HARTMAN'S THEOREM FOR HYPERBOLIC SETS

MASAHIRO KURATA

§ 1. Introduction, notation and definitions

Hartman proved that a diffeomorphism is topologically conjugate to a linear map on a neighbourhood of a hyperbolic fixed point ([3]). In this paper we study the topological conjugacy problem of a diffeomorphism on a neighbourhood of a hyperbolic set, and prove that for any hyperbolic set there is an arbitrarily slight extension to which a subshift of finite type is semi-conjugate. In the sequel, M denotes a compact C^{∞} manifold with some Riemannian metric $|\cdot|$.

THEOREM 2. Let $f: M \to M$ be a diffeomorphism with $\Lambda \subset M$ a hyperbolic set. Then there is a neighbourhood U of the zero-section of $T_{\Lambda}M$ and a bundle map $h: U \to \Lambda \times M$ such that $(f \times f) \circ h = h \circ Tf$. (We regard U and $\Lambda \times M$ as a microbundle).

THEOREM 3. Let f, Λ be as above, and W a neighbourhood of Λ . Then there are a hyperbolic set Λ' with $\Lambda \subset \Lambda' \subset W$ and a subshift of finite type which is semi-conjugate to Λ' .

DEFINITION. Let E be a vector bundle with norms $\|\cdot\|$ on each fibre. A vector bundle map $T: E \to E$ is hyperbolic if E splits into

$$E = E^s \oplus E^u$$

where E^s and E^u are T invariant subbundles, and there are $0 < \lambda < 1$, c > 0 such that for $n \ge 0$,

$$\|T^nv\| \le c\lambda^n \|v\|$$
 if $v \in E^s$ $\|T^{-n}v\| \le c\lambda^n \|v\|$ if $v \in E^u$.

We may assume c = 1 ([4]).

Skewness of *T* is min { $||T|E^s||, ||T^{-1}|E^u||$ }.

Received February 17, 1976. Revised September 4, 1976. Let $f: M \to M$ be a diffeomorphism. $M \supset \Lambda$ is a hyperbolic set if Λ is a closed f-invariant subset, and $Tf \mid \Lambda$ is hyperbolic. When its splitting is $Tf \mid \Lambda = E^s \oplus E^u$, define

$$B^s(r) = \{v \in E^s | |v| \le r\}$$

 $B^u(r) = \{v \in E^u | |v| \le r\}$
 $B^s_x(r) = B^s(r) \cap T_xM$
 $B^u_x(r) = B^u(r) \cap T_xM$.

Let $p: E \to \Lambda$ be a vector bundle with norms. $\Gamma = \Gamma(E)$ denotes the Banach space consisting of all bounded cross sections on Λ (not necessarily continuous) with sup norms. Let $\mathfrak{M}(\Gamma) = \{ \max : \Gamma \to \Gamma \}$. For any $y \in E$, $\sigma_y \in \Gamma$ is given by

$$\sigma_y(x) = \begin{cases} y & \text{if } x = py \\ 0 & \text{otherwise} \end{cases}$$

We define

 $\widetilde{\mathfrak{M}}_f(\Gamma) = \{ H \in \mathfrak{M}(\Gamma) | H \text{ satisfies the following condition (I), (II)} \}.$ Condition (I), $H(\sigma_z)(x) = 0$ for $x \neq fp(z)$ (II), $H(\sigma_z)(fp(z)) = H(\sigma)(fp(z))$ for any σ with $\sigma(p(z)) = z$.

For any $H \in \widetilde{\mathfrak{M}}_{t}(\Gamma)$, let a map

$$\Phi(H): E \to E$$

be given by $\Phi(H)(z) = H(\sigma_z)(fp(z))$. Then we define

 $\mathfrak{M}_f(\Gamma) = \{ H \in \widetilde{\mathfrak{M}}_f(\Gamma) | \Phi(H) \text{ satisfies the following condition (III)} \}.$

Condition (III). $\Phi(H)$ is continuous.

Define

 $\mathfrak{M}^b(\varGamma) = \{H \in \mathfrak{M}(\varGamma) \mid H \text{ is bounded}\}, \ \ \widetilde{\mathfrak{M}}^b{}_f(\varGamma) = \widetilde{\mathfrak{M}}_f(\varGamma) \cap \mathfrak{M}^b(\varGamma) \ \ \text{and} \ \ \mathfrak{M}^b{}_f(\varGamma) = \mathfrak{M}_f(\varGamma) \cap \mathfrak{M}^b(\varGamma).$

The norm of $\mathfrak{M}^b(\Gamma)$ is defined by the sup norm. For a Lipschitz map f, Lip (f) denotes its Lipschitz number.

