A CONVEXITY RESULT FOR WEAK DIFFERENTIAL INEQUALITIES

BY
S. ZAIDMAN ${ }^{(1)}$

Introduction. In this note we present a natural "weak" form of a certain convexity estimate for evolution inequalities as given in Agmon-Nirenberg's paper [1], p. 139 (see also A. Friedman [2], Theorem 4.2 and 4.3). Our proof will follow that given in [1] and [2] with the natural modifications due to the enlargement of the class of solutions which are taken into account.

1. Let us consider a Hilbert space H, and $B ; \mathscr{D}(B) \subseteq H \rightarrow H$ be a self-adjoint-generally unbounded-operator in H with domain $\mathscr{D}(B)$.

A class of test-functions $K_{B}[a, b]$ associated to B and to a given interval [$a, b]$ is defined as follows:

A function $\varphi(t), a \leq t \leq b \rightarrow H$ belongs to $K_{B}[a, b]$ if and only if it is: once continuously differentiable in H; has a compact support in the open interval (a, b); belongs to $\mathscr{D}(B)$ for any $t \in(a, b) ;(B \varphi)(t)$ is H-continuous in [a,b].

Now, if $u(t)$ is a function, $a \leq t \leq b \rightarrow H$ which belongs to $\mathscr{D}(B)$ for any $t \in[a, b]$, continuously differentiable in H with $(B u)(t)-H$ continuous in [a,b], then the function $f(t)=u^{\prime}(t)-B u(t)$ is also H-continuous.

If we assume that an inequality of the form

$$
\begin{equation*}
\left\|u^{\prime}(t)-B u(t)\right\|_{H}=\|f(t)\|_{H} \leq \phi(t)\|u(t)\|_{H}, t \in[a, b] \tag{1.1}
\end{equation*}
$$

is satisfied, where $\phi(t)$ is a given non-negative scalar function defined for $t \in[a, b]$ then we say that $u(t)$ is a "strong" solution of an abstract differential inequality or of an "evolution inequality".

Let us take now the equality $u^{\prime}(t)-B u(t)=f(t)$ and multiply scalarly with an arbitrary function $\varphi(t) \in K_{B}[a, b]$. We get then

$$
\begin{equation*}
\left\langle u^{\prime}(t), \varphi(t)\right\rangle_{H}-\langle B u(t), \varphi(t)\rangle_{H}=\langle f(t), \varphi(t)\rangle_{H} \tag{1.2}
\end{equation*}
$$

or also

$$
\frac{d}{d t}\langle u(t), \varphi(t)\rangle_{H}-\left\langle u(t), \varphi^{\prime}(t)\right\rangle_{H}-\langle u(t), B \varphi(t)\rangle_{H}=\langle f(t), \varphi(t)\rangle_{H}, t \in[a, b]
$$

If we integrate this last equality between a and b, we obtain, because $\varphi(t)$ is

[^0]null near a and b, the equality
\[

$$
\begin{align*}
-\int_{a}^{b}\left\langle u(t), \varphi^{\prime}(t)\right\rangle_{H} d t= & \int_{a}^{b}\langle u(t), B \varphi(t)\rangle_{H} d t \\
& +\int_{a}^{b}\langle f(t), \varphi(t)\rangle_{H} d t, \forall \varphi \in K_{B}[a, b] \tag{1.3}
\end{align*}
$$
\]

We see that this last expression can be written with a general H-continuous function $u(t)$ and this leads us to the following

Definition. A H-continuous function $u(t)$ verifies a weak evolution inequality (1.1) if there exists a H-continuous function $f(t)$ defined on $[a, b]$, such that (1.3) holds for all test-functions and also that the estimate

$$
\begin{equation*}
\|f(t)\|_{H} \leq \phi(t)\|u(t)\|_{H}, t \in[a, b] \tag{1.4}
\end{equation*}
$$

is satisfied, where $\phi(t)$ is an everywhere defined non-negative scalar function on $[a, b]$.

