J. Austral. Math. Soc. (Series A) 49 (1990), 55-58

A COMMENT ON CERTAIN *p*-SHIFT ALGEBRAS

P. J. STACEY

(Received 20 March 1989)

Communicated by I. Raeburn

Abstract

Let $G = \bigoplus_{i=0}^{\infty} \mathbb{Z}_p$, where p is a prime, let s be the shift mapping the *i* th summand of G to the (i+1) st and let ω be a 2 cocycle on G with values in S^1 , for which $\omega(s(g), s(h)) = \omega(g, h)$. If $\omega(e_j, e_k) = \omega(e_k, e_j)$ whenever |j - k| is sufficiently large, where e_i is the generator of the *i* th summand of G, then it is shown that the twisted group C^* -algebra $C^*(G, \omega)$ is isomorphic to the UHF algebra $UHF(p^{\infty})$. An immediate consequence, by results of Bures and Yin, is the existence of infinitely many non-conjugate shifts on $UHF(p^{\infty})$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 L 05, 46 L 40.

In his seminal study [4] of unital *-endomorphisms of C^* -algebras, Powers introduced a class of AF-algebras known as binary shift algebras which were subsequently shown in [1] to be twisted group C^* -algebras. More precisely, if ω is a multiplier on a discrete group G (i.e. a 2-cocycle of G with values in the circle S^1) then the (reduced) twisted group C^* -algebra $C^*(G, \omega)$ of G is the C^* -algebra generated by the left regular projective representation on $l^2(G)$. A shift on G is an endomorphism for which $\bigcap_{k=1}^{\infty} s^k(G) = \{e\}$, where e is the identity of G, and, when the multiplier ω is compatible with s in the sense that $\omega(s(g), s(h)) = \omega(g, h)$ for all $h, g \in G$, then $C^*(G, \omega)$ is known as a group shift algebra. The binary shift algebras introduced by Powers are the group shift algebras for which G is equal to an infinite direct sum $\bigoplus_{i=0}^{\infty} \mathbb{Z}_2$ of copies of \mathbb{Z}_2 and s is the shift mapping the ith summand of G to the (i + 1) st summand. If, instead, G is equal to an infinite direct sum $\bigoplus_{i=0}^{\infty} \mathbb{Z}_p$ of copies of \mathbb{Z}_p , where $p \in \mathbb{N}$, then $C^*(G, \omega)$ is known as

^{© 1990} Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

a *p-shift algebra*. Each *p*-shift algebra is approximately finite dimensional, with the approximating finite dimensional subalgebras being given by $A_n = C^*(G_n, \omega)$, where $G_n = \bigoplus_{i=0}^n \mathbb{Z}_n$.

It is shown in [1] that every shift-invariant multiplier ω on $G = \bigoplus_{i=0}^{\infty} \mathbb{Z}_p$ is specified by an infinite sequence $\{a(n): n \in \mathbb{Z}\}$ of elements of \mathbb{Z}_p with a(-n) = -a(n) for each $n \in \mathbb{Z}$; the sequence is determined by $\rho(e_j, e_k) = \gamma^{a(k-j)}$, where $\gamma = \exp(2\pi i/p)$, e_i is the element of G corresponding to the generator 1 of the *i* th summand \mathbb{Z}_p and ρ is the bicharacter of G associated with ω , defined by $\rho(g, h) = \omega(g, h)\overline{\omega(h, g)}$. Using a technique from [2] it will be shown in this note that when p is a prime and ω is specified by a sequence $\{a(n): n \in \mathbb{Z}\}$ with finite support, then the p-shift algebra $C^*(G, \omega)$ is isomorphic to the UHF algebra UHF (p^{∞}) . An immediate consequence, by results from [1], is the existence of infinitely many non-conjugate shifts on the UHF algebra UHF (p^{∞}) .

The key lemma is based directly on [2, Lemma 2.3].