§ 2. Hartman's theorem for hyperbolic sets

Lemma 1. (1) $\widetilde{\mathfrak{M}}^b{}_f(\Gamma)$ is a closed linear subspace of $\mathfrak{M}^b(\Gamma)$.

(2) $\mathfrak{M}^{b}{}_{f}(\Gamma)$ is a closed linear subspace of $\widetilde{\mathfrak{M}}^{b}{}_{f}(\Gamma)$.

Proof. Proof of (1) is easy. $\mathfrak{M}^{b}_{f}(\Gamma)$ is non-empty because a con-

tinuous, bounded, fiber and zero-section preserving map from E into E over f induces an element of $\mathfrak{M}^b{}_f(\Gamma)$. Let $\tilde{\mathfrak{M}}^b{}_f(E) = \{h : E \to E \mid h \text{ is a bounded map over } f \text{ (not necessarily continuous)}\}$. $\mathfrak{M}^b{}_f(E) = \{h \in \tilde{\mathfrak{M}}^b{}_f(E) \mid h \text{ is continuous}\}$. Then $\mathfrak{M}^b{}_f(E)$ is a closed linear subspace. And the map

$$\Phi: \tilde{\mathfrak{M}}^{b}{}_{f}(\Gamma) \to \tilde{\mathfrak{M}}^{b}{}_{f}(E)$$

is a continuous linear map. Thus $\mathfrak{M}^b{}_f(\Gamma)=\varPhi^{-1}(\mathfrak{M}^b{}_f(E))$ is a closed linear subspace.

LEMMA 2. (1) If $H \in \widetilde{\mathfrak{M}}_{f}(\Gamma)$, $G \in \widetilde{\mathfrak{M}}_{g}(\Gamma)$, then $G \circ H \in \widetilde{\mathfrak{M}}_{g \circ f}(\Gamma)$ and $\Phi(G \circ H) = \Phi(G) \circ \Phi(H)$.

- (2) If $H \in \mathfrak{M}_{f}(\Gamma)$, $G \in \mathfrak{M}_{g}(\Gamma)$, then $G \circ H \in \mathfrak{M}_{g \circ f}(\Gamma)$.
- (3) For a homeomorphism $H \in \widetilde{\mathfrak{M}}_{f}(\Gamma)$, $H^{-1} \in \widetilde{\mathfrak{M}}_{f^{-1}}(\Gamma)$ and $\Phi(H) \in \mathfrak{M}_{f}(E)$ is an invertible map with $\Phi(H)^{-1} = \Phi(H^{-1})$.

Proof. (1), (2) are obvious.

For any $x \in \Lambda$ and $\sigma \in \Gamma$, $H(\sigma)(x) = 0$ if and only if $\sigma(f^{-1}(x)) = \sigma_{\sigma f^{-1}(x)}(f^{-1}(x)) = 0$ because $H(\sigma)(x) = H\sigma_{\sigma f^{-1}(x)}(x)$ and H is injective. Thus $H^{-1}\sigma_z(x) = 0$ for $x \neq f^{-1}p(z)$.

For any $z_0 \in E$, $\sigma \in \Gamma$ with $\sigma(pz_0) = z_0$, define $z' = (H^{-1}\sigma_{z_0})(f^{-1}p(z_0))$, $z'' = (H^{-1}\sigma)(f^{-1}p(z_0))$. Then $\sigma(pz_0) = (H_{\circ}H^{-1}\sigma)(pz_0) = (H_{\sigma_{z''}})(pz_0)$, and $\sigma_{z_0}(pz_0) = (H \circ H^{-1}\sigma_{z_0})(pz_0) = (H\sigma_{z'})(pz_0)$. On the other hand $(H\sigma_{z'})(x) = (H\sigma_{z''})(x) = 0$ for $x \neq pz_0$. Then $H\sigma_{z'} = H\sigma_{z''}$. Because H is injective we have $\sigma_{z'} = \sigma_{z''}$, that is z' = z''. Thus $H^{-1} \in \widetilde{\mathfrak{M}}_{f^{-1}}(\Gamma)$. $\Phi(H^{-1}) = \Phi(H)^{-1}$ follows from (1).

LEMMA 3. If $H \in \mathfrak{M}_f(\Gamma)$ is a homeomorphism and H^{-1} is a Lipschitz map, then $\Phi(H)$ is a homeomorphism.