In the present paper we prove the following
Theorem. Let us assume that the H-continuous function $u(t)$ verifies the weak evolution inequality (1.1) with a function $\phi(t)$ which is integrable on $[a, b]$ and if $\int_{a}^{b} \phi(t) d t \leq 1 / 2 \sqrt{2}$ then the estimate

$$
\begin{equation*}
\|u(t)\| \leq 2 \sqrt{2}\|u(a)\|^{(b-t) /(b-a)}\|u(b)\|^{(t-a) /(b-a)}, a \leq t \leq b \tag{1.5}
\end{equation*}
$$

is also satisfied.
2. Proof of the theorem (I). To start the proof, which follows the main lines in [1], [2] with the appropriate modifications for the "weak" case, we let $\left\{E_{\lambda}\right\}_{-\infty}^{\infty}$ to be the spectral family of the self-adjoint operator B, so that $B x=$ $\int_{-\infty}^{\infty} \lambda d E_{\lambda} x, \forall x \in \mathscr{D}(B)$, in the well-known sense (see [3] for the spectral theorem).

Let then E be the projection operator defined by $E x=\int_{0}^{\infty} d E_{\lambda} x, x \in H$, so that $E=I-E_{0}$. Define then two continuous H-valued functions $u_{1}(t), u_{2}(t)$ through the relations $u_{1}(t)=(E u)(t), u_{2}(t)=(I-E) u(t)=E_{0} u(t)$ (here I is the identity operator in H). In the same way, consider the H-continous functions:

$$
f_{1}(t)=(E f)(t), \quad f_{2}(t)=(I-E) f(t)
$$

where $f(t)=u^{\prime}(t)-B u(t)$ in the above defined weak sense (as in 1.3). It will follow that $u_{1}^{\prime}(t)-B u_{1}(t)=f_{1}(t)$ and $u_{2}^{\prime}(t)-B u_{2}(t)=f_{2}(t)$ in the same weak sense. More precisely, the following is true:

Lemma 1. The relations

$$
\begin{equation*}
-\int_{a}^{b}\left\langle u_{j}(t), \varphi^{\prime}(t)\right\rangle_{H} d t=\int_{a}^{b}\left\langle u_{j}(t),(B \varphi)(t)\right\rangle_{H} d t+\int_{a}^{b}\left\langle f_{j}(t), \varphi(t)\right\rangle_{H} d t \tag{1.6}
\end{equation*}
$$ are verified for $j=1,2$ and for every test-function $\varphi(t) \in K_{B}[a, b]$.

In order ot prove this Lemma it is obviously sufficient to consider just $j=1$ or $j=2$. If, say $j=1$, we have the following

$$
\text { If } \varphi \in K_{B}[a, b] \text { then } E \varphi \in K_{B}[a, b] \text { too. }
$$

In fact, the strong H-derivative $d E \varphi / d t$ exists and equals $E d \varphi / d t$, so it is also strongly continuous; also $E \varphi=\theta$ where $\varphi=\theta$, hence $E \varphi$ has compact support in (a, b); furthermore, the range of $E \varphi$ is in the domain of B when $t \in(a, b)$: in fact, it is known that $h \in H$ belongs to $\mathscr{D}(B)$ is and only if

$$
\int_{-\infty}^{\infty}|\lambda|^{2} d\left\langle E_{\lambda} h, h\right\rangle=\int_{-\infty}^{\infty}|\lambda|^{2} d\left\|E_{\lambda} h\right\|^{2}<\infty
$$

Now, if $h \in \mathscr{D}(B)$ then $E h \in \mathscr{D}(B)$ because

$$
\begin{aligned}
\int_{-\infty}^{\infty}|\lambda|^{2} d\left\|E_{\lambda} E h\right\|^{2} & =\int_{0}^{\infty} \lambda^{2} d\left\|\left(E_{\lambda}-E_{0}\right) h\right\|^{2} \\
& =\int_{0}^{\infty} \lambda^{2} d\left\|E_{\lambda} h\right\|^{2}<\infty
\end{aligned}
$$

Hence, $(E \varphi)(t) \in \mathscr{D}(B)$ for any $t \in[a, b]$; we need also that $B(E \varphi)$ is H continuous as is for $B \varphi$. But $B E \varphi=E B \varphi$ (as B commutes with any of E_{λ}). So, if $B \varphi$ is continuous, $B E \varphi$ is too.

