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OPTIMALITIES FOR RANDOM FUNCTIONS
LEE-WIENER'S NETWORK AND NON-CANONICAL

REPRESENTATION OF STATIONARY
GAUSSIAN PROCESSES

WIN WIN HTAY

Abstract. Representation of a Gaussian process in terms of a Brownian motion
is a powerful tool in the investigation of its structure. Among various repre-
sentations is the canonical representation which is viewed as the best one from
the viewpoint of the prediction theory. We have discovered some significance
of non-canonical representations and discuss their optimality in an information
theoretical approach.

§1 Introduction

The probabilistic structure of a stationary Gaussian process {X(t)}
with E(X(t)) = 0 can well be illustrated by a representation which is ex-
pressed as a linear functional of a Brownian motion {B(t)} in such a way
that

ft . d
(1.1) X{t) = F(t- u)B(u)du, B{u) = —B{u)

J-oc du

with a kernel function F which is non-random. There are various rep-
resentations of the form (1.1); there exists, among others, the canonical
representation which is unique for a given {X(t)}.

The main characteristic of the canonical representation of a Gaussian
process is the fact that the Brownian motion has exactly the same informa-
tion as X{i) up to any time t. While, in the case where the representation
(1.1) is non-canonical, the {X(t)} has less information than the associated
Brownian motion {B(t)} up to some t G (—00,00), and hence the same
property holds for every t by the stationarity. We are interested in giving
detailed interpretation to non-canonical representations from the view point
of information theory.

We restrict our attention to the cases where the representation of a
given stationary Gaussian process can actually be realized as the output of
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linear networks with white noise input. More precisely, we shall deal with

non-canonical representation for which the Fourier inverse transform A(X)

of their kernel function involves a factor corresponding to the Lee-Wiener's

networks formed by LCR circuits. The A(X) is the transmission function

and generally it is expressed as a product of three functions C(λ), B(X) and

S'(λ), each of which is of particular type. Our restriction on the stationary

process in question may be rephrased in such a way that A(λ) is a product

of the form

(1.2) A(X) = C(X)-B(λ),

where C corresponds to the canonical kernel and B is the Blaschke product.

In fact the singular part S(X) would not appear in actual applications.

We shall discuss how a given A(X) can be factorized in the form (1.2)

and how to form Lee-Wiener's networks that correspond to B(X).

Our main result is to show that for the non-canonical case how much

extra information is contained in the white noise input {B(t)} compared

to the observed process {X(t)} up to time t. At the same time our results

would give an actual explanation to the non-canonical representations, keep-

ing the optimality in mind, when the theory is applied to communication

system.

§2. Background

Let {X(t),t G R1} be a centered, mean continuous, weakly stationary

process. The covariance function is given by

We define Hubert space H spanned by

); finite sum, α^ E C,£/~ £ f£},

where the topology is introduced by the norm 11 11 defined by

Introduce an unitary operator Ut acting on H in such a way that
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The system has the properties

utu. = ut+a

Ut —• I as t —> 0 (strongly).

Thus {Ut] t G R1} is a continuous one-parameter group of unitary operators.

We can therefore appear to the Stone's theorem to obtain the spectral

representation of the form

(2.1) Ut= feitXdE{\),

where {JS(λ); λ G R1} is a resolution of the identity. Since X(t) = UtX(0)

holds, we have the spectral representation of X(t):

(2.2) X(t)= ί eitXdE(λ)X(0).

Assuming the purely nondeterministic property of X(t), the covariance

function j(h) is expressed in the form

ihX
= / eιfιλf(X)dλ,

where / is spectral density function, and we have

The formula (2.2) can be expressed in the form

(2.3) X{t)= ί eίtλA{X)Z(X)dX

where Z(X) is the Fourier transform of £?, and we have

We now remind that {X(t)} is Gaussian and has a representation of the

form (1.1). There is a relation between the kernel F(t — u) and A(X) in

(2.3):

(2-4) W ^ 2
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where F is the Fourier inverse transform of F.
Another important tool of our approach is the theory of the Hardy class

(see Hoffman [3]). The A(λ) has the extension A{ω) which is holomorphic
on the lower half plane C~ with boundary value A(λ) and it is factorized
in the form
(2.5) A(ω) = C(ω) B(ω) S(ω).