Proof. By Lemma 2, $\Phi(H)$ is an injection and $\Phi(H)^{-1} = \Phi(H^{-1})$. For any r > 0, define $B(r) = \{z \in E \mid ||z|| \le r\}$. It is sufficient to prove that for any r > 0

$$\Phi(H) \mid \Phi(H)^{-1}(B(r)) : \Phi(H)^{-1}(B(r)) \to B(r)$$

is a homeomorphism. We have

$$\|\Phi(H)^{-1}(B(r))\| = \|H^{-1}(B'(r))\| \le r \operatorname{Lip}(H^{-1})$$

where $B'(r) = \{\sigma_z \in \Gamma \mid ||\sigma_z|| \leq r\}$. $\Phi(H)^{-1}(B(r))$ is compact because $\Phi(H)^{-1} \cdot (B(r))$ is a closed subset of $B(r \operatorname{Lip}(H^{-1}))$. Then $\Phi(H) | \Phi(H)^{-1}(B(r))$ is a homeomorphism.

LEMMA 4. Let $T \in \mathfrak{M}_f(\Gamma)$ be a hyperbolic linear homeomorphism. Then there is $\varepsilon > 0$ such that for any ψ , $\phi \in \mathfrak{M}^b{}_f(\Gamma)$ with $\operatorname{Lip}(\psi)$, $\operatorname{Lip}(\phi) < \varepsilon$, there is a unique map $H_{\psi\phi} \in \mathfrak{M}^b{}_{\mathrm{id}}(\Gamma)$ satisfying

$$(T + \psi) \circ (\mathrm{id} + H_{\psi\phi}) = (\mathrm{id} + H_{\psi\phi}) \circ (T + \phi) .$$

Proof. The proof is essentially due to Pugh ([5], [6]). Let $0 < \varepsilon < \min\{1 - \lambda, \|T^{-1}\|^{-1}\}$ where λ is a skewness of T, and

$$\mu:\mathfrak{M}^b(\Gamma)\to\mathfrak{M}^b(\Gamma)$$

be defined by

$$\mu(H) = (\mathcal{L}_{\phi}^* - \mathrm{id})^{-1} (\phi - \psi \circ (\mathrm{id} + H)) \circ (T + \phi)^{-1}$$

where $\mathscr{L}_{\phi}^{*}(H) = T \circ H \circ (T + \phi)^{-1}$ with $(\mathscr{L}_{\phi}^{*} - \mathrm{id})$ being invertible. Then $\mathrm{Lip}\,(\mu) < 1$ and there is a unique fixed point $H_{\psi\phi}$ (c.f. [5], [6]). Because $T + \phi$ is a homeomorphism and $(T + \phi)^{-1}$ is a Lipschitz map, $(T + \phi)^{-1} \in \mathfrak{M}_{f^{-1}}(\Gamma)$ follows from Lemma 2. Then $(\phi - \psi \circ (\mathrm{id} + H)) \circ (T + \phi)^{-1} \in \mathfrak{M}_{bd}^{*}(\Gamma)$ if $H \in \mathfrak{M}_{bd}^{*}(\Gamma)$.

Similarly $\mathscr{L}_{\phi}^*(\mathfrak{M}_{\mathrm{id}}^b(\Gamma)) \subset \mathfrak{M}_{\mathrm{id}}^b(\Gamma)$.

Thus a linear map

$$\mathscr{L}_b^* \mid \mathfrak{M}_{\mathrm{id}}^b(\Gamma) : \mathfrak{M}_{\mathrm{id}}^b(\Gamma) \to \mathfrak{M}_{\mathrm{id}}^b(\Gamma)$$

is well defined, and $\mathscr{L}_{\phi}^* \mid \mathfrak{M}_{id}^b(\Gamma)$ is hyperbolic with an associated splitting

$$\mathfrak{M}_{id}^b(\Gamma) = \mathfrak{M}_{id}^b(\Gamma; \Gamma^u) \oplus \mathfrak{M}_{id}^b(\Gamma; \Gamma^s)$$

where

$$\Gamma^a = \{ \sigma \in \Gamma \mid \sigma(x) \in E^a \text{ for } x \in \Lambda \}$$

 $\mathfrak{M}^b_{\mathrm{id}}(\Gamma; \Gamma^a) = \{ H \in \mathfrak{M}^b_{\mathrm{id}}(\Gamma) \mid H(\sigma) \in \Gamma^a \text{ for } x \in \Gamma \}$

for a = u, s.