At this stage we write

$$
\begin{aligned}
\int_{a}^{b}\left\langle u_{1}(t),\right. & (B \varphi)(t)\rangle d t+\int_{a}^{b}\left\langle f_{1}(t), \varphi(t)\right\rangle d t \\
& =\int_{a}^{b}\langle E u(t), B \varphi(t)\rangle d t+\int_{a}^{b}\langle E f(t), \varphi(t)\rangle d t \\
& =\int_{a}^{b}\langle u(t), B(E \varphi)(t)\rangle d t+\int_{a}^{b}\langle f(t),(E \varphi)(t)\rangle d t \\
& =-\int_{a}^{b}\left\langle u(t),(E \varphi)^{\prime}(t)\right\rangle d t=-\int_{a}^{b}\left\langle u(t), E \varphi^{\prime}(t)\right\rangle d t \\
& =-\int_{a}^{b}\left\langle E u(t), \varphi^{\prime}(t)\right\rangle d t=-\int_{a}^{b}\left\langle u_{1}(t), \varphi^{\prime}(t)\right\rangle d t
\end{aligned}
$$

which gives Lemma for $j=1$.
3. Proof of the Theorem (II). Let us consider now a sequence of scalarvalued functions $\left\{\alpha_{n}(t)\right\}_{n=1}^{\infty}$ which are non-negative C^{1}-functions, vanishing for $|t| \geq 1 / n$, with $\int_{-1 / n}^{1 / n} \alpha_{n}(\tau) d \tau=1$ and then form the convolution

$$
\left(u_{1} * \alpha_{n}\right)(t)=\int_{|t-\tau| \leq 1 / n} u_{1}(\tau) \alpha_{n}(t-\tau) d \tau
$$

which is well-defined for $a+1 / n \leq t \leq b-1 / n$, and is continuously differentiable
there. As proved in our paper [4], after use of (1.6) we find that $\left(u_{1} * \alpha_{n}\right)(t) \in$ $\mathscr{D}(B)$ for $t \in[a+1 / n, b-1 / n]$, and in the same interval it is

$$
\left(u_{1} * \alpha_{n}\right)^{\prime}(t)=B\left(u_{1} * \alpha_{n}\right)(t)+\left(f_{1} * \alpha_{n}\right)(t)
$$

where

$$
\left(f_{1} * \alpha_{n}\right)(t)=\int_{|t-\tau| \leq 1 / n} f_{1}(\tau) \alpha_{n}(t-\tau) d \tau
$$

Now we see that

$$
\left(u_{1} * \alpha_{n}\right)(t)=\int_{|t-\tau| \leqslant 1 / n}(E u)(\tau) \alpha_{n}(t-\tau) d \tau=E\left(u * \alpha_{n}\right)(t), \forall t \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right]
$$

Hence, $\left(u_{1} * \alpha_{n}\right)(t) \in E(H) \forall t \in[a+1 / n, b-1 / n]$, and then, remarking that $B \geq 0$ on $E(H)$, it is: $\left\langle B\left(u_{1} * a_{n}\right)(t),\left(u_{1} * a_{n}\right)(t)\right\rangle_{H} \geq 0 \forall t$ in this interval.

Now we see that, on $[a+1 / n, b-1 / n]$

$$
\begin{aligned}
& \frac{d}{d t}\left\langle u_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle=2 \operatorname{Re}\left\langle B\left(u_{1} * \alpha_{n}\right),\left(u_{1} * \alpha_{n}\right)\right\rangle \\
&+2 \operatorname{Re}\left\langle f_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle \geq 2 \operatorname{Re}\left\langle f_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle
\end{aligned}
$$

