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Abstract

In this paper we establish limit theorems for a class of stochastic hybrid systems
(continuous deterministic dynamics coupled with jump Markov processes) in the fluid
limit (small jumps at high frequency), thus extending known results for jump Markov
processes. We prove a functional law of large numbers with exponential convergence
speed, derive a diffusion approximation, and establish a functional central limit theorem.
We apply these results to neuron models with stochastic ion channels, as the number of
channels goes to infinity, estimating the convergence to the deterministic model. In terms
of neural coding, we apply our central limit theorems to numerically estimate the impact
of channel noise both on frequency and spike timing coding.
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1. Introduction

In this paper we consider stochastic hybrid systems where a continuous deterministic
dynamic is coupled with a jump Markov process. Such systems were introduced in [6] as
piecewise-deterministic Markov processes. They have been subsequently generalized to cover
a wide range of applications: communication networks, biochemistry, and, more recently, DNA
replication modelling [2], [14], [20], [23]. We are interested in the fluid limit for these systems,
considering the case of small jumps of size 1/N at high frequency N , with a view towards
application to neural modelling.

The general class of models we consider is described in Section 2.1, and, for the sake
of clarity, we describe here a simple example which retains the main features. Consider a
population of N independent individuals, each of them being described by a jump Markov
process uk(t) for k = 1, . . . , N with states 0 and 1, and with identical transition rates α > 0
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and β > 0 as follows:
α

0 −→←− 1

β

.

As an empirical measure, we define the proportion of individuals in state 1 at time t by

eN(t) = 1

N

N∑
k=1

uk(t).

The model becomes hybrid when we assume a global coupling through a variable VN ∈ R,
in the sense that the rates α(VN) and β(VN) are functions of VN . The variable VN is itself a
solution of a differential equation, between the jumps of eN(t):

dVN
dt
= f (VN, eN),

where f : R
2 → R. In the general case, this model is extended with more general non-

autonomous jump Markov processes, the global variable can be vector valued, and the transition
rates can be functions of the empirical measure (Section 2.1).

We prove convergence in probability on finite time intervals, with techniques inspired by [1],
of the solution XN of the stochastic hybrid system to a deterministic limit X = (v, g). For the
example above, X is the solution to

dv

dt
= f (v, g), dg

dt
= (1− g)α(v)− gβ(v).

We derive a diffusion approximation and prove a functional central limit theorem that helps char-
acterize the fluctuations of both the discrete and continuous variables around the deterministic
solution. We find that these fluctuations are a Gaussian process which corresponds to the asymp-
totic law of the linearized diffusion approximation. We further obtain an exponential speed of
convergence which relates the tail distribution of the errorEN(T ) = sup[0,T ] |XN −X|2 to the
size parameter N and the time window T : for � > 0 and large N ,

P[EN(T ) > �] ≤ e−�NH(T ). (1.1)

Thus, the convergence result can be extended to large time intervals [0, T (N)], provided that
T = T (N) is such that NH(T (N)) → ∞. Inequality (1.1) is a new result which provides
an estimate of the number, N , of individuals required to reach a given level of precision.
This number increases with the time scale on which one wants this precision to be achieved.
For systems subject to finite-size stochasticity, sometimes called demographic stochasticity, it
provides a relation between the reliability time scale and the population sizeN . There are other
ways of obtaining a law of large numbers, for example using the convergence of the master
equation or of the generators [9], [38]. We want to highlight here that our proof is based on
exponential inequalities for martingales. Other ways of obtaining a law of large numbers would
not be likely to provide an estimate such as (1.1).

Our mathematical reference on the fluid limit is the seminal paper [22], which contains a law
of large numbers and a central limit theorem for sequences of classical jump Markov processes.
Recently, a spatially extended version of a stochastic hybrid system has been considered in [1],
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for a standard neuron model. The author showed convergence in probability up to finite time
windows to a deterministic fluid limit expressed in terms of a partial differential equation
coupled with ordinary differential equations. In the present paper, we consider a class of
nonspatial models which includes multi compartmental models, by increasing the dimension.
We extend the results of [22] to stochastic hybrid models at the fluid limit.

Neurons are subject to various sources of fluctuations, intrinsic (membrane noise) and
extrinsic (synaptic noise). Clarifying the impact of noise and variability in the nervous system
is an active field of research [10], [31]. The intrinsic fluctuations in single neurons are mainly
caused by ion channels, also called channel noise, whose impact and putative functions have
been intensively investigated [30], [32], [40], mainly by numerical simulations. Our motivation
is to study the intrinsic fluctuations in neuron models, and we think that stochastic hybrid
systems are a natural tool for this purpose. Ion channels open and close, through voltage
induced electromagnetic conformational change, thus enabling ion transfer and action potential
generation. Because of thermal noise, one of the main features of these channels is their
stochastic behaviour.

Neurons encode incoming signals into trains of stereotyped pulses referred to as action
potentials (APs). It is the mean firing frequency, that is, the number of APs within a given
time window, and the timing of the APs that are the main conveyors of information in nervous
systems. Channel noise due to the seemingly random fluctuations in the opening and closing
times of transmembrane ion channels induces jitter in the AP timing and, consequently, in
the mean firing frequency as well. In terms of modelling, our starting point is the stochastic
interpretation of the Hodgkin–Huxley formalism [15]. In this setting, ion channels are usually
modelled with independent Markov jump processes, whose transition rates can be estimated
experimentally [37]. These stochastic discrete models are coupled with a continuous dynamic
for the membrane potential, leading to a piecewise-deterministic Markov process. Thus, the
individuals are the ion channels and the global variable VN the voltage potential (cf. Section 3).

Deterministic hybrid kinetic equations appear to be a common formalism suitable for each
stage of nervous system modelling, as shown in [8]. This latter study provides us with a
framework to introduce stochastic hybrid processes to model action potential generation and
synaptic transmission, as stochastic versions of deterministic kinetic models coupled with
differential equations through the transition rates.

On the side of neuron modelling applications, the limit behaviour of a similar but less
general model is considered in [11], using an asymptotic development of the master equation as
N →∞, which formally leads to a deterministic limit and a Fokker–Planck equation (Langevin
approximation), providing the computation of the diffusion coefficients. The Langevin approx-
imation is also studied in [36], but in a simplified case where the transition rates are constants
(independent of VN ), which is actually the case studied in [22]. Our mathematical results
extend these previous studies to a wider class of models (if we put aside the spatial aspects
in [1]), providing a rigorous approach for the Langevin approximation, and establishing a central
limit theorem which describes the effect of channel noise on the membrane potential [34]. The
convergence speed provides a quantitative insight into the following question: if a neuron needs
to be reliable during a given time scale, what would be a sufficient number of ion channels? We
thus provide a mathematical foundation for the study of stochastic neuron models, and we apply
our results to standard models, quantifying the effect of noise on neural coding. In particular,
both frequency coding (Section 3.5.1) and spike timing coding (Section 3.5.2) are numerically
studied using the Morris–Lecar neuron model with a large number of stochastic ion channels.
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Generally speaking, stochastic hybrid models in the fluid limit would arise in multiscale
systems with a large population of stochastic agents coupled through a global variable, leading
to an emergent cooperative behaviour. Starting from a microscopic description (for instance,
ion channels), the central limit theorem as stated in the present paper leads to a description
of the fluctuations of the global variable (the membrane potential). So, in the perspective of
applications, it would be interesting to investigate how our framework and results could be
developed in fields other than neural modelling, for instance in chemical kinetics, population
dynamics, tumor modelling, economics, or opinion dynamics theory. In a more mathematical
perspective, it would be interesting to consider a wider class of models, for instance by including
spatial aspects as in [1] or by weakening the independence assumption. Other questions could
be investigated, for instance those concerning escape problems, first passage times, and large
deviations, whenever N is large or not.

Our paper is organized as follows. In Section 2 we define our model and formulate the main
results. In Section 3 we apply our results to neuron models. In Section 4 we give the proof of
the law of large numbers and its convergence speed (Theorem 2.1), and in Section 5 we give
the proof of the Langevin approximation and the central limit theorems (Theorems 2.2–2.5).

2. Model and main results

This section contains the definition of our general model and states the main theorems.

2.1. Model

Model 2.1. (Stochastic hybrid model.) Let p, q,N ∈ N
+ and rj ∈ N

∗ for all 1 ≤ j ≤ q. Let
d =∑q

j=1 rj . We define the stochastic hybrid model (SN) to be the model whose solution,

XN(t) = (VN(t), eN(t)) ∈ R
p × R

d , t ≥ 0,

satisfies
dVN
dt
= f (XN),

where eN = (e(1)N , . . . , e
(q)
N ), e

(j)
N ∈ R

rj , and the processes e(j)N (t) are q independent jump
Markov processes. Note that the differential equation for VN holds only between the jump
times of the process eN , with updated initial conditions.

Let us introduce some notation. Each process e
(j)
N represents an empirical measure for a

population j of jump processes: the state dependent transition rates for each of these processes
in population j are denoted by α(j)k,l : Rp+d → R

∗+. Moreover, if e = (e(1), . . . , e(q)) ∈ R
d , we

denote the kth element of e(j) by {e(j)}k .
Then, for 1 ≤ j ≤ q, processes e(j)N (t) are characterized by

• their state space: E(j)N = {(x1, . . . , xrj ) ∈ {0, 1/N, . . . , 1}rj | ∑rj
k=1 xk = 1};

• their intensity λ(j)N : for X = (V , e) ∈ R
p × R

d , λ(j)N (X) = Nλ̃(j)(X) with

λ̃(j)(X) =
rj∑
k=1

{e(j)}k
rj∑

l=1, l �=k
α
(j)
k,l (X);

• their jump law µ
(j)
N : we define u(j)a = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

rj and u(j)a,b = u(j)a −
u
(j)
b for 1 ≤ a, b ≤ rj . The transition of an individual agent in subpopulation j from
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one state a to another state b corresponds to a jump of z = u(j)b,a/N for the process e(j)N .
Thus, we define

X + 1

N
�X

j
a,b = (V , e(1), . . . , ẽ(j), . . . , e(q)), ẽ(j) = e(j) + 1

N
u
(j)
a,b.

So that the jump law for a jump of z in subpopulation j is given by

µ
(j)
N (X, z) = {e

(j)}aα(j)a,b(X)
λ̃(j)(X)

if z = 1

N
u
(j)
b,a

for all 1 ≤ a, b ≤ rj such that {e(j)}a �= 0 and {e(j)}b �= 1, and

µ
(j)
N (X, z) = 0 otherwise.

For a more formal definition, we refer the reader to [6].
For 1 ≤ k ≤ rj , the kth component {e(j)N }k of vector e(j)N can be interpreted as the proportion

of agents of type j which are in state k in a population of size N .

