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Wellbeing (WB) is a major topic of research across several scientific disciplines, partly driven by its strong
association with psychological and mental health. Twin-family studies have found that both genotype and
environment play an important role in explaining the variance in WB. Epigenetic mechanisms, such as DNA
methylation, regulate gene expression, and may mediate genetic and environmental effects on WB. Here,
for the first time, we apply an epigenome-wide association study (EWAS) approach to identify differentially
methylated sites associated with individual differences in WB. Subjects were part of the longitudinal survey
studies of the Netherlands Twin Register (NTR) and participated in the NTR biobank project between 2002
and 2011. WB was assessed by a short inventory that measures satisfaction with life (SAT). DNA methylation
was measured in whole blood by the Illumina Infinium HumanMethylation450 BeadChip (HM450k array)
and the association between WB and DNA methylation level was tested at 411,169 autosomal sites. Two
sites (cg10845147, p = 1.51 ∗ 10-8 and cg01940273, p = 2.34 ∗ 10-8) reached genome-wide significance
following Bonferonni correction. Four more sites (cg03329539, p = 2.76∗ 10-7; cg09716613, p = 3.23 ∗
10-7; cg04387347, p = 3.95 ∗ 10-7; and cg02290168, p = 5.23 ∗ 10-7) were considered to be genome-wide
significant when applying the widely used criterion of a FDR q value < 0.05. Gene ontology (GO) analysis
highlighted enrichment of several central nervous system categories among higher-ranking methylation
sites. Overall, these results provide a first insight into the epigenetic mechanisms associated with WB and
lay the foundations for future work aiming to unravel the biological mechanisms underlying a complex trait
like WB.
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Because of its strong associations, in individuals and in
society, with physical and mental health as well as economic
development, WB has become a topic of interest across
different scientific disciplines (Seaford, 2011; Steptoe et al.,
2014; Stiglitz et al., 2009). In general, WB is conceptualized
to include a continuous spectrum of positive feelings and
subjective life assessment that can be assessed with a series
of measures, such as SAT, happiness (HAP), and quality of
life (QoL).

Twin-family studies report that in the general popula-
tion, a substantial part of the variation in the different
measures of WB is explained by genetic differences between
individuals (Stubbe et al., 2005). A large meta-analysis (Bar-
tels, 2015) showed that the weighted average heritability for
WB was 36% (95% CI: 34–38, and for SAT 32% (95%
CI: 29–35). A multivariate twin-sibling study exploring the
etiology of the covariance among multiple WB indices re-
vealed that the genetic variance in the different measures
was explained by one underlying set of genes (Bartels &

Boomsma, 2009). These results also emphasize the impor-
tance of environmental factors in the variation of WB, and
a dynamic interplay between genes and environment is to
be expected for a complex trait like WB.

Epigenetic regulation of gene expression by mechanisms
such as DNA methylation may mediate the interplay be-
tween the genetic make-up of individuals and their expo-
sure to the environment (Bernstein et al., 2007; Rakyan
et al., 2011; Reik, 2007). Methylation changes can be caused
by external conditions, such as long-term stress exposure
(Klengel et al., 2014; Romens et al., 2015), (prenatal, mater-
nal) smoking exposure (Allione et al., 2015; Lee et al., 2015)

RECEIVED 11 September 2015; ACCEPTED 21 October 2015. First
published online 1 December 2015.

ADDRESS FOR CORRESPONDENCE: Bart Baselmans, Department of
Biological Psychology, VU University Amsterdam, Van der Boe-
chorststraat 1, 1081BT, Amsterdam, the Netherlands. E-mail:
b.m.l.baselmans@vu.nl

710

https://doi.org/10.1017/thg.2015.85 Published online by Cambridge University Press

http://dx.doi.org/10.1017/thg.2015.85
mailto:b.m.l.baselmans@vu.nl
https://doi.org/10.1017/thg.2015.85


Epigenome-Wide Association Study of Wellbeing

and dietary modifications at conception (Dominguez-salas
et al., 2014). There are no epigenetic studies of the as-
sociation between DNA methylation and WB, but some
epigenetic studies have been performed involving complex
traits related to WB. From twin studies, it is known that
there is a negative association between psychopathology
and WB, with the strongest association between WB and
anxiety/depression (Bartels et al., 2013). Epigenetic differ-
ences in candidate genes related to major depressive disor-
der (MDD) have been reported in multiple studies (Dalton
et al., 2014; Oh et al., 2015). Additionally, a DNA methyla-
tion EWAS of monozygotic twins discordant for adolescent
depression (Dempster et al., 2014) found two reproducible
differentially-methylated probes (DMPs) that were located
within STK32C, which encodes a serine/threonine kinase of
unknown function.