If we integrate between $t \in(a-1 / n, b-1 / n)$ and $b-1 / n$, we get

$$
\begin{align*}
& \left\|\left(u_{1} * \alpha_{n}\right)(b-1 / n)\right\|^{2}-\left\|\left(u_{1} * \alpha_{n}\right)(t)\right\|^{2} \tag{1.7}\\
& \quad \geq 2 \operatorname{Re} \int_{t}^{b-1 / n}\left\langle f_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle d s
\end{align*}
$$

$a+\frac{1}{n}<t<b-\frac{1}{n}$.
Now we can prove
Lemma 2. The estimate

$$
\left\|u_{1}(b)\right\|^{2}-\left\|u_{1}(t)\right\|^{2} \geq 2 \operatorname{Re} \int_{t}^{b}\left\langle f_{1}(\tau), u_{1}(\tau)\right\rangle d \tau
$$

is valid, $\forall t \in(a, b)$.
First we prove that $\lim _{n \rightarrow \infty}\left(u_{1} * \alpha_{n}\right)(b-1 / n)=u_{1}(b)$. In fact

$$
\left(u_{1} * \alpha_{n}\right)\left(b-\frac{1}{n}\right)=\int_{b-2 / n}^{b} u_{1}(\tau) \alpha_{n}\left(b-\frac{1}{n}-\tau\right) d \tau,
$$

and

$$
u_{1}(b)=\int_{b-2 / n}^{b} u_{1}(b) \alpha_{n}\left(b-\frac{1}{n}-\tau\right) d \tau
$$

because

$$
\int_{|\tau|<1 / n} \alpha_{n}(\tau) d \tau=1
$$

Then

$$
\begin{aligned}
\left\|\left(u_{1} * \alpha_{n}\right)\left(b-\frac{1}{n}\right)-u_{1}(b)\right\| & \leq \int_{b-2 / n}^{b}\left\|u_{1}(\tau)-u_{1}(b)\right\| \alpha_{n}\left(b-\frac{1}{n}-\tau\right) d \tau \\
& \leq \sup _{b-2 / n \leq \tau \leq b}\left\|u_{1}(\tau)-u_{1}(b)\right\| \int_{b-2 / n}^{b} \alpha_{n}\left(b-\frac{1}{n}-\tau\right) d \tau \\
& =\sup _{b-2 / n \leq \tau \leq b}\left\|u_{1}(\tau)-u_{1}(b)\right\|, \forall n=1,2, \ldots
\end{aligned}
$$

and this $\rightarrow 0$ as $n \rightarrow \infty$ by continuity of $u_{1}(\tau)$ for $\tau=b$.
Hence, we have also:

$$
\lim _{n \rightarrow \infty}\left\|\left(u_{1} * \alpha_{n}\right)\left(b-\frac{1}{n}\right)\right\|=\left\|u_{1}(b)\right\| .
$$

But the estimate

$$
\left\|\left(u_{1} * \alpha_{n}\right)\left(b-\frac{1}{n}\right)\right\| \leq \sup _{[a, b]}\left\|u_{1}(\tau)\right\|
$$

is also valid, hence we get too:

$$
\lim _{n \rightarrow \infty}\left\|\left(u_{1} * \alpha_{n}\right)\left(b-\frac{1}{n}\right)\right\|^{2}=\left\|u_{1}(b)\right\|^{2} .
$$

Furthermore:

$$
\lim _{n \rightarrow \infty}\left\|\left(u_{1} * \alpha_{n}\right)(t)\right\|^{2}=\left\|u_{1}(t)\right\|^{2}
$$

for $t \in(a, b)$ and

$$
\lim _{n \rightarrow \infty} \int_{t}^{b-1 / n}\left\langle f_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle d s=\int_{t}^{b}\left\langle f_{1}(s), u_{1}(s)\right\rangle d s
$$

This last limit holds because of the following: consider the difference

$$
\int_{t}^{b}\left\langle f_{1}(s), u_{1}(s)\right\rangle d s-\int_{t}^{b-1 / n}\left\langle f_{1} * \alpha_{n}, u_{1} * \alpha_{n}\right\rangle d s
$$

Now, denote

$$
\left\langle f_{1}(s), u_{1}(s)\right\rangle=\phi_{1}(s),\left\langle\left(f_{1} * \alpha_{n}\right)(s),\left(u_{1} * \alpha_{n}\right)(s)\right\rangle=\phi_{n}(s)
$$

we see that $\phi_{1}(s)$ is continuous on $t \leq s \leq b$, and $\phi_{n}(s)$ are continuous on $t \leq s \leq b-1 / n$.