For the presentation of the results to be clearer, we assume in the stochastic model (SN ) that
each population is of the same size N . However, the results can be extended to the case where
all the population sizes are proportional to a large number A→ ∞, which is the case for the
application to neuron models (see Section 3).

We show in Theorem 2.1, below, that this stochastic hybrid model (SN) converges asN →∞
to the following deterministic model (D).

Model 2.2. (Deterministic model.) We define the deterministic model to be the model whose
solution X = (v,g) ∈ R

p × R
d with g = (g(1), . . . ,g(q)) satisfies

v̇ = f (v,g), ġ
(j)
k =

∑
1≤i≤rj , i �=k

α
(j)
i,k (X)g

(j)
i − α(j)k,i (X)g(j)k (D)

for all 1 ≤ j ≤ q and all 1 ≤ k ≤ rj . The first equation is the same as in the stochastic model
(deterministic part) and the second equation corresponds to the usual rate equation, with a
gain term and a loss term. We define F : Rp ×R

d → R
p ×R

d such that (D) might be written
Ẋ = F(X).
Example 2.1. We now describe an example of the stochastic hybrid model in a simple setting
motivated by applications. This is the setting we will use in Sections 4 and 5 in order to make
the arguments clearer. We consider the case where p = q = 1 and r1 = 2. For N ∈ N

∗,
we can construct a stochastic hybrid process as follows: first let us introduce a collection of
N independent jump Markov processes u(k) for 1 ≤ k ≤ N such that u(k)t : 0 → 1 with rate
α(VN) and u(k)t : 1→ 0 with rate β(VN):

α(VN)

0 −→←− 1

β(VN)

,

where VN is defined below. In this case, the stochastic hybrid model (SN) can be written as

V̇N (t) = f (VN(t), eN(t)), eN(t) =
(

1

N

N∑
k=1

δ0(u
(k)
t ),

1

N

N∑
k=1

δ1(u
(k)
t )

)
,

VN(0) = v0, eN(0) = (u0, 1− u0).
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Note that the components of eN(t) are the proportions of processes u(k) in states 0 and 1,
and if we define uN(t) = (1/N)∑N

k=1 δ1(u
(k)
t ) then we have eN(t) = (1− uN(t), uN(t)), so

that the solution is determined by the pair XN(t) = (VN(t), uN(t)). Thus, each element of the
sequence of jump Markov processes {uN }N≥1 is characterized by

• its state space EN = {0, 1/N, 2/N, . . . , 1};
• its intensity λN(VN(t), u) = N [uβ(VN(t)) + (1 − u)α(VN(t))]; this intensity is time

dependent through VN(t);

• its jump law

µN(VN(t), u, y) = µ+(VN(t), u)δy,u+1/N + µ−(VN(t), u)δy,u−1/N ,

where

µ+(V , u) = (1− u)α(V )
uβ(V )+ (1− u)α(V ) and µ−(V , u) = uβ(V )

uβ(V )+ (1− u)α(V ) .

This jump law is also time dependent through VN(t).

The deterministic system (D) takes the form

v̇(t) = f (v(t), g(t)), ġ(t) = (1− g(t))α(v(t))− g(t)β(v(t)),
v(0) = v0, g(0) = u0.

Fluid limit assumption. In the sequel we will be interested in the asymptotic behaviour of
the stochastic hybrid models (SN) under the fluid limit assumption. Let us now recall what
this assumption means. Let (WN) be a sequence of homogeneous Markov jump processes
with state spaces EN ⊂ R

k , intensities λN(w), and jump law µN(w, dy). Define the flow as
FN(w) = λN(w)

∫
EN
(z− w)µN(w, dz). The fluid limit occurs if the flow admits a limit and

if the second-order moment of the jump size converges to 0 when N → ∞. Our stochastic
hybrid models (SN) are in the fluid limit since the jumps are of size 1/N and the intensity
is proportional to N . As mentioned in Example 2.1, such a setting appears when considering
proportions in a population of independent agents. However, this independence between agents
is not necessary to satisfy the fluid limit assumption.

2.2. Law of large numbers for stochastic hybrid systems

We state here the first result concerning the convergence of the stochastic hybrid model (SN),
which is a functional law of large numbers on finite time windows and associated convergence
rate.

Theorem 2.1. Let ε > 0, δ > 0, and T > 0. Assume that the functions αi,j and f are C1, and
that they satisfy the following condition:

(H1) the solution v of (D) is bounded for any initial value on [0, T ] and, for all N ≥ 1, the
solution VN(t) of (SN) is uniformly bounded in N on [0, T ].

LetX0 be a given initial condition for (D), and letX = (v,g) be the corresponding solution.
Then there exist initial conditions (X0

N)N≥1 for (SN) and N0 ≥ 0 such that, for all N ≥ N0,

the solution XN = (VN, e(1)N , . . . , e
(q)
N ) satisfies, for all 1 ≤ j ≤ q,

P
[

sup
0≤t≤T

‖VN(t)− v(t)‖ ≥ δ
]
≤ ε,
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P
[

sup
0≤t≤T

‖e(j)N (t)− g(j)(t)‖ ≥ δ
]
≤ ε.

Moreover, if we define

PN(T ,�) := P

[
sup

0≤t≤T
‖VN(t)− v(t)‖2 +

q∑
j=1

‖e(j)N (t)− g(j)(t)‖2 > �

]
,

there exist two constants B(T ) > 0 and C > 0 such that, for sufficiently small �,

lim sup
N→∞

1

N
logPN(T ,�) ≤ −�e−B(T )T

CT
. (2.1)

Moreover, if

(H2) assumption (H1) holds on [0,+∞)
then the constant B(T ) = BT is proportional to T .

Interpretation of the convergence speed. We have obtained in (2.1) an upper bound for the
convergence speed which can help to answer the following issue. Given a number of channelsN ,
and given an error � and a confidence probability 1 − p (e.g. p = 0.01), the time window
[0, T ] for which we can be sure (up to probability 1−p) that the distance between the stochastic
and the deterministic solutions (starting at the same point) is less than � is given by (2.1). In
Section 3.3 we present numerical simulation results for the stochastic Hodgkin–Huxley model
illustrating the obtained bound for the convergence speed.

Remark 2.1. Assumption (H2) and, thus, (H1) is satisfied for most neuron models, for instance
for the Hodgkin–Huxley model [4].

2.3. Functional central limit theorem and the exit problem

Let XN = (VN, e(1)N , . . . , e
(q)
N ) be the solution to the stochastic model (SN), and let X =

(v,g(1), . . . ,g(q)) be the solution to the deterministic system (D) with identical initial condi-
tions X(0) = XN(0) = X0 ∈ R

p+d . Before stating the theorem, we need to introduce some
further notation. For X = (v, e) ∈ R

p × R
d , and 1 ≤ j ≤ q, 1 ≤ i, k ≤ rj , let

b
(j)
k (X) =

∑
1≤i≤rj , i �=k

α
(j)
i,k (X)e

(j)
i − α(j)k,i (X)e(j)k ,

H
(j)
i,k = α(j)i,k (X)e(j)i + α(j)k,i (X)e(j)k , λ

(j)
k (X) =

∑
1≤i≤rj , i �=k

H
(j)
i,k .

We then define a matrix G(j)(X) by, for 1 ≤ k, l ≤ rj ,

G
(j)
k,k(X) = λ(j)k (X), G

(j)
k,l (X) = H(j)

k,l (X) = G(j)l,k (X), l �= k.
Consider the (p + d)-dimensional processes

ZN =

⎛
⎜⎜⎜⎝
YN

P
(1)
N
...

P
(q)
N

⎞
⎟⎟⎟⎠ := √N

⎛
⎜⎜⎜⎝

VN − v
e
(1)
N − g(1)

...

e
(q)
N − g(q)

⎞
⎟⎟⎟⎠ .

With this setting, we have the following result.
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Theorem 2.2. Under the same hypotheses as in Theorem 2.1, the processZN converges in law,
as N →∞, to the process

Z =

⎛
⎜⎜⎜⎝
Y

P (1)

...

P (q)

⎞
⎟⎟⎟⎠ ,

whose characteristic function �(t, θ) = E[ei〈θ,Z(t)〉] satisfies

∂�

∂t
=

q∑
j=1

{∑
l∈L

rj∑
k=1

θ
(j)
k

∂b
(j)
k

∂xl

∂�

∂θl
− 1

2

rj∑
k,l=1

θ
(j)
k θ

(j)
l G

(j)
k,l �

}
+

p∑
m=1

∑
l∈L

θm
∂f m

∂xl

∂�

∂θl
,

where G(j)k,l , ∂f
m/∂xl and ∂b(j)k /∂xl are evaluated at X(t) for 1 ≤ m ≤ p, 1 ≤ j ≤ q,

1 ≤ k ≤ rj , and l ∈ L, θ = ((θm)1≤m≤p, (θ(j)k )1≤j≤q, 1 ≤ k ≤ rj ) = (θl)l∈L, and L =
{(m)1≤m≤p, (j, k)1≤j≤q, 1≤k≤rj }.

In the next theorem we provide a characterization of the fluctuations of the first exit time and
location for the stochastic hybrid process XN , using the central limit theorem, Theorem 2.2.
Let φ : Rp+d → R be continuously differentiable. Define

τN := inf{t ≥ 0;φ(XN(t)) ≤ 0} and τ := inf{t ≥ 0;φ(X(t)) ≤ 0}

to be the first passage times through φ = 0 for the stochastic hybrid process and its deterministic
limit, respectively. Recall that F defines the deterministic model (D): Ẋ = F(X).
Theorem 2.3. Assume that the initial condition X(0) satisfies φ(X(0)) > 0. Suppose that
τ <∞ and ∇φ(X(τ))F (X(τ)) < 0. Define the random variable

π(τ) := − ∇φ(X(τ))Z(τ)
∇φ(X(τ))F (X(τ)) ,

where Z is the limit of ZN as obtained in Theorem 2.2. Then the following convergences in
distribution hold when N →∞:

√
N(τN − τ)→ π(τ),

√
N(XN(τN)−X(τ))→ Z(τ)+ π(τ)F (X(τ)).

2.4. Langevin approximation

Our second result is a central limit theorem that provides a way to build a diffusion or
Langevin approximation of the solution of the stochastic hybrid system (SN).

As before, XN(t) = (VN(t), eN(t)) ∈ R
p × R

d is the solution to the stochastic hybrid
model (SN).

