular shows no frequency variation for crack lengths above the 0.06 Hz (red)
and 0.02 Hz (blue) contour. Conduit lengths and radii were chosen as proxies for an alpine and ice-sheet environment.
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coefficient from Eqn (43), using effective radius for the crack
area from Eqn (26).

Figures 8B and 8C show that the reflection coefficient increases
with increasing dip angle, becoming largest for angles *75◦. The
reflection coefficient is frequency dependent and controlled by the
crack impedance. Fluid flux into the crack is determined as jump
in flux across the crack, which is affected by the reflection and
transmission coefficients as well as crack geometry.

These effects can be seen in Fig. 7 which compares a horizon-
tal and 70° dipping crack at 70 m depth. Increased flux in the dip-
ping case is reflected off of the crack tip and re-emitted to the
conduit as stronger upward and downward propagating waves
compared to the horizontal crack. The crack has a small length
of 5 m compared to the incoming perturbation wavelength of ∼
10 m, resulting in two-way transit within the crack before the

incoming wave has past. The increase in flux into and out of
the dipping crack results in increased amplitude of the lower con-
duit organ pipe modes, coupled mode and crack modes (Figs 7B
and D).

Multiple branching cracks
Finally, we present results from a multi-crack system to illustrate
how the basic elements studied individually interact in a more
complex englacial network. We consider three cracks located at
depths of 40, 90 m and at the base of a 150 m long conduit.
The cracks at 40 and 90 m have a length of 5 m whereas the
crack at 150 m has a length of 10 m. The top crack at 40 m is dip-
ping at a 70° angle and has an opening of 1 mm compared to 10
mm for the other two. All other model parameters are the same as
previous experiments.

a c

b d

Fig. 7. Spatial time series and frequency spectra for two middle crack models with the same geometric parameters and forcing as the coupled basal crack simu-
lation in Fig. 4, except that the crack is located at 70 m down the conduit and varies in dip between the two simulations. (A) Spatial time series for a crack dipping at
0°. (C) Spatial time series for a crack dipping at 70°. (B) Frequency spectra for a crack dipping at 0°. (D) Frequency spectra for a crack dipping at 70°. The thick black
line in (A) and (C) represents the location of the crack and the gray dashed lines represent the location of the time series in the upper and lower conduits that are
Fourier transformed to create the spectra in (B) and (D).

Fig. 8. Effects of crack dip angle. (A) Role of crack dip on effective radius of a tabular crack intersecting a central conduit. (B and C) Variation of reflection coefficient
(Eqn (43)) with dip angle and frequency, geometric parameters similar to Fig. 7.
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We use this example to illustrate the role of the pressure
source–time function on eigenmode excitation. Figure 9 shows
the results of three different multi-crack experiments, differing
only in the form of Psource(t) in Eqn (6). The plots in the left col-
umn are for a system forced impulsively with ΔT = 0.05 s or 130 m
wavelength, and the plots in the center column are forced with
ΔT = 0.0075 s (10 m wavelength). The plots in the right column
were forced continually with an excitation function comprised
of 2000 sine waves with random initial phase and a small amount
of numerical noise, normalized to unit maximum. The resulting
quasi-white noise source–time function is a model for continuous
excitation, for example from falling water in a moulin.

The conduit pressure frequency spectrum for each multi-crack
system exhibits the same set of eigenmodes, excited to various
degrees according to the forcing frequency spectra. The short
wavelength excitation results in many resonant modes due to a
broad range of excitation frequencies, while the long wavelength
excitation preferentially excited low-frequency modes. The con-
tinuous forcing, while generating complex motions in the time
domain, is still composed of a superposition of the same clearly
identifiable eigenmodes.

In general, the amplitude of eigenmode excitation can be pre-
dicted directly from the frequency spectra of the source–time
function given an appropriate transfer function (Karlstrom and
Dunham, 2016). However we do not formulate such a transfer
function here, or an explicit dependence on transport network
complexity (e.g. number of cracks) as in Fig. 9. It is easy to
imagine englacial geometries that are effectively unresolvable
through fluid resonance measurements, such as a case when

branching cracks are spaced more closely than the wavelength
of tube waves, but we leave this problem to future study.