Then our expression equals

$$
\int_{t}^{b} \phi_{1}(s) d s-\int_{t}^{b-1 / n} \phi_{n}(s) d s
$$

Let us extend $\phi_{n}(s)$ as:

$$
\tilde{\phi}_{n}(s)=\left\{\begin{array}{l}
\phi_{n}(s), t \leq s<b-1 / n \\
0, b-1 / n \leq s \leq b
\end{array}\right.
$$

It follows

$$
\int_{t}^{b-1 / n} \phi_{n}(s) d s=\int_{t}^{b} \tilde{\phi}_{n}(s) d s
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{t}^{b}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s
$$

must be null.
We can apply here Lebesgue's theorem:
(i) $\tilde{\phi}_{n}(s) \rightarrow \phi_{1}(s)$ almost-everywhere on $[t, b]$.

In fact, for any $s \in[t, b), \tilde{\phi}_{n}(s)=\phi_{n}(s)$ when n is big enough, such that $b-1 / n>s$: furthermore $\phi_{n}(s) \rightarrow \phi_{1}(s)$ for any $a<s<b$ because $\left(f_{1} * \alpha_{n}\right)(s) \rightarrow f_{1}(s),\left(u_{1} * \alpha_{n}\right)(s) \rightarrow u_{1}(s)$; hence, $\tilde{\phi}_{n}(s) \rightarrow \phi_{1}(s)$ for any $s>a$, with possible exception of $s=b$. ($\phi_{1}(b)$ need not be null, whereas $\tilde{\phi}_{n}(s)$ are all null for $s=b$.)
(ii) $\tilde{\phi}_{n}(s)$ are uniformly bounded on $[t, b]$. In fact

$$
\begin{aligned}
\sup _{t \leq s \leq b}\left|\tilde{\phi}_{n}(s)\right| \leq \sup _{t \leq s \leq b-1 / n}\left|\phi_{n}(s)\right| & \leq \sup _{t \leq s \leq b-1 / n}\left\|\left(f_{1} * \alpha_{n}\right)(s)\right\|\left\|\left(u_{1} * \alpha_{n}\right)(s)\right\| \\
& \leq \sup _{a \leq s \leq b}\left\|f_{1}(s)\right\| \sup _{a \leq s \leq b}\left\|u_{1}(s)\right\|
\end{aligned}
$$

Remark. We can also avoid Lebesgue's theorem as follows: take an arbitrary $\delta>0$. Then

$$
\begin{aligned}
& \int_{t}^{b}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s= \int_{t}^{b-\delta}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s \\
&+\int_{b-\delta}^{b}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s \\
&= \int_{t}^{b-\delta}\left[\phi_{1}(s)-\phi_{n}(s)\right] d s+\int_{b-\delta}^{b}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s, \\
& \text { for } \delta>\frac{1}{n} .
\end{aligned}
$$

The second integral estimates by $C \cdot \delta, C=2 \sup _{a \leq s \leq b}\left\|u_{1}(s)\right\|\left\|f_{1}(s)\right\|$.
Then given $\varepsilon>0$, take first $\delta(\varepsilon)$ such that $C \delta<\varepsilon / 2$. Then, because $\phi_{n}(s) \rightarrow \phi_{1}(s)$ uniformly on $[t, b-\delta]$, there exist an integer $N(\varepsilon)$ such that $\delta>1 / N$ and $n>N \Rightarrow$

$$
\left\|\int_{t}^{b-\delta}\left[\phi_{1}(s)-\phi_{n}(s)\right] d s\right\|<\frac{\varepsilon}{2}
$$

so that $n>N \Rightarrow$

$$
\left\|\int_{t}^{b}\left[\phi_{1}(s)-\tilde{\phi}_{n}(s)\right] d s\right\|<\varepsilon
$$

Hence, from (1.7), Lemma 2 follows for $a<t<b$. However, the Lemma is true also for $t=a$, or $t=b$, as follows by continuity.