The factor C{ω) corresponds to the canonical representation (see Hida Hit-
suda [2]), B(ω) is the Blaschke product expressed in the form

(2.6) B(u) Y [ ^ ^ * ^

where Σn(\ Imun |)/(1 + \ωn\
2) < oc, Imc^ < 0, and S(ω) is the singular

factor which is ignored by the assumption mentioned in Section 1.
It should be noted that three factors can uniquely be determined up to

constants. In particular C(ω) is expressed in the form

which has no zero points in C~. While, B(ω) is determined by zero points
oίA(ω).

The following assertion can easily be proved.

PROPOSITION 1. It holds that

\A(ω)\ < \C(ω)\, ωeC~.

§3. The Blaschke product and the Lee-Wiener's networks

In this section, we discuss the correspondence between the Blaschke
product B(ω), given by (2.6), and the Lee-Wiener's networks.

PROPOSITION 2. The zero points ωn of B(ω) are either purely imagi-
nary —ia, a > 0, or pairs of the form β — ia and —β — ia, β real.

Proof Since X(t) is real valued, it is proved that A(—X) — A(λ), and
so is for -B(λ). This proves the assertion. Π

PROPOSITION 3. Each factor of the Blaschke product corresponds to
either a transmission function of Lee-Wiener's network (which is a lattice
all-pass network) or its modification by shifts of constant frequency.
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Proof. First we consider a factor of the Blaschke product with purely

imaginary root —ia, a > 0. For ωn = —ia we have

ω — ωn ώn — i ω + ia
. — ( — 1 )

iω — ωn ωn
ω — τa

Now, we see that it is a transmission function that comes from the following

lattice all-pass network (Fig.l).

Vχ

Eχ

1 - i
— a.

Fig.l

Namely, we have Vχ/Eχ — (λ + iα)(λ — ia).

Second, we take a pair of factors of B(X) and have their product

λ — β + ia β + ia — i λ + β + ia —β + ia — i

A — β — ia β — ia λ + β — ia —β — ia + i

If λ is shifted by β to have λ', then we have

λ' + ia λ' + 2β + ia

λ' -ia ' \' + 2β - ia'

Hence, we form a network that corresponds to (λ; + ia)/(\f — ia) and then

we take the second factor which requests the shift of λ by 2β to have a new,

but similar, network.

We now claim that we can actually form a chain of networks as many

as we want, corresponding to the factors of the Blaschke product. If there

are infinitely many factors, we need to prove existence of the limit. Our

assumption on α;n's given in (2.6) guarantees the existence of the limit. (See

Hibino-Hitsuda-Muraoka [6]). D
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§4. Optmality in an information theoretical approach

In this section, significant difference between the canonical and non-

canonical representation may be observed from the view point of informa-

tion theory.

To discriminate canonical and non-canonical representations, we use

the following notations from now on. So far as our question is concerned,

we may assume that two representations have the same Brownian motion

B(t).

Xι(t) = / Fι(t — u)B(u)du, canonical representation,
J—oo

X2(t) = / F2{t — u)B(u)du, non-canonical representation.
J—oo

(4.1)

Both {Xχ(t)} and {^(Ol a r e °f c o u r s e the same Gaussian process as the

given {X(t)}.

1°) We first observe a characteristic of canonical representation.

Since all the variables that we are concerned with form a Gaussian

system, the information quantity I(Y,Xι(t)), t > 0, is given by

(4.2) I(Y,Xi(t)) = -\log[l-p(Y,X1(t))2}

where Y = J^ β{u)B(u)du, β being square integrable and p(Y,Xι(t)) is

the correlation coefficient.

There is a particular Y$ such that

(4.3)

Indeed, /(Y, X\{t)) is maximal if Y is taken to be

r°
YQ = const. / Fι(t — u)B{u)du

J—oo

which turns out to be the best predictor for Xι(t), t > 0, up to constant,

based on {Xi(s),s < 0}, by the assumption of canonical property. It is

noted that YQ is eventually expressed as a linear function of the X\{u),

u<0.
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2°) Next, consider a non-canonical representation where non-trivial

Blaschke product is involved in (1.2):

X2(t) = / F2(t - u)B{u)du.
J—oo

Set

J—oo

β{u)B(u)du,

Then

(4.4) supI(Yβ9X2{t)) > J(yo,*i(t)), t > 0,

β

holds, where 1Q *S the one for the canonical case in (4.3). It is understood

that the system {B(u),u < 0} has more information than {X2(t),t < 0}.

We can further discuss non-canonical representation also from quanti-

tative view point of information theory.