Discussion

Increasing resolution and availability of measurement technolo-
gies have opened up new pathways toward discovery in most
sub-disciplines of glaciology. Studies of water movement through
glaciers and ice sheets are no exception having seen a burst of
activity driven by the proliferation of seismologic and geodetic
measurement in recent years (e.g. Kavanaugh and others, 2010;
Roeoesli and others, 2016; Andrews and others, 2018; Rada and
Schoof, 2018). The interpretation of such measurements relies
on models. We have developed a quantitative framework to
understand a class of unsteady fluid motions within glaciers
and these resonant oscillations are controlled by the geometry
and material properties of the hidden englacial transport network.
Such signals could be detected by a range of geophysical measure-
ments, including water pressure and seismicity time series. In this
section we comment on the resolving power of the resonant
modes of coupled conduit–crack networks, focusing on a coupled
mode and conditions appropriate for alpine glaciers and ice sheets
that are motivated by previously published data.

Detecting branching cracks from a conduit

We have investigated whether the geometry of branching cracks is
encoded in low-frequency eigenmodes of a coupled conduit–crack
network. This is motivated by the reasonable expectation that

a

b

c

Fig. 9. Excitation of resonant modes from different source–time functions in a three crack system where the cracks are at depths of 40, 90 and 150 m. All other
model parameters are the same as previous experiments and assuming fully developed flow. Left column: A long wavelength Gaussian excitation, with a scaled
wavelength of 130 m. (A) Forcing function for the long wavelength model run. (B) Spatial time series for the long wavelength model run. (C) Frequency spectra for
the long wavelength model run showing the FFT of time series taken at 20, 65 and 120 m. Middle column: A short wavelength excitation, with a scaled wavelength of
10 m. (D) Forcing function for the short wavelength model run. (E) Spatial time series for the short wavelength model run. (F) Frequency spectra for the short
wavelength model run showing the FFT of time series taken at 20, 65 and 120 m. Right column: A simulated white noise continuous excitation, comprised of
2000 sine waves with random initial phase and a small amount of numerical noise. (G) Forcing function for the continuous forcing model run. (H) Spatial time
series for the continuous forcing model run. (I) Frequency spectra for the continuous forcing model run showing the FFT of time series taken at 20, 65 and
120 m.
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lower frequency signals will be easiest to observe due to less
attenuation and scattering for seismic measurements. However,
we also recognize that low-frequency eigenmodes suffer some
non-uniqueness when it comes to parameter resolving power.
Therefore, we must assess whether sufficient geometric informa-
tion is contained in low-frequency eigenmodes to be interesting.

Low-frequency eigenmodes and in particular the coupled
mode constrain branching crack length in some circumstances,
as illustrated in Fig. 6. Figure 5 shows that the coupled mode
exhibits two regimes, a gravity-dominated regime and an
elasticity-dominated regime. Crack geometry can be determined
when elasticity matters, as seen in Fig. 6 where frequency and
quality factor have power law dependencies over a broad range
of crack lengths less than Lx∼ 100 m. The maximum detectable
crack length increases for increasing borehole radius and decreas-
ing conduit length, however it does not much exceed 100 m for
reasonable glacial parameters. In addition, for quality factors
Q < 0.5, the coupled mode is over-damped and will not generally
encode a diagnostic period and quality factor. We find that the
coupled mode is over-damped for a small portion of the glacial
parameter space where conduit radii are small and conduit lengths
are on the ice-sheet scale. Crack dip also plays an important role,
by controlling the degree to which oscillatory flow in the conduit
interacts with branching cracks. As shown in Fig. 8, the reflection
coefficient increases with increasing dip angle. As the magnitude
of the reflection coefficient tends to 1, more flow enters the
crack to excite resonance. Figure 8B shows dip angle impacts
higher frequency oscillations more than lower frequencies, but
generally cracks with high dip angles will be more connected
hydraulically with the conduit during fluid oscillation.