In exactly same way we see that the following is true.
Lemma 3. The estimate

$$
\left\|u_{2}(t)\right\|^{2}-\left\|u_{2}(a)\right\|^{2} \leq 2 \operatorname{Re} \int_{a}^{t}\left\langle f_{2}(s), u_{2}(s)\right\rangle d s
$$

holds, $\forall t \in[a, b]$.
4. Proof of Theorem (III).

We see firstly that

$$
\begin{aligned}
\left|2 \operatorname{Re} \int_{t}^{b}\left\langle f_{1}(s), u_{1}(s)\right\rangle d s\right| & \leq 2\left|\int_{t}^{b}\left\langle f_{1}(s), u_{1}(s)\right\rangle d s\right| \leq 2 \int_{t}^{b}\left\|f_{1}(s)\right\|\left\|u_{1}(s)\right\| d s \\
& \leq 2 \int_{t}^{b}\|f(s)\|\|u(s)\| d s
\end{aligned}
$$

It follows:

$$
-2 \int_{t}^{b}\|f(s)\|\|u(s)\| d s \leq 2 \operatorname{Re} \int_{t}^{b}\left\langle f_{1}(s), u_{1}(s)\right\rangle d s
$$

Hence, applying Lemma 2, we obtain

$$
\left\|u_{1}(b)\right\|^{2}-\left\|u_{1}(t)\right\|^{2} \geq-2 \int_{t}^{b}\|f(s)\|\|u(s)\| d s
$$

Then it is:

$$
\left\|u_{1}(t)\right\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+2 \int_{t}^{b}\|f(s)\| u(s)\|d s \leq\| u_{1}(b)\left\|^{2}+2 M \int_{t}^{b}\right\| f(s) \| d s
$$

where $M=\sup _{a \leq s \leq b}\|u(s)\|$.
Also, from Lemma 3, we get

$$
\left\|u_{2}(t)\right\|^{2} \leq\left\|u_{2}(a)\right\|^{2}+2 M \int_{a}^{t}\|f(s)\| d s
$$

and by addition

$$
\left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{2}(a)\right\|^{2}+2 M \int_{a}^{b}\|f(s)\| d s
$$

As $\quad u_{1}(t)=E u(t), \quad u_{2}(t)=(I-E) u(t), \quad\left\langle u_{1}(t), u_{2}(t)\right\rangle=\langle E u(t),(I-E) u(t)\rangle=$ $\langle u(t),(E-E) u(t)\rangle=0$; so $\left\|u_{1}(t)+u_{2}(t)\right\|^{2}=\left\langle u_{1}+u_{2}, u_{1}+u_{2}\right\rangle=\left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2}$. Hence

$$
\|u(t)\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{2}(a)\right\|^{2}+2 M \int_{a}^{b}\|f(s)\| d s
$$

If we use inequality

$$
2 M N \leq\left(\frac{M}{\sqrt{ } 2}\right)^{2}+(\sqrt{ }(2) N)^{2} \quad \text { where } \quad N=\int_{a}^{b}\|f(s)\| d s
$$

we have

$$
\|u(t)\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{2}(a)\right\|^{2}+\frac{M^{2}}{2}+2\left(\int_{a}^{b}\|f(s)\| d s\right)^{2}, \forall t \in[a, b] .
$$

Hence

$$
M^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{2}(a)\right\|^{2}+\frac{M^{2}}{2}+2\left(\int_{a}^{b}\|f(s)\| d s\right)^{2}
$$

and finally we have the estimate

$$
\begin{equation*}
M^{2} \leq 2\left(\|u(a)\|^{2}+\|u(b)\|^{2}\right)+4\left(\int_{a}^{b}\|f(s)\| d s\right)^{2} \tag{}
\end{equation*}
$$

Let us define now, for any real σ, the H-continuous function $w_{\sigma}(t)=e^{\sigma t} u(t)$, and let $B_{\sigma}=B+\sigma I$ which is again self-adjoint, with $\mathscr{D}\left(B_{\sigma}\right)=\mathscr{D}(B) \forall$ real σ. Then we have

Lemma 4. The relation $w_{\sigma}^{\prime}(t)-B_{\sigma} w_{\sigma}(t)=e^{\sigma t} f(t)$ holds in the weak sense over (a, b).