Therefore $(\mathscr{L}^*_{\phi} - \mathrm{id}) | \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$ is invertible, and $(\mathscr{L}^*_{\phi} - \mathrm{id})^{-1}(H) \in \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$ for $H \in \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$. Thus we have $\mu(\mathfrak{M}^b_{\mathrm{id}}(\Gamma)) \subset \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$. Because $\mathfrak{M}^b_{\mathrm{id}}(\Gamma)$ is a closed linear subspace of $\mathfrak{M}^b(\Gamma)$, a unique fixed point $H_{\psi\phi}$ of μ is in $\mathfrak{M}^b_{\mathrm{id}}(\Gamma)$.

LEMMA 5. Let T be as above. Then there is $\varepsilon > 0$ such that for any $\psi \in \mathfrak{M}^b_f(\Gamma)$ with $\operatorname{Lip}(\psi) < \varepsilon$ there is a unique map $H \in \mathfrak{M}^b_{\operatorname{id}}(\Gamma)$ satisfying

$$(T + \psi) \circ (\mathrm{id} + H) = (\mathrm{id} + H) \circ T$$
.

Moreover id + H is a homeomorphism.

LEMMA 6. Let $p: E \to \Lambda$ be a vector bundle. Let Λ be compact, $V \subset E$ be a neighbourhood of the zero-section. Assume $\phi: V \to E$ is a fiber preserving map and

- (1) $\phi \mid (V \cap p^{-1}(x))$ is differentiable for $x \in \Lambda$
- (2) $T_z \phi$ is continuous with respect to $z \in V$
- (3) $\phi(0_x) = 0_{f(x)}$
- (4) $T_{0x}\phi = 0$,

where $T_z\phi$ is the differential of $\phi|(V \cap p^{-1}(x))$ at $z \in V \cap p^{-1}(x)$ and 0_x is the zero vector at $x \in \Lambda$.

Then for any $\varepsilon > 0$, there is a neighbourhood W of the zero section, and a fiber preserving map

$$\tilde{\phi}: E \to E$$

such that

- (5) $\tilde{\phi} | W = \phi | W$
- (6) Lip $(\tilde{\phi}) < \varepsilon$
- (7) $\tilde{\phi}$ is bounded with the sup norm.

Lemma 5 follows from Lemma 4, and Lemma 6 is a vector bundle version of ([5] p. 79).

THEOREM 1. Let $p: E \to \Lambda$ be a vector bundle with Λ compact, $f: \Lambda \to \Lambda$ be a homeomorphism. Let $T: E \to E$ be a hyperbolic vector bundle map over f.

Then there is $\varepsilon > 0$ satisfying the followings; for any fiber and zerosection preserving map $\phi: E \to E$ over f such that ϕ is bounded with sup norm and $\text{Lip}(\phi) < \varepsilon$, there is a unique fiber preserving map $h_{\phi}: E \to E$ over id such that the diagram

$$E \xrightarrow{T} E$$

$$id + h_{\phi} \downarrow \qquad \qquad \downarrow id + h_{\phi}$$

$$E \xrightarrow{T + \phi} E$$

is commutative. Moreover $id + h_{\phi}$ is a homeomorphism.

Proof. Let λ be a skewness of $T, \varepsilon > 0$ be such that $\varepsilon < \min\{1 - \lambda, \|T^{-1}\|^{-1}\}$. A map

$$T_*: \Gamma(E) \to \Gamma(E)$$

given by

$$T_{\downarrow}(\sigma) = T \circ \sigma \circ f^{-1}$$

is a hyperbolic isomorphism with an associated splitting

$$\Gamma(E) = \Gamma(E^s) \oplus \Gamma(E^u)$$
.

Then

$$\|T_*|\Gamma(E^s)\| = \|T|E^s\| < \lambda$$

 $\|T_*^{-1}|\Gamma(E^u)\| = \|T^{-1}|E^u\| < \lambda$.

For a map $\phi: E \to E$ with $\operatorname{Lip}(\phi) < \varepsilon$, we define a map

$$\phi_* \colon \varGamma(E) \to \varGamma(E)$$

by $\phi_*(\sigma) = \phi \circ \sigma \circ f^{-1}$.

Then

$$\operatorname{Lip}(\phi_*) = \operatorname{Lip}(\phi)$$

and

$$\phi_* \in \mathfrak{M}^b{}_f(\Gamma(E))$$
.

