BULL. AUSTRAL. MATH. SOC.
VOL. 33 (1986L, 471-473.

ASYMMETRIC INVARIANT SETS FOR COMPLETELY

POSITIVE MAPS ON C*-ALGEBRAS

A. Guyan Robertson

Let A be a noncommutative C^{\star}-algebra other than $M_{2}(I)$. We show that there exists a completely positive map ϕ of norm one on A and an element $a \in A$ such that $\phi(a)=a$, $\phi(a \star a)=a^{*} a$, but $\phi\left(a a^{\star}\right) \neq a a^{*}$.

A linear map ϕ from a C^{\star}-algebra A into itself is called a Schwarz map if, for all $a \in A$,

$$
\phi(a) * \phi(a) \leq \phi\left(a^{*} a\right)
$$

In [2] the invariant set $D_{\phi}=\left\{a \in A: \phi(a)=a, \phi(a * a)=a^{*} a\right\}$ is studied. Limaye and Namboodiri prove that if $A=M_{2}(I)$ then D_{ϕ} is *-closed for any Schwarz map ϕ but that if $A \neq M_{2}(X)$ is a noncommutative C^{*}-algebra of compact operators or a type I factor then D_{ϕ} is not *-closed for some Schwarz map ϕ on A. The purpose of this note is to extend that result to arbitrary C^{\star}-algebras, thereby answering a question posed in [2]. The map ϕ that we construct is even a completely positive contraction. It follows easily from Stinespring's theorem [3] that such a map is a Schwarz map.

Received 6 September 1985
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\mathrm{sA2} 2.00+0.00$.

THEOREM. Let A be a noncommitative C^{*}-algebra other than $M_{2}(I)$. Then there exists a completely positive map $\phi: A \longrightarrow A$ such that $\|\phi\|=1$ and D_{ϕ} is not *-closed.

Proof. Since A is noncommutative, there exists an element $x \in A$ of norm one satisfying $x^{2}=0[1,2.12 .2]$. We have $\{0,1\} \subseteq S p(x * x)=$ $S p\left(x x^{*}\right) \subseteq[0,1]$. There are two cases to consider.

Case 1. Suppose that $S p\left(x^{*} x\right)$ contains at least three points. Choose $s \in S p\left(x^{\star} x\right)$ with $0<s<1$. Define continuous functions f, g, h on [0,1] which vanish at 0 and satisfy $0 \leq f \leq g \leq 1,0 \leq h \leq 1$, $f g=f, h g=0$ and $f(s)=g(s)=h(1)=1$. Thus $g=1$ on the support of f and $g=0$ on the support of h.

Note that $\left(x^{*} x\right)\left(x x^{*}\right)=0$, so since f and g are uniform limits of polynomials on $[0,1]$ without constant terms we have that $f\left(x^{*} x\right), g\left(x^{*} x\right)$ and $h\left(x^{\star} x\right)$ are each orthogonal to all the elements $f\left(x x^{\star}\right), g\left(x x^{\star}\right)$ and $h\left(x x^{*}\right)$. Let $y=f\left(x x^{*}\right) x f\left(x^{*} x\right)$. Then $y^{2}=0$. Also $y \neq 0$. For, considering polynomials approximating f, we see that $y=x f\left(x^{\star} x\right)^{2}$ and, by definition of $f, x^{\star} x f\left(x^{\star} x\right)^{2} \neq 0$.

Let $p=g\left(x^{*} x\right)+g\left(x x^{*}\right)$ and $q=h\left(x^{*} x\right)$. Then $p q=0$. Now $p y=y=y p$. Since $\left(y^{*} y\right)\left(y y^{*}\right)=0$, there is a state σ of A such that $\sigma\left(y^{*} y\right)=0$ but $\sigma\left(y y^{*}\right)>0$. In addition, by the Cauchy-Schwarz inequality, we have $\sigma(y)=0$. We define the completely positive map ϕ by
(1)

$$
\phi(a)=p a p+\sigma(a) q .
$$

Then $\phi(y)=y, \phi\left(y^{*} y\right)=y^{*} y$, but $\phi\left(y y^{*}\right) \neq y y^{*}$. Therefore D_{ϕ} is not *-closed.

Case 2. $S p\left(x^{\star} x\right)=\{0,1\}$.
In this case $x^{*} x$ and $x x^{*}$ are orthogonal projections. If $x^{*} x+x x^{*} \neq 1$ or if A is not unital we can define ϕ as in (1) with $p=x^{\star} x+x x^{*}, q$ a positive element of norm one orthogonal to p, and σ a state of A satisfying $\sigma\left(x^{\star} x\right)=0, \sigma\left(x x^{\star}\right)>0$. Then $x \in D_{\phi}$ but $x^{\star} \notin D_{\phi}$. We can therefore suppose that $x^{\star} x+x x^{\star}=1, x^{\star} x$ and $x x^{*}$ being orthogonal equivalent projections in $A . A$ can then be expressed
as a matrix algebra $M_{2}(B)$, where the C^{*}-algebra B is *-isomorphic to the relative commutant of $\left\{x, x^{*}\right\}$ in A. Since $A \neq M_{2}(C)$, we can find an element $b \in B_{+}$of norm one which contains at least two nonzero points in its spectrum. Then $a=\left(\begin{array}{ll}0 & 0 \\ b & 0\end{array}\right)$ satisfies $\|a\|=1, a^{2}=0$ and the spectrum of $a^{\star} a$ strictly contains $\{0,1\}$. This returns us to the situation considered in Case 1 , and completes the proof.

REMARK. It is clear that when A is a unital C^{*}-algebra the map ϕ can also be modified so as to be unital.

References

[1] J. Dixmier, C*-algebras (North-Holland Publishing Co, 1977).
[2] B.V. Limaye and M.N.N. Namboodiri, "A generalized noncommutative Korovkin theorem", ILlinois J. Math. 28 (1984), 267-280.
[3] W. Stinespring, "Positive functions on $C *$ algebras", Proc. Amer. Math. Soc. 6 (1955), 211-216.

Department of Mathematics
Edinburgh University
Mayfield Road,
Edinburgh EH9 3JZ

