ASYMMETRIC INVARIANT SETS FOR COMPLETELY POSITIVE MAPS ON C*-ALGEBRAS

A. GUYAN ROBERTSON

Let A be a noncommutative C*-algebra other than $M_2(T)$. We show that there exists a completely positive map ϕ of norm one on A and an element $a \in A$ such that $\phi(a) = a$, $\phi(a*a) = a*a$, but $\phi(aa*) \neq aa*$.

A linear map ϕ from a C*-algebra A into itself is called a Schwarz map if, for all $\alpha \in A$,

$\phi(a) \star \phi(a) \leq \phi(a \star a)$.

In [2] the invariant set $D_{\phi} = \{a \in A : \phi(a) = a , \phi(a^*a) = a^*a\}$ is studied. Limaye and Namboodiri prove that if $A = M_2(\mathcal{I})$ then D_{ϕ} is *-closed for any Schwarz map ϕ but that if $A \neq M_2(\mathcal{I})$ is a noncommutative C*-algebra of compact operators or a type I factor then D_{ϕ} is not *-closed for some Schwarz map ϕ on A. The purpose of this note is to extend that result to arbitrary C*-algebras, thereby answering a question posed in [2]. The map ϕ that we construct is even a completely positive contraction. It follows easily from Stinespring's theorem [3] that such a map is a Schwarz map.

Received 6 September 1985

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

A. Guyan Robertson

THEOREM. Let A be a noncommutative C*-algebra other than $M_2(L)$. Then there exists a completely positive map $\phi : A \longrightarrow A$ such that $\|\phi\| = 1$ and D_{ϕ} is not *-closed.

Proof. Since A is noncommutative, there exists an element $x \in A$ of norm one satisfying $x^2 = 0$ [1,2.12.2]. We have $\{0,1\} \subseteq Sp(x*x) =$ $Sp(xx*) \subseteq [0,1]$. There are two cases to consider.

Case 1. Suppose that Sp(x*x) contains at least three points. Choose $s \in Sp(x*x)$ with 0 < s < 1. Define continuous functions f, g, h on [0,1] which vanish at 0 and satisfy $0 \le f \le g \le 1$, $0 \le h \le 1$, fg = f, hg = 0 and f(s) = g(s) = h(1) = 1. Thus g = 1 on the support of f and g = 0 on the support of h.

Note that $(x^*x)(xx^*) = 0$, so since f and g are uniform limits of polynomials on [0,1] without constant terms we have that $f(x^*x)$, $g(x^*x)$ and $h(x^*x)$ are each orthogonal to all the elements $f(xx^*)$, $g(xx^*)$ and $h(xx^*)$. Let $y = f(xx^*)x f(x^*x)$. Then $y^2 = 0$. Also $y \neq 0$. For, considering polynomials approximating f, we see that $y = x f(x^*x)^2$ and, by definition of f, $x^*x f(x^*x)^2 \neq 0$.

Let $p = g(x^*x) + g(xx^*)$ and $q = h(x^*x)$. Then pq = 0. Now py = y = yp. Since $(y^*y)(yy^*) = 0$, there is a state σ of A such that $\sigma(y^*y) = 0$ but $\sigma(yy^*) > 0$. In addition, by the Cauchy-Schwarz inequality, we have $\sigma(y) = 0$. We define the completely positive map ϕ by

(1)
$$\phi(a) = pap + \sigma(a)q$$

Then $\phi(y) = y$, $\phi(y*y) = y*y$, but $\phi(yy*) \neq yy*$. Therefore D_{ϕ} is not *-closed.

Case 2. $Sp(x*x) = \{0,1\}$.

In this case x^*x and xx^* are orthogonal projections. If $x^*x + xx^* \neq 1$ or if A is not unital we can define ϕ as in (1) with $p = x^*x + xx^*$, q a positive element of norm one orthogonal to p, and σ a state of A satisfying $\sigma(x^*x) = 0$, $\sigma(xx^*) > 0$. Then $x \in D\phi$ but $x^* \notin D_{\phi}$. We can therefore suppose that $x^*x + xx^* = 1$, x^*x and xx^* being orthogonal equivalent projections in A. A can then be expressed

https://doi.org/10.1017/S0004972700004044 Published online by Cambridge University Press

472

as a matrix algebra $M_2(B)$, where the C^* -algebra B is *-isomorphic to the relative commutant of $\{x, x^*\}$ in A. Since $A \neq M_2(C)$, we can find an element $b \in B_+$ of norm one which contains at least two nonzero points in its spectrum. Then $a = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$ satisfies $\|a\| = 1$, $a^2 = 0$ and the spectrum of a^*a strictly contains $\{0,1\}$. This returns us to the situation considered in Case 1, and completes the proof.

REMARK. It is clear that when A is a unital C^* -algebra the map ϕ can also be modified so as to be unital.

References

- [1] J. Dixmier, C*-algebras (North-Holland Publishing Co, 1977).
- [2] B.V. Limaye and M.N.N. Namboodiri, "A generalized noncommutative Korovkin theorem", *Illinois J. Math.* 28 (1984), 267-280.
- [3] W. Stinespring, "Positive functions on C*algebras", Proc. Amer. Math. Soc. 6 (1955), 211-216.

Department of Mathematics Edinburgh University Mayfield Road, Edinburgh EH9 3JZ