LEMMA. Let p be a prime and let $f(t) \in \mathbb{Z}_p[t]$ with $f(t) = \sum_{i=0}^n x(i)t^i$ and $x(0) = -x(n) \neq 0$. Then there exist $g(t) \in \mathbb{Z}_p[t]$ and $m \in \mathbb{N}$ such that $g(t)f(t) = x(n)(t^m - 1)$.

PROOF. Since $x(n) \neq 0$ we can replace f(t) by $x(n)^{-1}f(t)$ and hence assume that x(n) = 1. We inductively define $s_k \in \mathbb{Z}_p$ and $p_k(t) \in \mathbb{Z}_p[t]$ by $s_0 = 0$, $p_0(t) = f(t)$ and, for $k \geq 1$, $s_k = s_{k-1} + i_k$ and $p_k(t) = x_{k-1}(i_k)t^{s_k}p_0(t) + p_{k-1}(t)$, where $p_{k-1}(t) = (\sum_{i=1}^n x_{k-1}(i)t^{i+s_{k-1}}) - 1$ for some $x_{k-1}(1), \ldots, x_{k-1}(n)$ with $x_{k-1}(n) \neq 0$ and where $i_k = \min\{i \geq 1: x_{k-1}(i) \neq 0\}$. This definition relies on $p_{k-1}(t)$ being of the stated form; to establish this inductively assume that p_{k-1} is as claimed and note that the lowest non-constant term in $p_{k-1}(t)$ is $x_{k-1}(i_k)t^{i_k+s_{k-1}} = x_{k-1}(i_k)t^{s_k}$, so that the degrees of the non-constant terms of $p_k(t)$ lie between $s_k + 1$ and $s_k + n$. Also the coefficient $x_k(n)$ of t^{n+s_k} is equal to $x_{k-1}(i_k)$, which is non-zero by the definition of i_k . Hence the definition is consistent.

There are only finitely many elements in $(\mathbb{Z}_p)^n$ so there exist k, l with k < l and $x_k(i) = x_l(i)$ for each $1 \le i \le n$. Then $p_l(t) - p_k(t)t^{s_l - s_k} = t^{s_l - s_k} - 1$. This establishes the required result since, by construction, both $p_l(t)$ and $p_k(t)$ are multiples of $p_0(t) = f(t)$.

THEOREM. Let p be a prime and let ω be a shift-compatible multiplier on $\bigoplus_{m=0}^{\infty} \mathbb{Z}_p$ specified by a sequence $\{a(n): n \in \mathbb{Z}\}$ for which $a(d) \neq 0$ and a(n) = 0 for |n| > d. Then $C^*(G, \omega)$ is isomorphic to UHF (p^{∞}) . **PROOF.** It suffices to prove that an infinite number of the finite-dimensional subalgebras $A_n = C^*(G_n, \omega)$ have trivial centre since then, noting that $\{\delta_g : g \in G_n\}$ is a vector space basis for A_n with p^{n+1} elements, A_n is isomorphic to the full $p^{(n+1)/2} \times p^{(n+1)/2}$ matrix algebra. Thus, on passing to a subsequence, $C^*(G, \omega)$ is the inductive limit under unital isomorphisms of a sequence of increasing *p*-power matrix algebras.

It is well-known (as described in [3, Theorem 3.6.3]) that the dimension of the centre of A_n is equal to the cardinality of $H_n = \{h \in G_n : \rho(g, h) = 1 \}$ for all $g \in G_n\}$, so it suffices to prove that H_n is trivial for infinitely many n. Let $f(t) = \sum_{i=0}^{2d} a(i-d)t^i$, let m be as in the lemma, let $k \in \mathbb{N}$ and let $h = \sum_{i=0}^{km-1} h(i)e_i$ belong to H_{km-1} . Then, from the definition of H_{km-1} applied to $g = e_i$,

(1)
$$\sum_{i=-d}^{d} h(i+j)a(i) = 0 \quad \text{in } \mathbb{Z}_p \text{ for each } 0 \le j \le km-1,$$

where h(r) is defined to be zero if r > km - 1 or r < 0.