Here, we describe the first EWAS for WB performed in
a population-based sample from the NTR. Our aim was
to identify genomic locations where differences in DNA
methylation in blood level are associated with differences
in WB.

Methods
Subjects and Samples

The subjects in this EWAS participated in longitudinal sur-
vey studies conducted by the NTR (Van Beijsterveldt et al.,
2013; Willemsen et al., 2013) and in the NTR biobank
project (Willemsen et al., 2010). Peripheral blood samples
were drawn from the NTR participants in the morning af-
ter an overnight fast, and for biomarkers studies and for
DNA and RNA isolation (see Willemsen et al. (2013). In
3,264 peripheral blood samples from 3,221 participants,
genome-wide methylation probes were assessed. After qual-
ity control (QC) of the methylation data, 3,089 samples
from 3,057 participants were retained (for a detailed de-
scription of the QC procedures, see van Dongen, 2015, this
issue). For the present study, we included participants if
the following information was available: SAT score, and
good quality methylation data and data on white blood cell
counts, leaving 2,519 samples from 2,456 subjects for the
final analyses. The dataset included 606 complete MZ and
291 complete DZ pairs, 102 fathers of twins, 112 mothers
of twins, 15 siblings, and 2 spouses of twins.

All subjects provided written informed consent and
study protocols were approved by the Central Ethics Com-
mittee on Research, involving Human Subjects of the VU
University Medical Centre, Amsterdam, an Institutional Re-
view Board certified by the US Office of Human Research
Protections (IRB-2991 under Federal wide Assurance-3703:
IRB/institute codes, NTR 03-180).

Wellbeing

WB was assessed by a short inventory that measures SAT
(Diener et al., 1985). Data on SAT were collected in multi-

TABLE 1

Satisfaction with Life Scale (Diener et al., 1985)

Item

SAT item 1 In most ways my life is close to ideal
SAT item 2 The conditions of my life are excellent
SAT item 3 I am satisfied with my life
SAT item 4 So far I have gotten the most important things I want in life
SAT item 5 If I could live my life over, I would change almost nothing

ple NTR surveys. For the current study, data from surveys
6 (2002), 8 (2009), and 10 (2013) were analyzed. The SAT
scale consists of five items that have to be answered on a 7-
point scale ranging from 1 = strongly disagree to 7 = strongly
agree. A typical question included in this questionnaire is
‘If I could live my life over, I would change almost nothing’
(for all items, see Table 1). Internal consistency of the scale
was good with a Chronbach’s alpha of 0.86 and test–retest
scores in the range of 0.24 (over 16 years), to 0.54 (over 4
years) to 0.84 for a period of 2 weeks to 1 month (Fujita
& Diener, 2005). Within this NTR sample, the test–retest
scores were 0.53 between surveys 6 and 8 (7-year interval),
0.48 between surveys 6 and 10 (11-year interval), and 0.63
between surveys 8 and 10 (4-year interval), and the phe-
notypic correlation of SAT with an overall WB factor score
was 0.97. For individuals who completed surveys 6, 8, and
10, the WB score closest to the moment of blood draw was
selected.

Infinium HumanMethylation450 BeadChip Data

DNA methylation was assessed with the Infinium Human-
Methylation450 BeadChip Kit (Illumina, Inc.) (Bibikova
et al., 2011). 500ng of genomic DNA from whole blood
was treated by bisulfite using the Zymo Research EZ DNA
Methylation kit (Zymo Research Corp, Irvine, CA, USA)
following the standard protocol for Illumina 450K micro-
arrays, by the department of Molecular Epidemiology from
the Leiden University Medical Center (LUMC), the Nether-
lands. Subsequent steps (i.e., sample hybridization, staining,
scanning) were performed by the Erasmus Medical Center
micro-array facility, Rotterdam, the Netherlands. QC and
processing of the blood methylation dataset has been de-
scribed in detail previously (Van Dongen et al., 2015). A
number of sample-level and probe-level quality checks were
performed. Sample-level QC was performed using Methy-
lAid (van Iterson et al., 2014). Probes were set to missing
in a sample if they had an intensity value of exactly zero, or
a detection p value > .01, or a bead count < 3. After these
steps, probes that failed based on the above criteria in >5%
of the samples were excluded from all samples (only probes
with a success rate �0.95 were retained). Probes were also
excluded from all samples if they mapped to multiple lo-
cations in the genome (Chen et al., 2013), or if they had
a SNP within the CpG site (at the C or G position) irre-
spective of minor allele frequency in the Dutch population
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(Genome of the Netherlands Consortium, 2014). Only au-
tosomal methylation sites were analyzed in the EWAS. The
methylation data were normalized with functional normal-
ization (Fortin, 2014), and normalized intensity values were
converted into beta (�) values. The � value represents the
methylation level at a site, ranging from 0 to 1, and is cal-
culated as:

� = M

M + U + 100

where M = Methylated signal, U = Unmethylated signal,
and 100 represents a correction term to control the � value
of probes with very low overall signal intensity. After QC
and normalization, principal component analysis was con-
ducted on genome-wide methylation sites.