So, we must prove that, $\forall \varphi \in K_{B_{a}}[a, b]=K_{B}[a, b]$ is

$$
-\int_{a}^{b}\left\langle w_{\sigma}(s), \varphi^{\prime}(s)\right\rangle d s=\int_{a}^{b}\left\langle w_{\sigma}(s), B_{\sigma} \varphi(s)\right\rangle d s+\int_{a}^{b}\left\langle e^{\sigma s} f(s), \varphi(s)\right\rangle d s
$$

or

$$
-\int_{a}^{b}\left\langle u(s), e^{\sigma s} \varphi^{\prime}(s)\right\rangle d s=\int_{a}^{b}\left\langle u(s), e^{\sigma s} B_{\sigma} \varphi(s)\right\rangle d s+\int_{a}^{b}\left\langle f(s), e^{\sigma s} \varphi(s)\right\rangle d s
$$

Now $e^{\sigma s} \varphi^{\prime}(s)=\left(e^{\sigma s} \varphi(s)\right)^{\prime}-\sigma e^{\sigma s} \varphi(s)$. Also $\psi_{\sigma}(s)=e^{\sigma s} \varphi(s) \in K_{B}[a, b]$ as obviously. We have to prove

$$
\begin{aligned}
-\int_{a}^{b}\left\langle u(s), \psi_{\sigma}^{\prime}(s)-\sigma \psi_{\sigma}(s)\right\rangle d s=\int_{a}^{b}\left\langle u(s), B \psi_{\sigma}(s)+\sigma \psi_{\sigma}(s)\right\rangle d s & \\
& +\int_{a}^{b}\left\langle f(s), \psi_{\sigma}(s)\right\rangle d s
\end{aligned}
$$

that is to prove

$$
-\int_{a}^{b}\left\langle u(s), \psi_{\sigma}^{\prime}(s)\right\rangle d s=\int_{a}^{b}\left\langle u(s), B \psi_{\sigma}(s)\right\rangle d s+\int_{a}^{b}\left\langle f(s), \psi_{\sigma}(s)\right\rangle d s
$$

which is true because $u^{\prime}-B u=f$ in weak sense on (a, b).
Once this is established, we apply (*) to this slightly changed situation and obtain the estimate

$$
\left(\sup _{a \leq t \leq b}\left\|e^{\sigma t} u(t)\right\|\right)^{2} \leq 2\left(\left\|e^{\sigma a} u(a)\right\|^{2}+\left\|e^{\sigma b} u(b)\right\|^{2}\right)+4\left(\int_{a}^{b}\left\|e^{\sigma s} f(s)\right\| d s\right)^{2}
$$

We use now the main assumption (1.4)

$$
\|f(s)\| \leq \phi(s)\|u(s)\|, \quad s \in[a, b]
$$

Then

$$
\begin{aligned}
\int_{a}^{b}\left\|e^{\sigma s} f(s)\right\| d s \leq \int_{a}^{b} e^{\sigma s} \phi(s)\|u(s)\| d s \leq \sup _{[a, b]}\left(e^{\sigma s}\|u(s)\|\right) \int_{a}^{b} & \phi(s) d s \\
& \leq \frac{1}{2 \sqrt{2}} \sup _{[a, b]}\left(e^{\sigma s}\|u(s)\|\right)
\end{aligned}
$$

and squaring get

$$
\left(\int_{a}^{b}\left\|e^{\sigma s} f(s)\right\| d s\right)^{2} \leq \frac{1}{8}\left(\sup _{[a, b]}\left(e^{\sigma s}\|u(s)\|\right)\right)^{2}
$$