Let RN(t) = {(R(j)N )k(t)}1≤j≤q, 1≤k≤rj with R(j)N ∈ R
rj be defined as

R
(j)
N (t) = √N

(
e
(j)
N (t)− e

(j)
N (0)−

∫ t

0
b(j)(XN(s)) ds

)
,

where b(j) denotes the vector (b(j)k )1≤k≤rj ∈ R
rj for fixed j .
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Theorem 2.4. Under the same hypotheses of Theorem 2.1, the process RN converges in law,
as N →∞, to the process R = {(R(j))k(t)}1≤j≤q, 1 ≤ k ≤ rj , with

R(j)(t) =
∫ t

0
σ (j)(X(s)) dWj

s ,

where

• X = (v,g) is the solution of the deterministic model (D) with initial conditions X(0) =
XN(0) = X0;

• the Wj are independent standard rj -dimensional Brownian motions;

• σ (j)(X) is the square root of matrix G(j)(X) (as defined in Section 2.3).

This theorem leads to the following degenerate diffusion approximation X̃N = (ṼN , g̃N) ∈
R
p × R

d for sufficiently large N :

dṼN = f (X̃N(t)) dt, dg̃
(j)
N = b(j)(X̃N(t)) dt + 1√

N
σ(j)(X̃N(t)) dWj

t . (2.2)

Note that this approximation may not have the same properties as the original process, even
in the limit N →∞ when considering for instance large deviations (cf. [26]).

Linearization. Let us define Z̃N := (ỸN , P̃N ) :=
√
N(X̃N − X) ∈ R

p × R
d , where we

recall that X̃N is the Langevin approximation defined in (2.2). Thus, for 1 ≤ j ≤ q and
1 ≤ k ≤ rj ,

dỸN =
√
N(f (X̃N)− f (X)) dt,

dP̃ (j)N =
√
N(b(j)(X̃N)− b(j)(X)) dt + σ (j)(X̃N) dWj

t .

As an asymptotic linearization of Z̃N , we define the diffusion process � = (γ, ρ) ∈ R
p × R

d

by

dγm =
∑
l∈L

∂f m

∂xl
�l dt, dρ(j) =

∑
l∈L

∂b(j)

∂xl
�l dt + σ (j)(X) dW(j)

t .

The following theorem states that the central limit fluctuations are given by the linearization of
the Langevin approximation around the deterministic solution.

Theorem 2.5. The processes Z (cf. Theorem 2.2) and � have the same law.

3. Application to neuron models

In this section we show how our previous theorems can be applied to standard neuron models,
taking into account ion channel stochasticity.

3.1. Kinetic formalism in neuron modelling

Kinetic models can be used in many parts of nervous system modelling, such as in ion
channel kinetics, synapse, and neurotransmitters release modelling [8]. As already mentioned
in the introduction, compared to our general formalism, the stochastic individuals are the ion
channels and the global variableVN the voltage potential. Constituted of several subunits called
gates, voltage-gated ion channels are metastable molecular devices that can open and close.
There exist different types of channel according to the kind of ions, and they are distributed
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within the neuron membrane (soma, axon hillock, nodes of Ranvier, dendritic spines) with
heterogeneous densities.

In what follows, we consider the model of Hodgkin and Huxley, which has been extended
in different ways to include stochastic ion channels. In numerical studies, different versions
have been used, from a two-state gating interpretation (see, e.g. [33]) to a multistate Markov
scheme [7], [30]. In [34], two of these models are compared, one with a complete multistate
Markov scheme, and the other inspired from [24] with a multistate scheme for the sodium
ion and a two-state gating for the potassium ion. Here we consider only single-compartment
neurons, but in order to deal with spatial heterogeneities of axonal or ion channel properties
for instance, multi-compartmental models can be introduced as a discretized description of the
spatial neuron, with Ohm’s law coupling between compartments.

3.2. Application of the law of large numbers to the Hodgkin–Huxley model

Classically, the Hodgkin–Huxley model is the set of nonlinear differential equations

Cm
dV

dt
= I − gL(V − VL)− gNam3h(V − VNa)− gKn4(V − VK),

dm

dt
= (1−m)αm(V )−mβm(V ),

dh

dt
= (1− h)αh(V )− hβh(V ),

dn

dt
= (1− n)αn(V )− nβn(V ),

where I is the input current, Cm = 1µF/cm2 is the capacitance corresponding to the lipid
bilayer of the membrane, gL = 0.3 mS/cm2, gNa = 120 mS/cm2, and gK = 36 mS/cm2 are
maximum conductances, and VL = 10.6 mV, VNa = 115 mV, and VK = −12 mV are resting
potentials, respectively for the leak, sodium, and potassium currents. The model was introduced
in [15] to explain the ionic mechanisms behind action potentials in the squid giant axon. The
functions αx and βx for x = m, n, h are opening and closing rates for the voltage-gated ion
channels (see [15] for their expressions). The dynamics of this dynamical system can be very
complex, as shown in [13], but for our purpose let us describe schematically only the behaviour
of this system as the parameter I is varied (see [29] for more details). First, for all I , there
exists a unique equilibrium point. For 0 < I < I1 ≈ 9.8µA/cm2, this equilibrium point is
stable, and, for I0 < I < I1, where I0 ≈ 6.3µA/cm2, this equilibrium coexists with a stable
limit cycle and possibly many unstable limit cycles. At I = I1 and I = I2 there occur two Hopf
bifurcations. For I1 < I < I2 ≈ 153µA/cm2, the equilibrium point is unstable and coexists
with a stable limit cycle. For I > I2, there are no more limit cycles, and the equilibrium point
is stable. This bifurcation structure can be roughly interpreted as follows: for small I , the
system converges to an equilibrium point, and, for sufficiently large I , the system admits a
large amplitude periodic solution, corresponding to an infinite sequence of action potentials or
spikes, and the spiking frequency is modulated by the input current I .

There are two stochastic interpretations of the Hodgkin–Huxley model, involving either a
multistate Markov model or a two-state gating model. We now present them briefly and we
apply our theorems to each of them. A comparison of the deterministic limits obtained for these
models is provided in Appendix A and establishes an equivalence between these deterministic
versions as soon as their initial conditions satisfy a combinatorial relationship. This question
is further studied in [19], where the reduction of the law of jump Markov processes to invariant
manifolds is investigated.
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3.2.1. Multistate Markov model. This model has two types of ion channel: one for sodium and
the other for potassium. The kinetic scheme describing the Markov jump process for one single
potassium channel is

n4n3n2n1n0

3αn

2βn

4αn

βn

2αn

3βn

αn

4βn

and for the sodium channel is

m0h1

3αm

βm

m1h1

2αm

2βm

m2h1

αm

3βm

m3h1

m0h0

3αm

βm

m1h0

2αm

2βm

m2h0

αm

3βm

m3h0

αh βhαh βhαh βh αh βh

We recall that every single ion channel process is independent within a subpopulation and
between subpopulations. All the coefficients in these two schemes are actually functions of the
membrane potential, and can be found in [15]. The state spaces are

E1 = {n0, n1, n2, n3, n4}, E2 = {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0}.
The open states are respectively n4 (r1 = 5) and m3h1 (r2 = 8). The proportion of open
potassium channels is denoted by u(1)N := {e(1)N }n4 and the proportion of open sodium channels
by u(2)N := {e(2)N }m3h1 . In this model, the membrane potential dynamic is given by

V̇N (t) = −gNau(2)N (t)(VN(t)− VNa)− gKu(1)N (t)(VN(t)− VK)− gL(V (t)− VL)+ I,
where I ∈ R is a constant applied current. With the notation of Section 2.1, f (v, u(1), u(2)) =
−gNau(2)(v − VNa)− gKu(1)(VN(t)− VK)− gL(v − VL)+ I and, for example, α(1)k,l (v) =
3αn(v) if k = n1 and l = n2, and α(2)k,l (v) = 2βm(v) if k = m2h0 and l = m1h0.

Applying Theorem 2.1, we obtain a deterministic limit for the stochastic Hodgkin–Huxley
model when N →∞, provided that we choose the initial conditions appropriately:

v̇ = −gNae(2)(t)(v(t)− VNa)− gKe(1)(t)(v(t)− VK)− gL(v(t)− VL)+ I,
ġ
(j)
k =

∑
1≤i≤rj , i �=k

α
(j)
i,k (v)g

(j)
i − α(j)k,i (v)g(j)k for all 1 ≤ j ≤ 2 and 1 ≤ k ≤ rj ,

V (0) = v0, g(j)(0) = g
(j)
0 ,

with e(j) = g
(j)
rj , where the rate functions α(j)m,p are given by the above schemes for j ∈ {1, 2}.

3.2.2. Two-state gating model. Another way of building a stochastic Hodgkin–Huxley model is
to consider that the channels can be decomposed into independent subunits, called gates. Each
gate can be either open (state 1) or closed (state 0):

αz(VN)

0 −→←− 1

βz(VN)

with z ∈ {m, n, h}. A channel is open when all gates are open. For the sodium channel, there are
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two distinct types of gate, and one for the potassium channel. Thus, in this situation, the number,
q, of subpopulations refers to the number of types of gate, soq = 3 andE1 = E2 = E3 = {0, 1}.
If we denote by u(z)N (t) the proportion of open gates z for z ∈ {m, n, h}, the membrane potential
dynamic is then given by

V̇N (t) = −gNa(u(m)N (t))3u
(h)
N (t)(VN(t)− VNa)

− gK(u(n)N (t))4(VN(t)− VNa)− gL(VN(t)− VL)+ I,
which corresponds to f (v, u(m), u(h), u(n)) = −gNa(u(m))3u(h)(v − VNa) − gK(u(n))4(v −
VNa) − gL(v − VL) + I . In Figure 1, we give a sample trajectory of this two-state gating
stochastic Hodgkin–Huxley system.

60
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–80
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0.2

0.0
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m
h

n

V

Figure 1: Illustrative sample trajectory of a two-state gating stochastic Hodgkin–Huxley model with
N = 20 (cf. Section 3.2). Top: variablesm and h for the sodium channel (without unit). Middle: variable
n for the potassium channel (without unit). Bottom: variable V for membrane potential (unit: mV).
Abscissa: time (arbitrary units). Since m, n, and h correspond to proportions of open gates, if one of
them is equal to 1 then all the corresponding gates are open. An increase in the membrane potential V
causes an increase in the proportion of open m (sodium) gates, which in turn implies an increase of V .
This positive feedback results in a spike initiation. Meanwhile, a further increase of V is followed by a
decrease of the deactivation variable h, which closes the sodium channels. This inhibition effect acts at a
slower time scale, enabling a decrease of V . This decrease is strengthened by the dynamic of variable n

(proportion of open potassium gates).
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Applying Theorem 2.1 gives the classical formulation of the four-dimensional Hodgkin–
Huxley model:

v̇ = −gNa(u(m)(t))3u(h)(t)(v(t)− VNa)− gK(u(n)(t))4(v(t)− VNa)− gL(v(t)− VL)+ I,
u̇(z)(t) = (1− u(z)(t))αz(v(t))− u(z)(t)βz(v(t)), z ∈ {m, n, h}.