Applications to the field

These limitations notwithstanding, our study suggests that excita-
tion of resonant modes in coupled conduit–crack networks may
provide a tool to infer englacial geometries in a range of realistic
conditions. Appropriate instrumentation of glacial conduits,
whether natural or human-made, is often more challenging
than the equivalent problem in industry due to the dynamic con-
ditions experienced on glaciers. However, the ability to directly
instrument the fluid, such as with high-frequency pressure sen-
sors or cameras, makes the detection of fluid resonance possibly
simpler than for the equivalent volcanic problem. Field applica-
tions of the model developed here likely require a case-by-case
examination. We illustrate how this might be accomplished by
examining two contrasting glacial settings, where high-frequency
pressure time series inside a vertical borehole already exist.

As a first example, we consider the results of Gräff and others
(2019), who conducted experiments in a drilled borehole on
Rhonegletscher Glacier in the Swiss Alps. Although their passive
observations are not identical to our numerical experiments
forced by a surface pressure pulse, they would exhibit the same
eigenmodes of the system that we model all else constant. At
the drilling site, Rhonegletscher Glacier was 117 m thick and
was penetrated by hot water drilling with a hole of radius 10
cm. Gräff and others (2019) noted both impulsive and a more
sustained excitation of crack waves in their borehole, resulting
in high-frequency pressure time series qualitatively similar to
our numerical experiments. They recorded several distinct spec-
tral peaks that were inferred to represent resonant crack wave
modes of a basal water-filled crack.

We propose that the range of spectral peaks observed by Gräff
and others (2019) can be interpreted according to the framework
introduced here for a conduit and basal crack. According to this
model, the lowest frequency mode observed by Gräff and others
(2019) will be the coupled mode, with higher frequency peaks

being associated with crack and organ pipe modes. The relative
amplitude of these modes will vary with the excitation function,
which was not well constrained but might include both stick
slip at the glacier bed and surface forcing. We therefore focus pri-
marily on interpreting the eigenmodes themselves.

Using Eqn (40) and ice properties shown in Table 1, we calculate
the crack length to be ∼4.4m for a coupled mode to match the ∼ 1
Hz lowest frequency in (Gräff and others, 2019, Fig. 4). Our mod-
eled quality factor of ∼ 60 does not match with that reported of ∼
1.5, but does if we artificially increase viscous dissipation in the con-
duit by ∼1000. This discrepancy suggests that our model does not
account for all sources of dissipation present in the natural system.
The next highest mode at ∼ 2.3 Hz is consistent with an open-
closed organ pipe mode for a 107m water column in the conduit
(the water surface was ∼ 10 below the ice surface), assuming suffi-
cient uncertainty in the estimated tube wave speed due variable
ice properties to account for slight discrepancies between calculated
organ pipe frequencies and observations. The ∼ 8 Hz mode is con-
sistent with a harmonic of this mode. We interpret the ∼ 4 Hz mode
to be the fundamental mode of the crack, since it cannot be
explained by an organ pipe mode. However, we are unable to iden-
tify subsequent crack wave modes. Similar to Gräff and others
(2019) we use Fig. 7 from Lipovsky and Dunham (2015) to deter-
mine a crack length using our interpreted fundamental frequency
of 4 Hz. We determine a crack length of 5.8 m, which is remarkably
close to the length inferred independently from the fundamental
mode. Note that we cannot use results shown in Fig. 2 without
modeling non-fully developed flow in the crack to accurately deter-
mine quality factor contours. Crack opening is predicted to be ∼ 1
mm by the crack wave mode, but is unresolved by the coupled mode
(crack storativity is sensitive to crack length only as in Eqn (12)).

Our interpretation differs from Gräff and others (2019), who
associate the lowest observed frequency in the power spectrum
with the fundamental crack eigenmode. This predicts a 19.8m
basal crack length. These authors also argue that the 2.3 ± 0.22 Hz
peak does not reflect tube wave resonance, because it was not mea-
sured by a nearby surface seismometer. We do not attempt to assess
this here, but argue that the relative self-consistency offered by our
model for the full range of spectral peaks observed by Gräff and
others (2019), despite its simplicity, is interesting and potentially
compelling. Our results are consistent with a borehole connected
to a thin, 4–5m long, subglacial crack. In addition, if we consider
the sustained events to be similar to the continuous forcing example
in Fig. 9, differences between spectral content of an impulsive versus
continuous surface forcing are in qualitative agreement with varia-
tions in spectral peak amplitude. In particular, reduction in ampli-
tude of an open-closed organ pipe mode for the longer forcing
wavelengths present in a continuous source is consistent with a
coincident increase in amplitude of the coupled mode.