By Lemma 5, there is a unique map $H \in \mathfrak{M}^{\flat}_{\mathrm{id}}(\Gamma(E))$ with the commutative diagram;

$$\begin{array}{ccc} \varGamma(E) & \xrightarrow{T_*} \varGamma(E) \\ & & \downarrow^{\mathrm{id}+H} & \downarrow^{\mathrm{id}+H} \\ & & & \downarrow^{T_*+\phi_*} & \varGamma(E) \end{array}.$$

The map $h_{\phi}: E \to E$ defined by

$$h_{\scriptscriptstyle \phi}(z) = H(\sigma_z)(p(z))$$

is the required map. The uniqueness follows from the unique

THEOREM 2. (Hartman's theorem for hyperbolic sets) Let $f: M \to M$ be a diffeomorphism, $\Lambda \subset M$ be a hyperbo Then there are a neighbourhood U of the zero section in a map

$$h: U \to A \times M$$

which maps U homeomorphically onto a neighbourhood of the diagonal in $\Lambda \times M$ with

- 1) $pr_2 \circ h = p$
- 2) $h(0_x) = (x, x)$
- 3) the diagram

$$egin{aligned} U & \cap & Tf^{-1}(U) \stackrel{Tf}{\longrightarrow} & U \\ & \downarrow & \downarrow & \downarrow \\ & \Lambda \times M & \stackrel{f \times f}{\longrightarrow} \Lambda \times M & commutes \end{aligned}$$

Proof. Let $\varepsilon > 0$ satisfy $\varepsilon < \min \{1 - \lambda, \|T^{-1}\|^{-1}\}$ where λ is the skewness of $Tf \mid \Lambda$. Assume that $W \subset T_{\Lambda}M$ is a neighbourhood of the zero section of $T_{\Lambda}M$.

By taking W sufficiently small, a map $F: W \to T_A M$ can be given by

$$(f \times f) \circ (p, \exp) = (p, \exp) \circ F$$
.

Define $\phi = F - T_0 F | W$, where

$$T_0F:T_AM\to T_AM$$

is the differential of F on the zero sections. By Lemma 6 there are a neighbourhood of the zero section $U \subset W$, and a fiber preserving map over f

$$\tilde{\phi}: T_{A}M \to T_{A}M$$

such that

- (1) $\tilde{\phi} \mid U = \phi \mid U$
- (2) Lip $(\tilde{\phi}) < \varepsilon$
- (3) $\tilde{\phi}$ is bounded with the sup norms.

Define $\tilde{F} = T_0 F + \tilde{\phi}$. Then

$$ilde F=F$$
 on U
$${
m Lip}\,(ilde F-T_0F)$$

By Theorem 1, there is a fiber preserving map over id,

$$\tilde{h}: T_{A}M \to T_{A}M$$

with

$$ilde{h} \circ T_0 F = ilde{F} \circ ilde{h}$$
 $ilde{h}$ is a homeomorphism $pr \circ ilde{h} = p$.

Because the derivative of the exponential map at the zero-section is the identity, $T_0F = Tf$. Thus $h = (p, \exp) \circ \tilde{h} \mid V$ is the required map.

§ 3. Semi-conjugacies of subshifts to hyperbolic sets

Let $\mathscr{A} = \{A_1, \dots, A_n\}$ be a finite set and $T = (t_{ij})$ be a $n \times n$ 0 - 1 matrix. \mathscr{A}^Z denotes the space of maps from integers Z into \mathscr{A} with compact-open topology (\mathscr{A} and Z have the discrete topologies). The shift transformation $\rho: \mathscr{A}^Z \to \mathscr{A}^Z$ is defined by

$$\rho((x_i)_{i \in Z}) = (x_i')_{i \in Z}$$
 where $x_i' = x_{i+1}$

for $(x_i)_{i \in \mathbb{Z}} \in \mathscr{A}^{\mathbb{Z}}$.

Let Σ be the ρ invariant set of \mathscr{A}^Z given by

$$\Sigma = \left\{ egin{aligned} (a_i)_{i \in Z} \in \mathscr{A}^Z \,|\, t_{n_i n_{i+1}} = 1 \quad ext{where} \ a_i = A_{n_i} \end{aligned}
ight\} \,.$$

 Σ is called a subshift of finite type on the symbol ${\mathscr A}$ determined by the intersection matrix T.