3.3. Exponential convergence speed

We illustrate by numerical simulations the upper bound obtained in (2.1) for the stochastic
Hodgkin–Huxley model with a two-state gating scheme. The number of sodium channels,
NNa , and potassium channels, NK , are proportional to the area S of the membrane patch.
Thus, instead of N , S will denote the size parameter. For the squid giant axon, the estimated
densities for the ion channels used in the simulations are ρNa = 60µm−2 and ρNK = 18µm−2.

We now present the results of numerical simulations of

PS(T ,�) = P

[
sup

0≤t≤T
‖VS(t)− v(t)‖2 +

q∑
j=1

‖e(j)S (t)− g(j)(t)‖2 > �

]

using Monte Carlo simulations. We recall from (2.1) that

lim sup
S→∞

1

S
logPS(T ,�) ≤ −�e−BT 2

CT
= C(T ).

In Figure 2, the simulation estimations of CS(T ) = 1/S logPS(T ,�) are shown for different
values of T and S, and can be compared to the theoretical bound C(T ). Simulations are made
without input current, meaning that the stochastic solution is supposed to fluctuate around the
equilibrium point of the deterministic system in a neighbourhood of size proportional to S−1/2.
When S increases, the simulation curve CS(T ) is expected to pass below the theoretical bound
C(T ). For higher input currents, still subthreshold, but close to the bifurcation Ic, channel
noise will induce spontaneous action potentials. For appropriate �, the probability PS(T ,�)

50 100 150 200 250 300 350 400 450 500

T

0.0000

–0.0005

–0.0010

–0.0015

–0.0020

–0.0025

–0.0030

–0.0035

–0.0040

Figure 2: Simulation results for the Hodgkin–Huxley model with a ‘two-state gating’ scheme and input
current I = 0: this figure shows the quantity 1/S lnPS(T ,�) as a function of T , where S is the area of
the patch, and is thus proportional toN . Here S = 250µm2 (stars) (corresponding toNNa = 15 000 and
NK = 5000), S = 500µm2 (squares), and S = 750µm2 (crosses). The lines are plotted as a guide for

the eye.
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can be interpreted as the probability that the first spontaneous action potential (SAP) occurs
before time T . Thus, the convergence speed bound gives an upper bound of the cumulative
distribution function of this first SAP time.

For higher input currents I > Ic, the deterministic solution will be attracted by a stable
limit cycle, which corresponds to repetitive action potentials. In this case, channel noise may
introduce a jitter in the spiking times. Thus, if one considers the supremum of the errors between
the stochastic and the deterministic solutions, this supremum will be quite large (approximately
the size of an action potential) as soon as the difference between the stochastic spiking times
and the deterministic ones is of order of the time course of an action potential (2 ms). Thus,
the supremum of the difference is not appropriate here and we will see in the following section
how to quantify the impact of channel noise on the spiking frequency.

3.4. Application of the central limit theorems

In this section we show how to investigate the fluctuations around a stable fixed point (sub-
threshold fluctuations) and the fluctuations around a stable limit cycle (firing rate fluctuations)
using Theorem 2.2. Let us consider a class of two-dimensional models, corresponding to
Example 2.1. This class contains reductions of the previous two-state gating Hodgkin–Huxley
model, or other models such as the Morris–Lecar model [25]. Consider the process, using the
notation of Example 2.1, (

YN
PN

)
=

(√
N(VN − V )√
N(eN − g)

)

with initial conditions (PN(0), YN(0)) = (0, 0). Then the two-dimensional process ZN =
(PN, YN) converges in law, asN →∞, towards the process Z = (P, Y ), whose characteristic
function is given by

E[exp(i(θ1P(t)+ θ2Y (t)))] = exp(θ2
1At + θ2

2Bt + θ1θ2Ct).

This characteristic function is obtained by specializing the differential equation of Theorem 2.2.
Thus, defining �s to be the square root matrix of

�s :=
(
A′s C′s/2
C′s/2 B ′s

)
for 0 ≤ s ≤ t,

Z can be written as a Gaussian diffusion process:

Zt =
∫ t

0
�s dWs,

where W is a standard two-dimensional Brownian motion. The condition that the matrix �s
admits a real square root matrix can be reduced to A′s + B ′s ≤ 0 because we can show that
det(�s) = A′sB ′s − (C′s)2/4 = 0 for all s ≥ 0. This condition is thus always satisfied because
A′0 + B ′0 ≤ 0, A′s and B ′s have the same sign, and (A′s , B ′s , C′s) cannot cross (0, 0, 0) by
uniqueness of the solution of z′ = Mz (satisfied by y′). The computation of the matrix �s
gives

�s =
√−2(A′s + B ′s)

A′s + B ′s
�s.
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From the equation for the characteristic function obtained in Theorem 2.2, we find that the
triple y = (A,B,C) is a solution of the system ẏt = Mtyt + Et , defined as⎛

⎝ȦtḂt
Ċt

⎞
⎠ =

⎛
⎝2b′u 0 b′v

0 2f ′v f ′u
2f ′u 2b′v b′u + f ′v

⎞
⎠

⎛
⎝AtBt
Ct

⎞
⎠+

⎛
⎝− 1

2λ(V, u)

0
0

⎞
⎠

with initial conditions (0, 0, 0), and λ(v, u) = √(1− u)α(v)+ uβ(v). The partial derivatives
f ′v , f ′u, b′v , and b′u and λ are evaluated at the deterministic solution (Vt , gt ) of (D).

We remark that, if J is the Jacobian matrix of the two-dimensional deterministic system
(D) at the point (Vt , gt ), and if its spectrum is sp(J ) = {λ1, λ2}, then the spectrum of M is
sp(M) = {2λ1, 2λ2, λ1 + λ2}. Two different situations can be considered.

• Starting from a fixed point (V0, g0) of the deterministic system, the matrix Mt =
M(Vt , gt ) and the vectorEt = E(Vt , gt ) are constant. We can derive an explicit analytical
solution diagonalizing the matrixM . The time evolution for the variance and covariance
of the difference between the deterministic and stochastic solutions then depends on the
stability (λ1, λ2) of the considered fixed point. Noise-induced small oscillations may
appear if the eigenvalues are complex conjugates.

• Around a stable limit cycle (periodic firing), Mt and Et are T -periodic functions. Using
suitable coordinates and following Floquet’s theory (see [3]), stability would be given by
the spectrum of the solver R(T ) : (A0, B0, C0)→ (AT , BT , CT ). As explained in [17],
even if the real parts of the eigenvalues of the Jacobian matrix are strictly negative for
all times, unstable solutions may exist. In Section 3.5 we numerically investigate the
fluctuations around a stable limit cycle for the Morris–Lecar system.

If we consider (
ỸN

P̃N

)
=

(√
N(ṼN − V )√
N(g̃N − g)

)
,

where (ṼN , g̃N ) is the Langevin approximation, then the moment equations, written for the
linearized version around the deterministic solution, give the same matrix �s at the limit
N → ∞. But, for finite N , the linearized process is not Gaussian (see Appendix B). Thus,
our mathematical result can be directly related to the simulation results obtained in [34]: in
this paper simulations of two neuron models with a large number of stochastic ion channels are
made, and the fluctuations of the membrane potential below threshold exhibit approximately
Gaussian distributions, but only for a certain range of resting potentials. For smaller resting
potentials, the shape of the distribution remained unclear as it was more difficult to compute. Our
approach shows that, at finite N , for any range of the resting potentials, the distribution is non-
Gaussian. However, when N → ∞, the distribution tends to a Gaussian, which corresponds
to the approximate Gaussian distribution observed in the simulations of [34].

3.5. Quantifying the effect of channel noise on neural coding

In the next subsections we show how our results can be applied to quantify the effect of ion
channel stochasticity on neural coding. The impact of channel noise on frequency coding is
investigated in Section 3.5.1 and on spike timing coding in Section 3.5.2. We close this section
with some remarks concerning non-Markovian processes arising when considering synaptic
transmission in Section 3.5.3.
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3.5.1. Numerical study of the variance of the spiking rate for the Morris–Lecar model. In this
subsection, applying Theorem 2.2 to the Morris–Lecar system, we investigate the impact of
channel noise on the variance of the firing frequency. The Morris–Lecar system was introduced
in [25] to account for various oscillating states in the barnacle giant muscle fiber. We denote
by X = (V ,m, n) the solution of

Cm
dV

dt
= I − gL(V − VL)− gCam(V − VCa)− gKn(V − VK) := Fv(X), (3.1)

dm

dt
= λm(V )(M∞(V )−m) := Fm(X), (3.2)

dn

dt
= λn(V )(N∞(V )− n) := Fn(X), (3.3)

where λm(V ) = cosh((V − V1)/2V2), λn(V ) = φn cosh((V − V3)/2V4), M∞(V ) = (1 +
tanh[(V − V1)/V2])/2, and N∞(V ) = (1 + tanh[(V − V3)/V4])/2. We introduce, as in the
previous sections, a stochastic versionXN of this model with stochastic ion channels, replacing
the differential equation for m and n by birth-and-death processes with voltage-dependent
opening rates αm = λmM∞ and αn = λnN∞ and closing rates βn = λn(1−N∞). According
to the parameters of the model, the deterministic system (3.1)–(3.3) may have a stable limit
cycle XLC for some values of I ∈ [Imin, Imax] (see [25]). This corresponds to a phenomenon
of regular spiking, characterized by its rate. Assuming that the time length of a spike is almost
constant, we suggest a proxy for this spiking rate:

r(T ) := 1

T

∫ T

0
φth(X(s)) ds,

where φth is a sigmoid threshold function. In a similar way, we define the stochastic spiking
rate by

rN(T ) := 1

T

∫ T

0
φth(XN(s)) ds.

As a candidate for φth, we choose φth(V ) := ec(V−Vth)/(1 + ec(V−Vth)), where c and Vth are
two parameters.