This result provides a measure of confidence that our model
can reasonably be applied in the alpine environment. Limited
availability of high-frequency data from ice sheets precludes a dir-
ect assessment of our methods in thick ice. But we consider rep-
resentative experiments on the Greenland ice sheet as a template
for whether englacial features should be detectable in that envir-
onment. In 2014 and 2015, drilled boreholes in SE Greenland
near Isunnguata Sermia outlet glacier penetrated ∼ 700 m thick
ice (Meierbachtol and others, 2018), and were instrumented
with 4 Hz pressure sensors at the glacier bed. For the majority
of their sampling period the conduit was filled with ∼600 m of
water. Assuming a conduit radius similar to the boreholes of 15
cm (Meierbachtol and others, 2013), if a coupled mode is excited,
we could constrain a crack length up to ∼70 m before the gravity-
dominated regime limits inference of crack dimensions.

Although no resonant oscillations in the pressure time series
were reported by Meierbachtol and others (2018), transient
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pressure pulses with a duration of ∼ 10–20 s were reported. The
signals qualitatively resemble over-damped waves and might be
interpreted as such. Based on the geometry of the conduit, the
coupled mode might not be over-damped if excited. Therefore,
we consider the possibility of this over-damped pulse originating
from the basal water layer, given that the pressure transducer was
located at base of the borehole. Figure 7 from Lipovsky and
Dunham (2015) predicts that a 100 m long crack with an opening
of ∼ 1 mm would result in a 0.1 Hz over-damped oscillation.
Table 1 from Meierbachtol and others (2018) shows most pres-
sure pulse recovery times are around 10 s, which matches the pre-
dicted periods. We recognize that, in practice, over-damped
signals alone are not likely to result in strong constraints on
englacial or subglacial geometry. But their existence could be
used to motivate future experiments.

These examples suggest that low-frequency eigenmodes
represent a promising tool for inferring englacial geometry in ice-
sheet settings as well as alpine glaciers. The predictive power of the
coupled mode is maximized for measurements in short conduit
lengths (L < 100m) and conduit radii larger than 50 cm (in order
to detect cracks up to ∼100m in length). In a controlled active
source setting, one can control conduit radius (through drilling)
which could help in designing experiments. Either continuous or
impulsive forcing will excite low-frequency modes, and modulated
frequency sweeping of input forcing could be leveraged to seek sig-
natures of matched resonance (Liang and others, 2017) or be other-
wise tuned to detect cracks of different sizes.

It is also possible that excitation of resonant signals could be
used to probe time-evolving englacial or subglacial geometry.
For example, seasonal evolution of subglacial drainage pathways
(Gimbert and others, 2016) or lake drainage (e.g. Bigelow and
others, 2020) occur on timescales long enough that one would
expect to see systematic changes in resonant periods and quality
factors as subsurface geometry evolves. We leave further investiga-
tion of these possibilities to future study.

Concluding remarks

Englacial geometry is an elusive missing piece of the glacial hydro-
logic system. In this study, we have investigated the limits for which
fluid resonance could be used to gain insight into englacial geom-
etries, through the analysis of wave propagation in generic coupled
conduit–crack networks. We presented an overview of expected
modes in the englacial system and focused on resonant modes
that may be sensitive to englacial geometry. We showed that
although there are many modes excited in complex englacial
water transport networks, a resonant mode originating from the
coupled oscillation of fluid into and out of a branching crack is
the fundamental mode of the system and provides information
on crack and conduit geometry. Future extensions of the modeling
framework presented here could include more systematic character-
ization of coupled conduit and crack eigenmodes, examining
boundary layer flow in the crack, adaptations to curved and cross-
sectionally varying conduits, consideration of anisotropic elastic
media, and modeling of seismic radiation in the ice associated
with fluid motions. However, even in its present state, we believe
that applications of the framework presented here to seismic and
borehole water pressure studies could provide new insights on
englacial transport and the englacial to subglacial connection.
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