LEMMA. Let C(ω) be the factor of (2.5). Then its boundary value C(λ)

has an orthogonal expansion of the form

(4-5) C(λ) = 5 > ^ ( A ) , ^(λ) = A - ± i p _

where an φ 0 for every n.

Proof 0n(λ), n > 0, are the Fourier transforms of the Laguerre func-

tions which form a complete orthonormal basis of L2(R~). To conclude

the assertion we use the fact that if an — 0 were true for some n, then the

process Jeιtλφn(X)Z(X)dλ would be a stationary Gaussian process that is

a linear function of B(u), u < t, and is independent of X\(t) at every t.

This is a contradiction to the canonical property. Q

To fix the idea we start from a factor (λ + ia)/(λ — iα), a > 0, of the

Blaschke product with purely imaginary zero point.

Take this a and have (4.5). A non-canonical transmission function is

formed by

Then, we have

(4.6)
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Write

0

Then, for the expansion of A(λ), we have 60 = 0, bn = αn_i, n > 1. Note
that formula (4.1) are expressed in the form

X1(t)= ίeitλC{X)Z(X)dX and

X2(t)= ίeitλC(X)^-^Z(X)dX, respectively.
J λ-ia

Remark. Let {ln{u), n > 0} be a complete orthonormal system L2(R~)
formed by Laguerre functions with parameter a > 0. Then {J_oo ln(u)B(u)-
du} is an independent system. The Plancherel formula for stochastic inte-
gral proves

/»0 /»oo

/ ln{u)B{u)du= / <£n(
J—00 «/— 00

Hence, by using the expansion (4.6), we see that J A(λ)Z(X)dX gives a sum
of independent random variables; the leading term is missing compared to
/C(λ)Z(λ)dλ.

The loss of information for non-canonical representation can be calcu-
lated as follows.

THEOREM. Assume that the canonical representation of X\(t) is given
by C(λ) of the form (4.5). For a non-canonical representation of X2OO
given by A{X) in (4.6), we have

sup/(y,Xi(ί)) = -Iog|α0 | + logσ
Y

holds for any t, where σ2 = E(Xι(tγ), i = 1,2, σ > 0, and Y is any linear
function of the X2(u), u <t.

Proof Since the optimal Y is taken to be the projection of X\{t)
down to the space spanned by the Jeιtλφn(X)Z(X)dX, n > 1, it is ex-
presses as Y^Li an f eιtλφn(X)Z(X)dX, so the Schwarz inequality proves
that sup yp(y,X 1(ί)) 2 = Σn=i(\an\2)/σ2, σ2 = £ ~ = 0 |α n | 2 . This proves
the theorem. Π
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We remind that the J eιtxφn(\)Z(λ)d\, n > 1, can be formed from
X2(u), u < ί, by the whitening technique, noting that Z(X) in the canonical
case is now replaced by Z\{\) = (λ + iα)/(λ — ia)Z(λ). The technique may
be illustrated by the following formula

X2(t)= feitλίc(\)~^\z(\)dλ= ίeitλC(X)Z1{λ)dλ.

Conclusion Remark. For a general Blaschke product, we can repeat the
same procedure as many times as the number of the factors in the Blaschke
product and observe how much information is eventually lost. In this sense,
canonical representation has optimality. Further results related to such an
optimality will be discussed later in connection with other results.

Acknowledgements. The author wishes to express her gratitude to
the Supervisor Professor Y. Shikata, Graduate School of Mathematics,
Nagoya University. Thanks are due to Professor T. Hida, Professor S. Ihara
and Professor L. Accardi for their kind comments. The author thanks also
to the referee for his kind comments.

REFERENCES

[1] T. Hida, Brownian Motion, Springer-Verlag, 1980.
[2] T. Hida and M. Hitsuda, Gaussian Processes, Amer. Math. Soc. Providence, Rhode

Island, 1993.
[3] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., 1962.
[4] S. Ihara, Information Theory for Continuous Systems, World Scientific, 1993.
[5] Yu. A. Rozanov, Stationary Random Processes, Holden-Day, 1967.
[6] Y. Hibino, M. Hitsuda and H. Muraoka, Remarks on a non-canonical representation

for a stationary Gaussian process.
[7] N. Wiener, Nonlinear Problems in Random Theory, M.I.T. Press, Second edition,

1963.

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602
Japan

CURRENT ADDRESS:

Department of Mathematics
University of Yangon
Yangon
Myanmar

https://doi.org/10.1017/S0027763000006528 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006528