A consequence of the central limit theorem for XN is weak convergence,

√
N [rN(T )− r(T )] ⇒ R(T ) = 1

T

∫ T

0
Z(s)∇φth(X(s)) ds,

where Z is the weak limit of
√
N [XN −X],

Z(s) =
∫ s

0
�(u) dWu,

and R(T ) is a Gaussian random variable with zero mean. For simplicity, we consider the case
where φth is only a function of the membrane potential V . Then the variance of R(T ) is

σ 2
R(T ) = E[R(T )2] = 2

T 2

∫ T

0

∫ s

0
Sv(s

′)φ′th(V (s′)) ds′φ′th(V (s)) ds, (3.4)

where Sv(s) = �1,1(s) is the variance of
√
N(VN(s)− V (s)).
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Figure 3: Impact of channel noise on the spiking rate. Top row: class I regime. Bottom row: class II
regime. (a) and (d) show the deterministic rate r(T ) versus the input current I (µA/cm2). (b) and (e) show
the variance σ 2

R(T ) versus the input current I (µA/cm2). (c) and (f) show the normalized variance ξ(T )
versus the input current I (µA/cm2). Parameters: for all figures, T = 2000 ms, c = 10, Vth = 0 mV,
Cm = 20µF/cm2, V1 = 0 mV, V2 = 15 mV, V3 = 10 mV, gCa = 4 mS/cm2, gK = 8 mS/cm2,
gL = 2 mS/cm2, VK = −70 mV, VL = −50 mV, VCa = 100 mV, φn = 0.1, and V4 = 20 mV for

class II and V4 = 10 mV for class I.

To numerically estimate the variance σ 2
R(T ), the first step is to numerically determine the

limit cycle, then solve the moment equations (Appendix C) and immediately deduce �(s).
Thus, the variance σ 2

R can be computed using (3.4) without any stochastic simulation. In
Figure 3 we show our numerical results, where we plot in (c)–(f), as a function of the input
current I , the normalized variance ξ(T ) defined as ξ(T ) := σ 2

R(T )/r(T )
2.

Remarks. The value of ξ(T ) depends on a combination of the linear stability along the cycle
and the variance of the noise (which is multiplicative) along the cycle. If we want to have the
quantity E[(rN(T ) − r(T ))2]/r(T )2 of order 1 then the number, N , of channels should be of
order ξ(T ). Interestingly, this gives much smaller values for the class II regime compared to
the class I regime (see [16] for more details about these regimes). In both cases, it corresponds
to a reasonably small number of channels when I is not too close to bifurcation points.

3.5.2. Impact of channel noise on latency coding in the Morris–Lecar model. Whereas fre-
quency coding requires an integration of the input signal over a relatively long time, individual
spike time coding does not require such an integration. The time to the first spike, called latency,
depends on the value of the suprathreshold input. Thus, it may have an interpretation in terms of
neural coding, and it has been shown in several sensory systems [39] that the first spike latency
carries information. For example, a recent study [12] concerning the visual system suggests
that it allows the retina to rapidly transfer new spatial information. Impacts of external noise on
latency coding have been investigated in numerical studies [27] with stochastic simulations. We
apply Theorem 2.3 to the Morris–Lecar model to investigate the impact of internal channel noise
on the first spike time. We choose the parameters (see Figure 3) to obtain a class I neuron model
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in the excitable regime. In this setting, there exists a unique steady state X∗ = (V ∗,m∗, n∗).
Starting from this equilibrium point, the impact of an input at t = t0 is equivalent to an
instantaneous shift of the membrane potential V ∗ → V ∗ +A, whereA > 0 is the amplitude of
this shift. Eventually, the system goes back to its steady state, but ifA is higher than a threshold
Ath then a spike is emitted before going back to the steady state, whereas ifA is lower thanAth,
no spike is emitted. ForA > Ath, we define the latency time T (A) as the elapsed time between
t0 and the spike. More precisely, let XA(t) = (VA(t),mA(t), nA(t)) for t ≥ t0 be the solution
of the Morris–Lecar equations with initial conditions X(t0) = (V ∗ + A,m∗, n∗). We define a
spike as a passage of the membrane potential VA(t) through a threshold Vth. Then, with t0 = 0
for simplicity, the latency time T (A) can be written as T (A) := inf{t ≥ 0;VA(t) > Vth}. As
shown in Figure 4(a), the more A > Ath is close to Ath, the longer is the latency time T (A).
The same setting can be extended to the stochastic case, defining a random variable TN(A).
Applying Theorem 2.3, with φ(V,m, n) = Vth −V , we express the variance P(A) of the limit
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Figure 4: Impact of channel noise on latency coding. (a) Latency time T (A) versus amplitude A.
(b) Variance P(A) versus amplitude A. (c) Normalized variance P(A)/T (A)2 versus amplitude A.
(d) Variance P(A) versus latency time T (A). (e) Variance Sv(A) versus amplitude A. (f) Crossing speed
Fv(X(T (A))) versus amplitude A. The parameters used are the same as those used in Figure 3, class I,

with input current I = 32µA/cm2.
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of
√
N(TN(A)− T (A)) as N →∞:

P(A) = Sv(T (A))

Fv(X(T (A)))2
. (3.5)

In (3.5), Sv(T (A)) is the variance of theV -component Y ofZ, where we recall thatZ is the limit
of
√
N(XN − X) (see Theorem 2.2). The value of Sv(T (A)) is obtained from the numerical

integration of the moment equations (Appendix C). The results are displayed in Figure 4, where
the variance P(A) and a normalized variance P(A)/T (A)2 are plotted against the amplitude
A (Figure 4(b)). In Figure 4(d) the variance P(A) is plotted against the latency time T (A).
From (3.5), it appears that P(A) is determined by two distinct contributions: the variance
Sv(T (A)) (Figure 4(e)) and the crossing speed F(X(T (A))) (Figure 4(f)), which does not
actually influence much the variance P(A). One way to interpret the results is the following:
if N is large, of order P(A), then E[(TN(A)− T (A))2] is of order 1. Thus, as an illustration,
in order to keep E[(TN(A)− T (A))2] of order 1, the required number of channels would be of
order 102 for a latency time of 10 ms and of order 105 for latency time of 60 ms.

3.5.3. Synaptic transmission and non-Markovian processes. In Section 3.5.1, the quantity of
interest was the firing frequency. However, the synaptic transmission between neuron 1
and neuron 2 has its own time scale. Therefore, neuron 2’s input, called the post-synaptic
potential�1→2, may be modelled as a functional of neuron 1’s membrane potential {V1(t)}t≥0.
Although synaptic transmission is presumably a nonlinear process, we can consider as a first
approximation (cf. [21]) that the process of interest is obtained directly by the convolution of
the process V1 with some kernel K1→2:

�1→2(t) =
∫ t

0
K1→2(t, s)V1(s) ds.

The mathematical analysis of the impact of channel noise on this variable can be done in
light of Theorems 2.1 and 2.2. Using the general notation for the stochastic process and its
deterministic limit, we define �N(t) =

∫ t
0 K(t, s)XN(s) ds and �(t) = ∫ t

0 K(t, s)X(s) ds.
Law of large numbers. Define SN(T ) = sups∈[0,T ]|�N(t) − �(t)|2. Clearly, using the

Cauchy–Schwarz inequality, with the same notation as in Theorem 2.1,

P(SN(T ) > �) ≤ PN(T , η(T )−1�)

with

η(T ) = T sup
t∈[0,T ]

∫ t

0
|K(t, s)|2 ds.

The convergence of �N to � is thus a direct consequence of Theorem 2.1. The convergence
speed is exponential, as in Theorem 2.1.

Gaussian fluctuations. We know from Theorem 2.2 that
√
N(XN − x) converges weakly to

the diffusion Z(t) = ∫ t
0 �(u) dWu. As a consequence, �N =

√
N(�N − �) also converges

weakly to the following process:

�(t) =
∫ t

0
K(t, s)

(∫ s

0
�(u) dWu

)
ds.

Using integration by parts, we can rewrite

�(t) =
∫ t

0
J (t, s) dWs,
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where

J (t, s) =
∫ t

s

K(t, u) du�(s).

The process� is Gaussian and we can easily compute its variance as
∫ t

0 J (t, s)
2 ds. However,

it is non-Markovian, and some issues concerning the first hitting times of such processes are
addressed in [35].

4. Proof of the law of large numbers

In this section we give the proof for Theorem 2.1. This proof is inspired from [1], except for
the exponential martingale bound. In order to simplify the notation and to make the arguments
clearer and more intuitive, we write the proof for the case of a single channel type with state
space {0, 1} and transition rates given by the scheme

α(VN)

0 −→←− 1

β(VN)

.

In this case, the stochastic model (S0
N) is

V̇N (t) = f (VN(t), uN(t)), VN(0) = V0,

uN(t) = 1

N

N∑
k=1

δ1(u
(k)
t ), uN(0) = u(N)0 ,

where u(k)t : 0→ 1 with rate α(VN(t)) and 1→ 0 with rate β(VN(t)) for all 1 ≤ k ≤ N .
The deterministic solution (v, u) satisfies

v̇(t) = f (v(t), u(t)), u̇(t) = (1− u(t))α(v(t))− u(t)β(v(t)),
v(0) = v0, u(0) = u0.

In this section and Section 5, we use the variable u instead of g, as we are working with a
simplified version of the model. In order to complete the proof, a few slight changes in the
notation are necessary:

• in order to work with more general jump Markov processes with finite state space,
essentially all the expressions of the form δ0(u)α(v) − δ1(u)β(v) should be replaced
by ∑

i �=j
αi,j (v, u)δei (u)− αj,i(v, u)δej (u);

• in order to include q different channel types (different ions), we should just write the
same arguments for all the q processes {e(j)N (t)} for 1 ≤ j ≤ q and include all the
‖e(j)N (t)− e(j)(t)‖ for 1 ≤ j ≤ q in the functionf (t)of Gronwall’s lemma in Section 3.4.

4.1. Decomposition into a martingale part and a finite-variation part

Decomposition. We decompose the difference between the stochastic and deterministic
processes as a sum of a martingale part, MN , and a finite-variation part, QN :

[uN(t)− uN(0)] − [u(t)− u(0)] = MN(t)+
∫ t

0
QN(s) ds,

https://doi.org/10.1239/aap/1282924062 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924062


Fluid limit theorems for stochastic hybrid systems 781

where we define

QN(t) = 1

N

N∑
i=1

[δ0(u
(i)
t )α(VN(t))− δ1(u

(i)
t )β(VN(t))] − u̇(t),

MN(t) = [uN(t)− u(t)] − [uN(0)− u(0)] −
∫ t

0
QN(s) ds.

Let {Ft }t≥0 denote the filtration of σ -algebras indexed by time generated by all the stochastic
processes under consideration for a particular N .

Lemma 4.1. As defined above, (MN(t)) is an {Ft }-martingale.

Proof. For h > 0, define �MN(t, h) = (1/h)E[MN(t + h)−MN(t) | Ft ]. Then

�MN(t, h) = 1

h

1

N

N∑
i=1

E[δ1(u
(i)
t+h) | Ft ] − E[δ1(u

(i)
t ) | Ft ]

− 1

h
E

[∫ t+h

t

[
1

N

N∑
i=1

δ0(u
(i)
s )α(Vs)− δ1(u

(i)
s )β(Vs)

]
ds

∣∣∣∣ Ft
]

− 1

h
[u(t + h)− u(t)] + 1

h

∫ t+h

t

u̇(s) ds.