Covariates

White blood cell percentages were included as covariates
in the EWAS to account for variation in cellular compo-
sition between whole blood samples. The following sub-
types of white blood cells were counted in blood cells:
neutrophils, lymphocytes, monocytes, eosinophils, and ba-
sophils (Willemsen et al., 2013). Because of its strong cor-
relation with neutrophil counts (r = −0.93), lymphocyte
counts were not included in the model, while basophil
counts were not included because they showed little vari-
ation between subjects (many subjects having 0% of ba-
sophils in their blood). Inspection of the PCs that were
computed on the genome-wide methylation data indicated
that PC1 reflected, as expected, sex (r = 0.99), PC 2 showed a
strong correlation with lymphocyte percentage (r = −0.8)
and neutrophil percentage (r = 0.79). Additionally, PC3
showed a modest correlation with age (r = −0.41) and a
weak correlation with white blood cell percentages (abso-
lute r �0.1). However, it is possible that this PC is reflective
of unmeasured white blood cell subtypes and was there-
fore included in the model. Because of their correlation
with several lab procedures, such as sample plate and order
of processing, PC4 and PC5 were included to account for
technical variability (for a graphical representation of the
included PCs, see Supplemental Figure S1).

Epigenome-Wide Association Analysis

Using generalized estimation equation (GEE) models, we
tested whether DNA methylation was associated with WB
for each methylation site, with DNA methylation � value as
outcome variable and the following predictors: WB score,
sex, age at blood sampling, age squared, monocyte percent-
age, eosinophil percentage, neutrophil percentage, HM450k
array row, and principal components (PCs) 3, 4, and 5 from
the methylation data. Age squared was included as a co-
variate as several studies suggest a U-shaped relationship
between WB and age, with the lowest point approximately
in midlife (Blanchflower & Oswald, 2008; Layard, 2010).
GEE models were fitted with the R package gee, with the

following specifications: Gaussian link function (for con-
tinuous data), 100 iterations, and the ‘exchangeable’ option
to account for the correlation structure within families and
within persons.

FDR q value was computed with the R package q value
with default settings. The genomic inflation factor (�) was
calculated with the default regression method from the R
package GenABEL. In all analyses, an FDR q value<0.05 was
considered statistically significant (Benjamini & Hochberg,
1995). Additionally, a more stringent Bonferonni correction
was applied by dividing 0.05 by the number of observations
(N = 411,169). Follow-up analyses, including a test for
enrichment of genomic locations and gene ontologies, were
performed based on the output from the EWAS.

Genomic Annotation

As described in detail by Slieker et al. (2013), methylation
sites were mapped to genomic features and DNase I hyper-
sensitive sites (DHS). These genomic features consists of five
gene-centric regions: (1) intergenic regions (>10 kb to -1.5
kb from the nearest transcription start site [TSS]), (2) prox-
imal promotor (−1.5 kb to +500 kb form the nearest TSS),
(3) distal promotor (−10 kb to −1.5 kb from the nearest
TSS), (4) gene body (+500bp to 3′ end of the gene) and (5)
downstream region (3′end to +5 kb from 3′end). Addition-
ally, CpG were mapped to CG island (CGIs; CG content >

50%, length > 200bp, and observed/expected ratio of CpGs
> 0.6), CGI shore (2 kb region flanking CGI), CGI shelf (2
kb region flanking CGI shore), or non-CGI regions. Locates
were obtained from the UCSC genome browser (Kent et al.,
2002). DHS locations, mapped by the ENCODE project
(The ENCODE Project Consortium, 2012) were also down-
loaded from the UCSC genome browser (Kent et al., 2002).

Enrichment of Genomic Locations

To test whether specific genomic locations showed a
stronger association between DNA methylation and WB,
eight categories were tested for being enriched using the
EWAS test statistics for all genome-wide methylation sites
The locations tested were: (1) gene body, (2) proximal pro-
moter, (3) distal promoter, (4) downstream region, (5) CGI,
(6) CGI shore, (7) CGI shelf, and (8) DHS. To account for
differences in variability between methylation sites we also
included the mean and standard deviation of DNA methy-
lation level in the model as covariates. For a detailed de-
scription of the method used for this analysis, see also Van
Dongen et al. (2015), published in this issue.