By the lemma there exists a polynomial $g(t) = \sum_{i=0}^{m-2d} b(i)t^i$ such that

$$f(t)g(t) = \left(\sum_{i=0}^{2d} a(i-d)t^{i}\right) \left(\sum_{i=0}^{m-2d} b(i)t^{i}\right) = a(d)(t^{m}-1).$$

Hence, equating coefficients of t^r , we obtain

(2)
$$\sum_{i=-d}^{d} b(r-d-i)a(i) = \begin{cases} 0 & \text{if } 1 \le r \le m-1, \\ a(d) & \text{if } r = m, \\ a(-d) & \text{if } r = 0, \end{cases}$$

(where b(j) is taken to be zero if j < 0 and if j > m - 2d).

For each $0 \le s \le (k-1)m + 2d - 1$, equations (1) yield

$$0 = \sum_{j=s}^{s+m-2d} b(j-s) \sum_{i=-d}^{d} h(i+j)a(i)$$
$$= \sum_{r=0}^{m} h(r-d+s) \sum_{i=-d}^{d} b(r-d-i)a(i)$$

and then equations (2) yield

$$0 = [h(m - d + s) - h(s - d)]a(d).$$

Hence h(s-d) = h(m+s-d) for each $0 \le s \le (k-1)m+2d-1$ and thus, in particular, $h(km-q) = h((k-1)m-q) = \cdots = h(-q) = 0$ for each $1 \le q \le d$. Therefore h(t) = 0 for each $t \ge km-d$ and then

successive consideration of equation (1) for j = km - 1, km - 2, ..., dyields h(km - d - 1) = 0, h(km - d - 2) = 0, ..., h(0) = 0. Hence $h = \sum_{i=0}^{km-1} h(i)e_i = 0$ and so $H_{km-1} = \{0\}$ for each $k \in \mathbb{N}$, as required.

COROLLARY. The UHF algebra $UHF(p^{\infty})$ admits infinitely many nonconjugate shifts.

PROOF. Recall that $C^*(G, \omega)$ is the C^* -algebra on $l^2(G)$ generated by the left regular projective representation of G. From [1, Proposition 1.1] any shift of $C^*(G, \omega)$ extends to a shift of the weak closure $W^*(G, \omega)$. If $G = \bigoplus_{i=0}^{\infty} \mathbb{Z}_p$ and ω is described by a sequence with finite support, so that $C^*(G, \omega)$ is isomorphic to $UHF(p^{\infty})$, then, by [1, Proposition 1.5], $W^*(G, \omega)$ is the hyperfinite type II factor. Furthermore, since the left projective representation of G is cyclic with cyclic vector δ_0 and since the corresponding linear functional on $UHF(p^{\infty}) = C^*(G, \omega)$ is the unique trace, $W^*(G, \omega)$ can be identified with the closure of $UHF(p^{\infty})$ in the GNS representation associated with the trace. Hence, if two shifts of $UHF(p^{\infty})$ are conjugate then the automorphism implementing the conjugacy extends to an automorphism of $W^*(G, \omega)$, which will implement a conjugacy between the extended shifts. Therefore, by [1, Proposition 4.4], there exists an integer m such that $a(j) = m^2 b(j)$ for all $j \in \mathbb{Z}$, where $\{a(j): j \in \mathbb{Z}\}$ and $\{b(j): j \in \mathbb{Z}\}$ are the sequences associated with the two shifts.

By the theorem each sequence with finite support yields a shift on $UHF(p^{\infty})$, from which the result follows.

References

- D. Bures, and H. S. Yin, 'Shifts on the hyperfinite factor of type II 1,' J. Operator Theory 20 (1988), 91-106.
- [2] M. Enomoto, M. Nagisa, Y. Watatani and H. Yoshida, 'Relative commutant algebras of Powers' binary shifts on the hyperfinite II factor,' preprint, 1988.
- [3] G. Karpilovsky, Projective representation of finite groups, (Marcel Dekker, 1985).
- [4] R. T. Powers, 'An index theory for semigroups of *-endomorphisms of B(H) and type II₁ factors,' Canad. J. Math. 40 (1988), 86-114.

La Trobe University Bundoora Victoria 3083 Australia