The last line clearly converges to 0 as h → 0, and the two first terms compensate as h → 0.
So we have

lim
h→0

1

h
E[MN(t + h)−MN(t) | Ft ] = 0.

Therefore
d

ds
E[MN(t + s) | Ft ]|s=0 = 0.

By dominated convergence we have

d

ds
E[MN(t + s) | Ft ]|s=s0 = E

[
d

du
E[Mt+s0+u | Ft+s0 ]|u=0

∣∣∣∣ Ft
]
= 0.

Finally,
E[MN(t + h) | Ft ] = constant = MN(t).

4.2. Martingale bound

In this section we want to obtain a bound in probability for the martingale part. We introduce
the jump measure and the associated compensator.

We define two random measures on (0, T ] × {0, 1}:
• the jump measure,

κi =
∑

t∈(0,T ], u(i)t �=u(i)t−
δ
(t,u

(i)
t )
;

• the compensator,

νi(dt, dy) = [β(VN(t))δ1(u
(i)

t− )δ0(y)+ α(VN(t))δ0(u
(i)

t− )δ1(y)] dt.
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We can rewrite QN(s) and MN(t) as∫ t

0
QN(s) ds = 1

N

N∑
i=1

∫
(0,T ]×{0,1}

(δ1(y)− δ1(u
(i)

t− ))νi(ds, dy)−
∫ t

0
u̇(s) ds,

MN(t) = 1

N

N∑
i=1

∫
(0,T ]×{0,1}

(δ1(y)− δ1(u
(i)

t− ))(κi − νi)(ds, dy).

Then we have the following proposition.

Proposition 4.1. Let T > 0, ε > 0, and δ > 0. Then there existsN0 such that, for allN ≥ N0,

P
[

sup
0≤t≤T

MN(t)
2 ≥ δ

]
≤ ε.

Proof. Let us first recall that from standard results about residual processes (see [18]) we
have

E[MN(t)
2] = 1

N2

N∑
i=1

E

[∫
(0,T ]×{0,1}

(δ1(y)− δ1(u
(i)

t− ))
2(κi − νi)(ds, dy)

]

= 1

N2

N∑
i=1

E

[∫
(0,T ]

β(VN(s))δ1(u
(i)

s−)+ α(VN(s))δ0(u
(i)

s−) ds

]
.

Therefore, we can obtain a bound for E[MN(t)
2]:

E[MN(t)
2] ≤ C1

t

N
max(‖α‖∞, ‖β‖∞),

where ‖α‖∞ and ‖β‖∞ are finite because α and β are continuous and assumption (H1) holds.
We then use Chebychev’s inequality and Doob’s inequality for L2 martingales:

P
[

sup
0≤t≤T

MN(t)
2 ≥ δ

]
≤ 1

δ
E

[
sup

0≤t≤T
MN(t)

2
]
≤ 4

δ
E[MN(t)

2]

and E[MN(t)
2] ≤ εδ/4 for all N ≥ N0.

In order to obtain a better estimate for the convergence rate, we derive here an exponential
bound for the martingale part. Our proof is inspired from techniques developed in [5].

Proposition 4.2. Let T > 0 and η > 0. There exists a constant Cη such that, for all δ ∈
(0, ηCηT ),

P
[

sup
0≤t≤T

|MN(t)| ≥ δ
]
≤ 2 exp

(
− δ2N

2CηT

)
.

Proof. We define, for x = (u, v) and θ ∈ R,

mN(x, θ) =
∫
R

eθyλN(x)µN(x, dy) = Nλ(x)[eθ/Nµ+(x)+ e−θ/Nµ−(x)],

φN(x, θ) =
∫
R

[eθy − 1− θy]λN(x)µN(x, dy)

=
∫ 1

0

∂2mN

∂θ2 (x, rθ)θ2(1− r) dr.
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The second equality stems from an integration by parts argument. Also, if |θ | < Nη,∣∣∣∣∂2mN

∂θ2 (x, rθ)

∣∣∣∣ =
∣∣∣∣Nλ(x) 1

N2 [erθ/Nµ+(x)+ e−rθ/Nµ−(x)]
∣∣∣∣ ≤ CηN .

So, |φN(x, θ)| ≤ Cηθ2/2N . Let us define

ZεN(t) = exp

(
εMN(t)−

∫ t

0
φN((uN(s), VN(s)), ε) ds

)
,

(ZεN(t)) is a martingale thanks to Doléans’ formula (cf. [28]):

ZεN(t) = 1+
∫ t

0

∫
R

ZεN(s
−)[eεy − 1](µ− ν)(ds, dy).

Then we note that τ = inf{t;MN(t) > δ}. On {τ ≤ t}, ZεN(τ) ≥ exp(δε − tε2Cη/2N). By
the optional stopping theorem,

E[ZεN(min(t, τ ))] = E[ZεN(0)] ≥ E[ZεN(τ) 1{τ≤t}] ≥ P(τ ≤ t) exp

(
δε − tε

2Cη

2N

)
.

So, P[sup0≤t≤T MN(t) > δ] = P[τ ≤ T ] ≤ exp(−δε + T ε2Cη/2N).
Finally, when δ ∈ (0, ηCηT ), with ε = δN/Cηt , and applying the same argument to

−MN(t), we obtain the result.

4.3. Finite-variation part

In this section we use the Lispchitz property of α and β to provide a bound for the finite-
variation part, in order to apply Gronwall’s lemma later.

Lemma 4.2. There exists C1 > 0 independent of N such that

|QN(t))| ≤ C(|uN(t)− u(t)| + |VN(t)− v(t)|).
Proof. We have

QN(t) = 1

N

N∑
i=1

δ0(u
(i)
t )α(VN(t))− (1− u(t))α(v(t))

− 1

N

N∑
i=1

δ1(u
(i)
t )β(VN(t))− u(t)β(v(t)).

Let us start with the second term of the difference, called Q1→0:

Q1→0 = 1

N

N∑
i=1

δ1(u
(i)
t )β(VN(t))− u(t)β(vt )

= 1

N

N∑
i=1

δ1(u
(i)
t )β(VN(t))− u(t)β(VN(t))+ u(t)(β(VN(t))− β(v(t)))

= β(VN(t))(uN(t)− u(t))+ u(t)︸︷︷︸
∈[0,1]

(β(VN(t))− β(v(t))).
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Then,
|Q1→0| ≤ ‖β‖∞|uN(t)− u(t)| +Kβ |V − v(t)|,

whereKβ is the Lipschitz coefficient of β. We do the same for the other term of the difference:

|Q0→1| ≤ ‖α‖∞|uN(t)− u(t)| +Kα|VN(t)− v(t)|.
So the proof is complete, with C1 = max(‖α‖∞, ‖β‖∞,Kα,Kβ).

If more general transition rates α(v, u) and β(v, u) depend on v and u, we would need to
replace ‖α‖∞ and ‖β‖∞ respectively by ‖α‖∞ +K(u)

α and ‖β‖∞ +K(u)
β , where K(u)

α and
K
(u)
β are the Lipschitz coefficients associated with the second variable u.

4.4. Proof of Theorem 2.1

Law of large numbers. We want to apply Gronwall’s lemma to the function

f (t) = |VN(t)− v(t)|2 + |uN(t)− u(t)|2.
From the previous section we have a good control on the martingale term and the following
estimate.

Corollary 4.1. There exists C2 > 0 independent of N such that

|uN(t)− u(t)|2 ≤ 4

[
|uN(0)− u(0)|2 + C2T

∫ t

0
|uN(s)− u(s)|2 ds

+ C2T

∫ t

0
|VN(s)− v(s)|2 ds +MN(t)

2
]
.

Proof. As uN(t)− u(t) = uN(0)− u(0)+MN(t)+
∫ t

0 QN(s) ds and (x + y + z+w)2 ≤
4(x2+ y2+ z2+w2), the result is a direct application of the previous lemma and the Cauchy–
Schwarz inequality.

We now need to work on |VN(t)− v(t)|2, using hypothesis (H1), with

K1 = sup
N

sup
s∈[0,T ]

∣∣∣∣∂f∂v (VN(s), uN(s))
∣∣∣∣ and K2 = sup

N

sup
s∈[0,T ]

∣∣∣∣∂f∂u(VN(s), uN(s))
∣∣∣∣.

Between the jumps, we have

d

dt
(|VN(t)− v(t)|2) = 2(f (VN(t), uN(t))− f (v(t), u(t)))(VN(t)− v(t)).

Thus,

|VN(t)− v(t)|2 = 2
∫ t

0
[f (VN(s), uN(s))− f (v(s), u(s))](VN(s)− v(s)) ds

+ |VN(0)− v0|2

≤ |VN(0)− v0|2 + 2K1

∫ t

0
|VN(s)− v(s)|2 ds

+ 2K2

∫ t

0
|uN(s)− u(s)||VN(s)− v(s)| ds

≤ |VN(0)− v0|2 + 2K1

∫ t

0
|VN(s)− v(s)|2 ds

+K2

∫ t

0
|uN(s)− u(s)|2 ds +K2

∫ t

0
|VN(s)− v(s)|2 ds,
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where we have successively used the Cauchy–Schwarz inequality and the fact that ab ≤
1
2 (a

2 + b2). Putting this inequality together with the corollary we obtain

f (t) ≤ A+ B
∫ t

0
f (s) ds,

where B = B(T ) = max(2K1(T ) + K2(T ), C2T ) does not depend on N and is linear with
respect to T if (H2) holds, and

A = |uN(0)− u0|2 + |VN(0)− v0|2 +KA sup
0≤s≤T

M2
s .

If we control the initial conditions then, with the control we have on the martingale part from
Proposition 4.1, A can be chosen arbitrarily small (with high probability) and we can conclude
with Gronwall’s lemma.

Exponential convergence speed. If the initial conditions are the same for the stochastic and
deterministic models, we actually have exponentially fast convergence, thanks to the exponential
bound for the martingale part given by Proposition 4.2: there exists a constant Cm > 0 such
that

lim sup
N→∞

1

N
log P

[
sup

0≤t≤T
|VN(t)− v(t)|2 + |uN(t)− u(t)|2 > �

]
≤ −�e−B(T )T

2KACmT
.

Indeed, from Gronwall’s lemma we deduce that

P
[

sup
0≤t≤T

|VN(t)− v(t)|2 + |uN(t)− u(t)|2 > �
]
≤ P

[
sup

0≤t≤T
|Ms |2 > �e−B(T )T

KA

]
.

Then, from Proposition 4.2 we know that there exists a constant Cm such that

1

N
log P

[
sup

0≤t≤T
|Ms |2 > δ2

]
≤ log(2)

N
− δ2

2CmT
.