Bowen ([1]) proved that when $\Lambda \subset M$ is a basic set of an Axiom A diffeomorphism there are a subshift of finite type Σ and a semiconjugacy $\Pi: \Sigma \to \Lambda$, i.e. Π is surjective and $f\Pi = \Pi \rho$ ([1]).

In this section we consider the case when Λ is a hyperbolic set. Our result is the following.

THEOREM 3. Suppose $f: M \to M$ is a diffeomorphism, $\Lambda \subset M$ is a compact hyperbolic set and W is a neighbourhood of Λ .

Then there are a finite set $\mathscr{B} = \{B_i\}_{i=1,...,N}$, and a matrix $T = (t_{ij})$ satisfying the followings;

- 1) for any $1 \leq i \leq N$, B_i is a closed m-disk and $\Lambda \subset \bigcup$ int B_i
- 2) $T = (t_{ij})$ is a $N \times N$ 0 1 matrix
- 3) the diagram

$$\begin{array}{ccc}
\Sigma & \xrightarrow{II} & M \\
\rho \downarrow & & \downarrow f \\
\Sigma & \xrightarrow{II} & M
\end{array}$$

is commutative, where Σ is the subshift of finite type on the symbol ${\mathscr B}$ determined by the intersection matrix T, and ρ is the shift transformation.

- 4) It is a continuous map given by $\Pi((a_i)_{i \in Z}) = \bigcap_{i \in I} f^{-i}(a_i)$.
- 5) $\Lambda' = \Pi(\Sigma)$ is a closed hyperbolic set with $\Lambda \subset \Lambda' \subset W$.

Proof. Step 1. We may assume that W is a neighbourhood of Λ so small that any invariant set contained in W is hyperbolic ([4]). Let ε be a positive number such that an expansive constant of a hyperbolic set in W is greater than ε . Let U be a neighbourhood of the zero-section of $T_{\Lambda}M$ on which the map $h: U \to \Lambda \times M$ with $(f \times f) \circ h = h \circ Tf$ is defined by Theorem 2. \overline{h} is given by

$$\bar{h} = pr_2 \circ h \colon U \xrightarrow{h} \Lambda \times M \xrightarrow{pr_2} M$$
.

Choose $r_1 > r > 0$ such that

$$Tf(B^u(r)) \subset \operatorname{int} B^u(r_1)$$
 $Tf^{-1}(B^s(r)) \subset \operatorname{int} B^s(r_1)$
 $U \supset B^s(r_1) \oplus B^u(r_1)$
 $W \supset \bar{h}(B^s_x(r) \times B^u_x(r))$
 $\dim \bar{h}(B^s_x(r) \times B^u_x(r)) < \varepsilon \qquad \text{for } x \in \Lambda \ .$

- Step 2. For any $x \in \Lambda$, let $V_x \subset \Lambda$ be a neighbourhood of x in Λ such that
 - 1) for any $y \in f^{-1}V_x$ $f\bar{h}(B_y^s(r) \times B_y^u(r)) \subset \inf \bar{h}(B_x^s(r) \times B_x^u(r_1))$, and f maps $\bar{h}(B_y^s(r) \times \partial B_y^u(r))$ into $\inf \bar{h}(B_x^s(r) \times (B_x^u(r_1) B_x^u(r)))$ with degree ± 1 . (Here "f maps with degree ± 1 " means that the homomorphism f_* between the homology groups is of degree ± 1 . This does not depend on isomorphisms: $H_{u-1}(\bar{h}(B_y^s(r) \times \partial B_y^u(r))) \approx H_{u-1}(\inf \bar{h}(B_x^s(r) \times (B_x^u(r_1) B_x^u(r))) \approx Z$. Here u denotes also the fiber dimension of the unstable bundle E^u .)
 - 2) for any $y \in fV_x$

 $f^{-1}\bar{h}(B_y^s(r) \times B_y^u(r)) \subset \operatorname{int} \bar{h}(B_x^s(r_1) \times B_x^u(r)), \text{ and } f^{-1} \text{ maps } \bar{h}(\partial B_y^s(r) \times B_y^u(r)) \text{ into } \operatorname{int} \bar{h}((B_x^s(r_1) - B_x^s(r)) \times B_x^u(r)) \text{ with degree } \pm 1.$

The existence of neighbourhoods V_x satisfying 1), 2) follows from the continuity of h and the fact that the homomorphisms

$$f_*: H_{u-1}(f\bar{h}(B^s_{f^{-1}(x)}(r) \times \partial B^u_{f^{-1}(x)}(r))) \\ \to H_{u-1}(\operatorname{int} \bar{h}(B^s_x(r) \times (B^u_x(r_1) - B^u_x(r)))$$

and

$$f_*^{-1} \colon H_{s-1}(f^{-1}\bar{h}(\partial B^s_{f(x)}(r) \times B^u_{f(x)}(r))))$$

$$\to H_{s-1}(\operatorname{int} \bar{h}((B^s_x(r_1) - B^s_x(r)) \times B^u_x(r)))$$

are isomorphic.