Hence

$$
\left(\sup \left\|e^{\sigma s} u(s)\right\|\right)^{2} \leq 2\left(\left\|e^{\sigma a} u(a)\right\|^{2}+\left\|e^{s b} u(b)\right\|^{2}\right)+\frac{1}{2}\left(\sup e^{\sigma s}\|u(s)\|\right)^{2}
$$

and

$$
\left(\sup _{[a, b]}\left\|e^{\sigma s} u(s)\right\|\right)^{2} \leq 4\left(\left\|e^{\sigma a} u(a)\right\|^{2}+\left\|e^{\sigma b} u(b)\right\|^{2}\right)
$$

Then $\forall t \in[a, b],\left\|e^{\sigma t} u(t)\right\| \leq \sup _{[a, b]}\left\|e^{\sigma s} u(s)\right\|$ and

$$
\mid e^{\sigma t} u(t) \|^{2} \leq\left(\sup _{[a, b]}\left\|e^{\sigma s} u(s)\right\|\right)^{2}
$$

so

$$
(* *)\left\|e^{\sigma t} u(t)\right\|^{2} \leq 4\left(\left\|e^{\sigma a} u(a)\right\|^{2}+\left\|e^{\sigma b} u(b)\right\|^{2}\right), \forall t \in[a, b]
$$

We pass now to the final part of the proof for (1.5). First we consider the case when $u(a)=\theta$ or $u(b)=\theta$. If both are, from $(* *) \Rightarrow\|u(t)\|=0 \forall t \in[a, b]$, so (1.5) holds. If say, $u(a)=\theta$, from ($* *$) we get

$$
\left\|e^{\sigma t} u(t)\right\| \leq 2\left\|e^{\sigma b} u(b)\right\|, \quad\|u(t)\| \leq 2 e^{\sigma(b-1)}\|u(b)\|
$$

As σ was chosen arbitrarily, we deduce, when $t<b$ and $\sigma \rightarrow-\infty$, that $\|u(t)\|=\theta, a \leq t<b$ and hence $u(b)=\theta$ also and (1.5) holds. The non-trivial case is when both $u(a)$ and $u(b)$ are $\neq \theta$. We can choose σ so that $\left\|e^{\sigma a} u(a)\right\|=$ $\left\|e^{\sigma b} u(b)\right\|$

$$
\left(-\frac{1}{2}-a \sigma(b-a)=\frac{\|u(a)\|}{\|u(b)\|}, \quad \sigma(b-a)=\log \frac{\|u(a)\|}{\|u(b)\|}, \quad \sigma=\log \left(\frac{\|u(a)\|}{\|u(b)\|}\right)^{\frac{1}{b-a}}\right) .
$$

In that case, $e^{\sigma t}=(\|u(a)\| /\|u(b)\|)^{t /(b-a)}$. Hence $(* *)$ becomes

$$
\left(\frac{\|u(a)\|}{\|u(b)\|^{2 t /(b-a)}}\|u(t)\|^{2} \leq 8\left(\|u(a)\|^{2}\left(\frac{\|u(a)\|^{2 a(b-a)}}{\|u(b)\|^{2}}\right)^{2}\right)=8 \frac{\|u(a)\|^{\frac{2 b}{b^{-a}}}}{\|u(b)\|^{\frac{2 a}{b-a}}}\right.
$$

hence

$$
\|u(t)\| \leq 2 \sqrt{ } 2\|u(a)\|^{b-t / b-a}\|u(b)\|^{t-a / b-a}, \quad a \leq t \leq b
$$

which proves our theorem.

References

1. S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space. Comm. Pure Appl. Math., May 1963, pp. 121-239.
2. A. Friedman, Partial Differential Equations. Holt, Rinehart and Winston, Inc., 1969.
3. K. Yosida, Functional Analysis. Springer-Verlag, 1965.
4. S. Zaidman, Remarks on weak solution of differential equations in Banach spaces. Boll. U.M.I. (4)9 (1974), pp. 638-643.

Université de Montrèal

[^0]: (Received by the editors December 23, 1974.)
 ${ }^{(1)}$ This research is supported by a grant of the National Research Council, Canada.