We complete the proof with δ2 = �e−B(T )T /KA.

5. Proof of the central limit theorems

As before, we write the proofs for the case of a single channel type with state space {0, 1}
and transition rates given by the scheme

α(VN)

0 −→←− 1

β(VN)

.

5.1. Functional central limit theorem

Let b(u, v) = (1 − u)α(v) − uβ(v), and let (VN, uN) be the solution of the simplified
stochastic model (SN) and (V , u) be the solution of the deterministic model (D) introduced in
the Example 2.1. Consider the process(

PN
YN

)
=

(√
N(uN − u)√
N(VN − V )

)
.
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If the initial conditions satisfy (PN(0), YN(0)) = (0, 0), the two-dimensional process (PN, YN)
converges in law, as N →∞, towards the process (P, Y ), with characteristic function

E[exp(i(θ1P(t)+ θ2Y (t)))] = exp(θ2
1A(t)+ θ2

2B(t)+ θ1θ2C(t)).

The functions A, B, and C are solutions of the system⎛
⎝A′B ′
C′

⎞
⎠ =

⎛
⎝2b′u 0 b′v

0 2f ′v f ′u
2f ′u 2b′v b′u + f ′v

⎞
⎠

⎛
⎝AB
C

⎞
⎠+

⎛
⎝− 1

2λ(V, u)

0
0

⎞
⎠ (5.1)

with initial conditions (0, 0, 0), and with λ(v, u) = √(1− u)α(v)+ uβ(v).
Proof of Theorem 2.2. We adapt the proof given in [22]: we prove the convergence of

characteristic functions plus tightness. Let

φN(t, θ) = E[exp(i(θ1PN(t)+ θ2YN(t)))].
Let us also define ZN = (uN − u, VN − V ), XN = (uN, VN), X = (u, V ), and h(x, y) =
exp(i
√
N(θ1x + θ2y)). Then

φ(t, θ)− 1 = E[h(ZN(t))− h(ZN(0))]
=

∫ t

0
E

[
Nλ(XN(s))

∫
EN

{h(w − u(s), VN(s)− V (s))
− h(ZN(s))}µ(XN(s), dw)

− b(X(s))h′x(ZN(s))+ (f (XN(s))− f (X(s)))h′y(ZN(s))
]

ds.

So φN(t, θ)− 1 = GN(θ, t)+HN(θ, t) with

GN(θ, t) =
∫ t

0
E[�N(s){(eiθ1

√
N/N − 1)µ+ + (e−iθ1

√
N/N − 1)µ−}] ds,

�N(s) = Nλ(XN(s))h(ZN(s)), µ+/− = µ+/−(XN(s)),
HN(θ, t) =

∫ t

0
i E[−θ1

√
Nb(X(s))h(ZN(s))+ θ2

√
N{f (XN(s))− f (X(s))}] ds.

Then in order to use the asymptotic development of ex when x → 0, we introduce the function
K(u) = eiu − 1− iu+ u2/2. Then, knowing that µ+ + µ− = 1,

GN(θ, t) =
∫ t

0
E

[
�N(s)

{
i
θ1√
N
(µ+ − µ−)(XN(s))− θ2

1

2N
+K

(
θ1√
N

)}]
ds.

Since b(x) = λ(x)(µ+(x)− µ−(x)), we have

GN(θ, t) =
∫ t

0
E[iθ1
√
Nb(XN(s))h(ZN(s))] ds +

∫ t

0
E

[
−θ

2
1

2
λ(XN(s))h(ZN(s))

]
ds

+
∫ t

0
E

[
NK

(
θ1√
N

)
h(ZN(s))

]
ds.
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Therefore,

φN(t, θ)− 1 =
∫ t

0
E

[
−1

2
θ2

2λ(XN(s))h(ZN(s))

]
ds

+
∫ t

0
E[h(ZN(s))iθ1

√
N{b(XN(s))− b(X(s))}] ds (5.2)

+
∫ t

0
E[h(ZN(s))iθ2

√
N{f (XN(s))− f (X(s))}] ds (5.3)

+
∫ t

0
E

[
h(ZN(s))NK

(
θ1√
N

)
λ(XN(s))

]
ds. (5.4)

Using the derivatives of b and f , and the convergence ofXN toX, we can make a development
of the sum (5.2)+ (5.3):

(5.2)+ (5.3) =
∫ t

0
E[h(ZN)i

√
N{(uN − u)(θ1b

′
u + θ2f

′
u)+ (VN − V )(θ1b

′
v + θ2f

′
v)}] ds

+ εN(t, θ),

where we have dropped the s, and where b′u, b′v , f ′u, and f ′v are taken at XN(s).
Noting that h(ZN)i

√
N(uN −u) = h′x(ZN) and h(ZN)i

√
N(VN −V ) = h′y(ZN), we have

(5.2)+ (5.3) =
∫ t

0
E[h′x(ZN)(θ1b

′
u + θ2f

′
u)+ h′y(ZN)(θ1b

′
v + θ2f

′
v)] ds.

The term in (5.4) converges to 0 as N → ∞ by dominated convergence since K(u)/u2 is
bounded and converges to 0.

As we have the convergence in Theorem 2.1 of XN to X, we obtain the convergence of
φN(t, θ) to �(t, θ), satisfying

∂�

∂t
(t, θ) = −1

2
θ2

1λ(X(t))�(t, θ)+ (θ1b
′
u(X(t))+ θ2f

′
u(X(t)))

∂�

∂θ1

+ (θ1b
′
v(X(t))+ θ2f

′
v(X(t)))

∂�

∂θ2
.

Tightness stems from the Markov property and the following estimate obtained in the proof
of Theorem 2.1:

P

[
sup

0≤t≤T
‖√N [VN(t)− v(t)]‖2 +

q∑
j=1

‖√N [e(j)N (t)− g(j)(t)]‖2 > �

]

≤ exp

(
− (�/N)Ne−B(T )T

CT

)
.

The announced convergence in law follows.
To solve the partial differential equation, we set �(t, θ) = exp(θ2

1A(t) + θ1θ2C(t) +
θ2

2B(t)). Then, substituting into the initial equation, and identifying the coefficients, we obtain
system (5.1).
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Proof of Theorem 2.3. (This proof is inspired from [9].) The convergence ofXN toX almost
surely (a.s.), uniformly on finite time intervals, obtained in Theorem 2.1, implies that τN → τ

a.s. In order to apply Theorem 2.2, let us introduce ZN through the following decomposition:

√
N(φ(X(τ))− φ(X(τN))) =

√
N

[
φ

(
X(τN)+ 1√

N
ZN(τN)

)
− φ(X(τN))

]
−√Nφ(XN(τN)),

where we have used the fact that φ(X(τ)) = 0. As N →∞, we claim that the right-hand side
converges in law to ∇φ(X(τ))Z(τ) since

√
Nφ(XN(τN)) converges in law to 0. Indeed, as

φ(XN(τN)) ≤ 0 and φ(XN(τ
−
N )) ≥ 0,

|√Nφ(XN(τN))| ≤ |
√
N(φ(XN(τN))− φ(XN(τ−N )))|.

There exists θN on the line between XN(τN) and XN(τ
−
N ) such that

|√N(φ(XN(τN))− φ(XN(τ−N ))| = |∇φ(θN)(ZN(τN)− ZN(τ−N ))|,
which converges in law to 0 since ZN → Z and Z is continuous. The claim follows. By
continuity, φ(X(τ)) = 0, so that

√
N(φ(X(τ))− φ(X(τN))) is asymptotic to

−∇φ(X(τ))F (X(τ))√N(τN − τ).
Thus,

√
N(τN − τ) converges in law to π(τ). To complete the proof, we remark that

√
N(XN(τN)−X(τ)) = ZN(τN)+

√
N(X(τN)−X(τ)),

which converges in law to Z(τ)+ π(τ)F (X(τ)).
5.2. Langevin approximation

In this case Theorem 2.4 can be written as follows. Let (VN, uN) be the solution of the
stochastic model (SN). Then, the process

RN(t) =
√
N

(
uN(t)− uN(0)−

∫ t

0
b(uN(s), VN(s)) ds

)
converges in law, as N →∞, towards the process R(t) defined as a stochastic integral:

R(t) =
∫ t

0

√
(1− u(s))α(V (s))+ u(s)β(V (s)) dBs,

where B is a standard Brownian motion and (u(t), V (t)) is the unique solution of

V̇ = f (V, u), u̇ = (1− u)α(V )− uβ(V ),
u(0) = u0 = uN(0), V (0) = V0 = VN(0), for all N.

This result provides the following degenerate diffusion approximation (ṼN , ũN ) for sufficiently
large N :

dṼN (t) = f (ṼN(t), ũN (t)) dt,

dũN (t) = [(1− ũN (t))α(ṼN (t))− ũN (t)β(ṼN (t))] dt + σN(ũN(t), ṼN (t)) dBt ,

σN(u)
2 = 1

N
[(1− u)α(v)+ uβ(v)] = 1

N
λ(v, u).

https://doi.org/10.1239/aap/1282924062 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924062


Fluid limit theorems for stochastic hybrid systems 789

Let

g(u, v) = λN(u, v)
[

1

N2µ
+(u, v)+ 1

N2µ
−(u, v)

]
= (1− u)α(v)+ uβ(v).

Note that in the multidimensional case, the real-valued function g above becomes a d × d
matrix. Since the different channel types j are supposed to be independent, this matrix would be
block diagonal, with blocks of size rj , thus assuring the independence of the q (rj -dimensional
Brownian motions) W(j). The blocks of size rj are given by the matrix G(j), and arise from
the calculation of the covariances:

G
(j)
i,k (x) = NλN(x)

∫
E

zizkµN(x, z) dz.

Proof of Theorem 2.4. The tightness property follows from the inequality

P
[

sup
s≤T
|RN(s)| > δ

]
≤ TN

δ2 ‖g‖∞.