Let $\{U_x\}_{x\in A}$ be a refinement of $\{V_x\}_{x\in A}$ such that $f(U_y)\cap U_x\neq \phi$ (resp. $f^{-1}(U_y)\cap U_x\neq \phi$) implies $f(U_y)\subset V_x$ (resp. $f^{-1}(U_y)\subset V_x$).

Choose $X_1, \dots, X_N \in \Lambda$ such that $\{U_{x_i}\}_{i=1,\dots,N}$ is a covering of Λ .

Step 3. An intersection matrix $T=(t_{ij})$ is given as follows. $t_{ij}=1$ if

- 1) $f\bar{h}(B^s_{x_i}(r) \times B^u_{x_i}(r) \subset \inf \bar{h}(B^s_{x_j}(r) \times B^u_{x_j}(r_1))$ and f maps $\bar{h}(B^s_{x_i}(r) \times \partial B^u_{x_i}(r))$ into $\inf \bar{h}(B^s_{x_j}(r) \times (B^u_{x_j}(r_1) B^u_{x_j}(r)))$ with degree ± 1 .
- 2) $f^{-1}\bar{h}(B^s_{x_j}(r) \times B^u_{x_j}(r)) \subset \inf \bar{h}(B^s_{x_i}(r_1) \times B^u_{x_i}(r))$ and f^{-1} maps $\bar{h}(\partial B^s_{x_j}(r) \times B^u_{x_j}(r))$ into $\inf \bar{h}((B^s_{x_i}(r_1) B^u_{x_i}(r)) \times B^u_{x_i}(r))$ with degree ± 1 . $t_{i,j} = 0$ otherwise.

Step 4. Suppose that i_0, \dots, i_m satisfy $t_{i_n i_{n+1}} = 1$ for $n = 0, \dots, m$ — 1. Define maps

$$H^{(i_n)}: \bar{h}(B^s_{x_{i_n}}(r_1) \times B^u_{x_{i_n}}(r)) \to \bar{h}(B^s_{x_{i_n}}(r) \times B^u_{x_{i_n}}(r))$$

by

$$H^{(l_n)}(ar{h}(z_1,z_2)) = egin{cases} ar{h}((z_1,z_2)) & ext{ if } |z_1| \leq r \ & \ ar{h}\Big(\Big(rac{rz_1}{|z_1|},z_2\Big)\Big) & ext{ if } |z_1| > r \ , \end{cases}$$

and a map

$$H: \bar{h}(B^{s}_{x_{i_{m}}}(r) \times B^{u}_{x_{i_{m}}}(r)) \to \bar{h}(B^{s}_{x_{i_{0}}}(r) \times B^{u}_{x_{i_{0}}}(r))$$

by

$$H = H^{(i_0)} \circ f^{-1} \circ \cdots \circ H^{(i_{m-2})} \circ f^{-1} \circ H^{(i_{m-1})} \circ f^{-1}$$
.

Then we have

$$H(\bar{h}(B^s_{x_{i_n}}(r) \times B^u_{x_{i_n}}(r))) \cap \bar{h}(\operatorname{int} B^s_{x_{i_0}}(r) \times B^u_{x_{i_0}}(r))$$

$$= \bigcap_{n=0}^m f^{-n}(\operatorname{int} B^s_{x_{i_n}}(r) \times B^u_{x_{i_n}}(r)).$$

By the definition of $t_{i_n i_{n+1}} = 1$, the map

$$H_*: H_{s-1}(\bar{h}(\partial B^s_{x_{i_m}}(r) \times B^u_{x_{i_m}}(r))) \to H_{s-1}(\bar{h}(\partial B^s_{x_{i_0}}(r) \times B^u_{x_{i_0}}(r)))$$

is isomorphic. This implies

$$H(\bar{h}(B^s_{x_{i_m}}(r) \times B^u_{x_{i_m}}(r))) \cap \bar{h}(\text{int } B^s_{x_{i_0}}(r) \times B^u_{x_{i_0}}(r)) \neq \phi$$
.

Hence

$$\bigcap_{n=0}^m f^{-n}(\overline{h}(B^s_{x_{i_n}}(r)\times B^u_{x_{i_n}}(r)))\neq \phi.$$

For a finite sequence $i_{-\ell}\cdots i_m$ satisfying $t_{i_ni_{n+1}}=1\,(-\,\ell\leq n\leq m-1)$

$$\bigcap_{n=-\ell}^{m} f^{-n} \overline{h}(B^{s}_{x_{i_n}}(r) \times B^{u}_{x_{i_n}}(r)))$$

$$= f^{-\ell} \left(\bigcap_{n=0}^{m+\ell} f^{-n} (\overline{h}(B^{s}_{x_{i_{n-\ell}}}(r) \times B^{u}_{x_{i_{n-\ell}}}(r))) \right)$$

$$\neq \phi$$

because

$$\bigcap_{n=0}^{m+\ell} f^{-n}(\bar{h}(B^s_{x_{i_{n-\ell}}}(r)\times B^n_{x_{i_{n-\ell}}}(r)))\neq \phi.$$

This implies

$$\bigcap_{n\in\mathbb{Z}} f^{-n}(\bar{h}(B^s_{x_{i_n}}(r)\times B^u_{x_{i_n}}(r)))\neq\phi$$

if $t_{i_n i_{n+1}} = 1 \ (n \in \mathbb{Z}).$

Put $J=\{\{j_n\}_{n\in Z}\,|\,j_n\in\{1,\cdots,N\},\,t_{j_nj_{n+1}}=1\},\,\,\, \varLambda'=\bigcup_{\{j_n\}\in J}\bigcap_n f^{-n}\bar{h}(B^s_{xj_n}(r))\times B^u_{xj_n}(r)).$ Then \varLambda' is a hyperbolic set contained in W, and $\bigcap_n f^{-n}\bar{h}(B^s_{xi_n}(r))\times B^u_{xi_n}(r))\subset \varLambda'$. An expansive constant of $f\,|\,\varLambda'$ is greater than diam $\bar{h}(B^s_{xi_n}(r)\times B^u_{xi_n}(r))$ for any $1\leq i\leq N$. Thus $\bigcap_n f^{-n}\bar{h}(B^s_{xj_n}(r)\times B^u_{xj_n}(r))$ = one point if $\{j_n\}\in J$. $\Pi(\Sigma)=\varLambda'$. For any $x\in \varLambda$ and $n\in Z$, there is U_{xi_n} with $f^n(x)\in U_{xi_n}\subset \bar{h}(B^s_{xi_n}(x)\times B^u_{xi_n}(x))$. Thus $x\in \bigcap_n f^{-n}\bar{h}(B^s_{xi_n}(r)\times B^u_{xi_n}(r))$. Therefore $\varLambda\subset \varLambda'$.

Put
$$B_i = \bar{h}(B_{x_i}^s(r) \times B_{x_i}^u(r)), \mathcal{B} = \{B_i\}_{i=1,...,N}$$
.

Then \mathscr{B} and $T=(t_{ij})$ define the required subshift. This completes the proof.

COROLLARY. Let $f: M \to M$ be an Anosov diffeomorphism. Then there are a subshift of finite type Σ and a semi-conjugacy $\Pi: \Sigma \to M$.

In the case when f satisfies $\Omega(f) = M$, the above was proved by Sinai ([7]). But we don't know that the above semiconjugacy can be chosen such that there is an integer N with the cardinal number of $\pi(x) \leq N$ for any $x \in M([2])$.

REFERENCES

- [1] Bowen, R.: Markov partitions for Axiom A diffeomorphisms, Amer. Jour. Math., 92 (1970), 725-747.
- [2] —: Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. Jour. Math., 92 (1970), 907-918.
- [3] Hartman, P.: Ordinary differential equations, Wiley, 1964.
- [4] Hirsch, M. W. and Pugh, C.: Stable manifolds and hyperbolic sets, Global Analysis, Proc. Symp. Pure Math., A.M.S., 14 (1970), 133-167.
- [5] Nitecki, Z.: Differentiable dynamics, MIT Press, 1971.
- [6] Pugh, C.: On a theorem of P. Hartman, Amer. Jour. Math., 91 (1969), 363-367.
- [7] Sinai, Ja. G.: Markov partitions and C-diffeomorphisms, Functional Analysis and its applications, 2 (1968), 61-82.

Hokkaido University