Just as in the proof of Theorem 2.2, let us define φN(t, θ) = E[eiθRN (t)], the characteristic
function of RN . Let h(MN(t)) = eiθRN (t),

√
NMN(t) = RN(t), ψ(u) = (eiu − 1 − iu +

u2/2)/u2, and ξ(u) = eiu − 1− iu = u2ψ(u)− u2/2. We then have

φN(t, θ)− 1 = E[h(MN(t))] − h(0)
=

∫ t

0
E

[
λN(s)

∫
EN

h(w − uN(s)+MN(s))− h(MN(s))

− (w − uN(s))h′(MN(s))µN(s, dw)

]
ds

=
∫ t

0
E

[
eiθRN (s)λN(s)

∫
EN

ξ(θ
√
N(w − uN(s)))µN(s, dw)

]
ds

= −
∫ t

0
E

[
1

2
eiθRN (s)λN(s)

∫
EN

Nθ2(w − uN(s))2µN(s, dw)

]
ds

+
∫ t

0
E

[
eiθRN (s)λN(s)

∫
EN

Nθ2(w − uN(s))2

× ψ(√Nθ(w − uN(s)))µN(s, dw)

]
ds,

where λN(s) stands for λN(uN(s), VN(s)) and µN(s, dw) stands for µN(uN(s), VN(s), dw).
The second term in the last equality, call it KN(θ), converges to 0 as N → ∞ by dominated
convergence, and because ψ(

√
Nθ(w − uN(s))) = ψ(±θ/

√
N) → 0 as limu→0ψ(u) = 0.

So we have

φN(t, θ)− 1 = −
∫ t

0
E

[
1

2
eiθRN (s)θ2g(uN(s), VN(s))

]
ds +KN(θ)

= −1

2

∫ t

0
θ2g(u(s), V (s))φN(s, θ) ds

+ 1

2

∫ t

0
θ2 E[(g(u(s), V (s))− g(uN(s), VN(s)))eiθRN (s)] ds +KN(θ).
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Again, the second term in the last equality, call it JN(θ), converges to 0 asN →∞, because
of the convergence of uN and VN to u and V (cf. Theorem 2.1).

By Gronwall’s lemma we conclude that φN(t, θ)→ φ(t, θ) with

φ(t, θ) = exp

(
−1

2
θ2

∫ t

0
g(u(s), V (s)) ds

)
.

Proof of Theorem 2.5. We want to prove that the process Z has the same law as the limit
as N → ∞ of the difference between the Langevin approximation linearized around the
deterministic solution and the deterministic solution itself, scaled by

√
N . We write it in the

general case, not in dimension two only, as above. First we identify the equations satisfied by
the moments of Z starting from the equation satisfied by the characteristic function. We make
the ansatz

ψ(t, θ) = e−θ�(t)θ�/2.

The matrix �t corresponds to the variance/covariance matrix. We substitute this expression
into the equation satisfied by ψ as given in Theorem 2.2:

∂�

∂t
=

q∑
j=1

{∑
l∈L

rj∑
k=1

θ
(j)
k

∂b
(j)
k

∂xl

∂�

∂θl
− 1

2

rj∑
k,l=1

θ
(j)
k θ

(j)
l G

(j)
k,l �

}

+
p∑

m=1

∑
l∈L

θm
∂f m

∂xl

∂�

∂θl
.

The ensemble of indices L can be written as L = Lv ∪ Lu, where Lv = {1 ≤ m ≤ p}
and Lu = {(j, k); 1 ≤ j ≤ q, 1 ≤ k ≤ rj }. To identify the equations satisfied by �ab, we
distinguish the following cases:

• for a ∈ Lv and b ∈ Lv ,

1

2
�′ab =

∑
l∈L

[
∂f a

∂xl
�bl + ∂f

b

∂xl
�al

]
;

• for a ∈ Lv and b ∈ Lu, b = (j, k),

1

2
�′ab =

∑
l∈L

[
∂b
(j)
k

∂xl
�al + ∂f

a

∂xl
�bl

]
;

• for a ∈ Lu, a = (j, k), and b ∈ Lv ,

1

2
�′ab =

∑
l∈L

[
∂b
(j)
k

∂xl
�bl + ∂f

b

∂xl
�al

]
;

• for a ∈ Lu, a = (j, k), and b ∈ Lv, b = (j ′, k′),

1

2
�′ab =

∑
l∈L

[
∂b
(j)
k

∂xl
�bl + ∂bj

′,k′

∂xl
�al

]
+ 1

2
G
(j)

k,k′ 1{j=j ′} .
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We then write the equations satisfied by K(N)(t) = √N(X̃N(t)−X(t)) = (YmN , P j,kN ),
where X̃N is the Langevin approximation defined in Section 2.4, and where X is the deter-
ministic limit:

dYmN =
√
N(fm(X̃N)− f m(X)) dt,

dP j,kN =
√
N(b

(j)
k (X̃N)− b(j)k (X)) dt + σ (j)(X̃N) dWj

t .

When we linearize around the deterministic solution, we obtain the following equations:

dỸ mN =
∑
l∈L

∂f m

∂xl
K
(N)
l dt,

dP̃ j,kN =
∑
l∈L

∂b
(j)
k

∂xl
K
(N)
l dt +

( rj∑
k′=1

σ
(j)

k,k′(X)+
1√
N
�
(j)

k,k′

)
dWj,k′

t ,

where the terms�(j)
k,k′/
√
N come from the linearization of σ (j)

k,k′(X̃N); we do not need to specify
them here because they go to 0 as N →∞.

It is now clear that the moment equations for this linear diffusion system converge to the
system satisfied by �ab as N →∞.

Appendix A. Comparison between two deterministic limits of different stochastic
Hodgkin–Huxley models

We want to compare the two following deterministic systems, with f, α, β continuously
differentiable functions, α and β nonnegative, and k an integer greater than or equal to 1:

dV

dt
= f (V, uk), du

dt
= (1− u)α(V )− uβ(V ), (A.1)

dV̂

dt
= f (V̂ , xk),

dxj
dt
= (k − j + 1)xj−1α(V̂ )+ (j + 1)xj+1β(V̂ )− xj (jβ(V̂ )+ (k − j)α(V̂ ))

(A.2)

for all 0 ≤ j ≤ k.
System (A.1) corresponds to the classical ‘Hodgkin–Huxley’model, with only two variables

for simplicity, and system (A.2) is a (k + 2)-dimensional system, where xj , 0 ≤ j ≤ k, is the
proportion of channels in state j , and j = k is the open state.

Proposition A.1. Let V0 ∈ R and u0 ∈ [0, 1]. If the following conditions on the initial values
are satisfied:

V (0) = V̂ (0) = V0

and C
j
k u(0)

k−j (1− u(0))j = xk−j (0) = Cjk uk−j0 (1− u0)
j for all 0 ≤ j ≤ k,

then, for all t ≥ 0, V (t) = V̂ (t) (same potential) and u(t)k = xk(t) (the proportion of open
channels is u(t)k).

Moreover, for all 1 ≤ j ≤ k and all t ≥ 0, xk−j (t) = Cjk u(t)k−j (1− u(t))j .

Proof. Consider (V , u) to be the unique solution of (A.1) for V (0) = V0 and u(0) = u0.
Let yj (t) = Cjk u(t)k−j (1− u(t))j , 0 ≤ j ≤ k. Then (V , yk, . . . , y0) is a solution of (A.2)

https://doi.org/10.1239/aap/1282924062 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924062


792 K. PAKDAMAN ET AL.

(we just need to compute y′j and write it as a function of yj−1 and yj+1). As the initial
values are equal (by hypothesis), xk−j (0) = Cjk uk−j0 (1− u0)

j = yk−j (0) and, by uniqueness,
(V , yk, . . . , y0) = (V̂ , xk, . . . , x0) for all t ≥ 0.

Remark. The result is essentially the same for more complicated Markov schemes (e.g. the
sodium multistate Markov model).

Appendix B. Moment equations for the linearized Langevin approximation

From Theorem 2.2 we can build a diffusion approximation (ṼN , ẽN ) of the stochastic hybrid
process (VN, eN) given in the Example 2.1:

dṼN (t) = f (ṼN(t), ẽN (t)) dt,

dũN (t) = b(ũN (t), ṼN (t)) dt +
√
λ(ũN(t), ṼN (t))

N
dBt ,

b(v, u) = [(1− u)α(v)− uβ(v)],
λ(v, u) = [(1− u)α(v)+ uβ(v)].

We want to write the moment equations for the linearized version of(
P̃N

ỸN

)
=

(√
N(ẽN − e)√
N(ṼN − V )

)
with (V , e) being the deterministic solution. The linearized equations are given by

dYLN = (f ′V YLN + f ′uPLN ) dt,

dPLN = (b′V YLN + b′uPLN ) dt +
[√
λt + 1

2
√
Nλt

(λ′V YLN + λ′uPLN )
]

dBt ,

with λt = λ(V (t), u(t)). We definemN1 = E[YLN ],mN2 = E[PLN ], SN1 = E[(YLN −m1)
2], SN2 =

E[(PLN −m2)
2], and CN12 = E[(YLN −m1)(P

L
N −m2)]. Then we have the following system of

five equations:

dmN1
dt
= f ′V m1 + f ′um2,

dmN2
dt
= b′Vm1 + b′um2,

dSN1
dt
= 2f ′V S1 + 2f ′uC12,

dSN2
dt
= 2b′uS2 + 2b′V C12 +

(√
λt + 1

2
√
Nλ

(λ′Nm1 + λ′em2)

)2

+
(

λ′V
2
√
Nλt

)2

S1 +
(

λ′u
2
√
Nλt

)2

S2 + 2
λ′V λ′u
4Nλt

C12,

dCN12

dt
= b′V S1 + f ′uS2 + (f ′V + b′u)C12.

At the limitN →∞, and withA = −2S2, B = −2S1, and C = −C12, this system is the same
as the one found in the application of Theorem 2.2 in Section 3.
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Appendix C. Moment equations for the Morris–Lecar system

The moment equations used in Sections 3.5.1 and 3.5.2 are the following linear nonhomo-
geneous system of differential equations:⎡

⎢⎢⎢⎢⎢⎢⎣

Sm
Sn
Sv
Cmv
Cnv
Cmn

⎤
⎥⎥⎥⎥⎥⎥⎦ = M(t)

⎡
⎢⎢⎢⎢⎢⎢⎣

Sm
Sn
Sn
Cmv
Cnv
Cmn

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

B1
B2
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

with

M(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
∂Fm

∂m
0 0 2

∂Fm

∂V
0 0

0 2
∂Fn

∂n
0 0 2

∂Fn

∂V
0

0 0 2
∂Fv

∂V
2
∂Fv

∂m
02
∂Fv

∂n
0

∂Fv

∂m
0

∂Fm

∂V

∂Fv

∂V
+ ∂Fm
∂m

0
∂Fv

∂n

0
∂Fv

∂n

∂Fn

∂V
0

∂Fv

∂V
+ ∂Fn
∂n

∂Fv

∂m

0 0 0
∂Fn

∂V

∂Fm

∂V

∂Fm

∂m
+ ∂Fn
∂n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where all the functions are evaluated at X(t) = (V (t),m(t), n(t)), the solution of (3.1)–(3.3),
and B1(t) = (1 − m(t))αm(V (t)) + m(t)βm(V (t)) and B2(t) = (1 − n(t))αn(V (t)) +
n(t)βn(V (t)).
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