Enrichment of the Gene Ontology Terms

Methylation sites with a stronger association with WB were
tested for enrichment of GO terms. To do so, all methylation
sites that were tested were ranked by EWAS p value and the
resulting ranked gene list was supplied to the online soft-
ware tool GOrilla (Eden et al., 2009). GOrilla performs GO
enrichment analyses based on gene rank, and therefore no p

712 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2015.85 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2015.85


Epigenome-Wide Association Study of Wellbeing

TABLE 2

Characteristics of the Wellbeing Data

Wellbeing Age at survey Age at blood sampling

Data N Mean Median SD Min Max Mean Median SD Mean Median SD

Survey 6 10087 26.62 28 5.26 5 35 39.44 34.00 14.35
Survey 8 19746 27.22 29 5.32 5 35 40.41 39.94 16.32
Survey 10 11604 26.80 28 5.24 5 35 44.42 47.00 17.49
EWASa 2519 27.02 29 5.46 5 35 38.30 35.33 13.53 36.79 33.10 13.01

Note: aIncludes individuals with 450k methylation data and data on white blood cell counts.

FIGURE 1

(Colour online) Quantile–quantile (QQ) plot from the EWAS of wellbeing.
Note: The observed p values (y-axis) are plotted against the p values expected under the null hypothesis (x-axis). The straight diagonal
line denotes the pattern that is expected under the null hypothesis, with 95% confidence intervals indicated by the shaded grey area.

value cut-off for defining the input list of genes is required.
The background in this analysis consisted of all genes for
which methylation sites were analyzed in the EWAS. In all
analyses, we accounted for multiple testing by controlling
the false discovery rate (FDR). An FDR q value < 0.05 was
considered statistically significant.

Results
Characteristics of the Study Sample

Data on WB were available for 1,747 individuals who filled
out survey 6, 2,056 individuals who filled out survey 8,
and 1,059 individuals who filled out survey 10. The EWAS
was performed on 2,519 blood samples from 2,456 sub-
jects (mean age at blood sampling = 36.8 years, SD = 13%
male = 31.1), for which the WB score closest to the mo-
ment of blood draw was selected: For 1,799 samples, WB
was assessed after blood draw (mean 3.1 years), and for 720
samples, WB was assessed before blood drawn (mean 2.5
years). Table 2 summarizes the characteristics of the WB
data and EWAS study sample. The average WB score of the
EWAS study sample was comparable to the averages of the
different survey waves (mean EWAS study = 27.0, mean

survey 6 = 26.8, mean survey 8 = 27.5, mean survey 10 =
27.0), and was also comparable to the mean of the over-
all NTR survey database SAT score (26.9, n = 38,740).
(For a distribution of the WB data, see Supplementary
Figure S1).

EWAS

After QC, we tested 411,169 autosomal sites in the genome
for their association between DNA methylation and
WB score, while correcting for white blood cells counts,
age at blood sampling, age squared, sex, array row and
three PCs from the methylation data. Figure 1 shows the
Quantile–Quantile (QQ) plot. The genomic inflation
factor (�) was 1.227.

Two of the methylation sites reached the genome wide
significant threshold of p=1.22∗10-7 when Bonferroni cor-
rected and six of the methylation sites reached genome sig-
nificance when using a threshold of FDR q value < 0.05 (p =
5.23 ∗ 10-7; Figure 2). The highest ranking methylation site
was cg10845147 (UCSC Genome Browser hg19 assembly;
p = 1.51 ∗ 10-8), located on chromosome 5: 172149624,
which was negatively associated with WB (Figure 3a).
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TABLE 3

Top-Ranking CpG Sites From the EWAS of Wellbeing

Distance gene Mean SD
Position (Nearest) from each methylation methylation

CpG site Chr (hg19) gene name site (bps) levela levela Estimateb Robust SEc p value

cg10845147 5 172149624 DKFZP761M1511 491642 0.69 0.04 -0.00072 1.27 e-04 1.51 e-08

cg01940273 2 233284934 ALPPL2 874220 0.66 0.05 0.00101 1.80 e-04 2.33 e-08

cg03329539 2 233283329 ALPPL2 874220 0.45 0.05 0.00065 1.27 e-04 2.76 e-07

cg09716613 13 33000534 CG018 572356 0.27 0.04 -0.00052 1.02 e-04 3.23 e-07

cg04387347 16 88537187 ZFPM1 171 0.22 0.05 -0.00075 1.48 e-04 3.94 e-07

cg02290168 1 151255971 ZNF687 25647 0.12 0.02 0.00030 5.98 e-05 5.23 e-07

Note: Top hits from the EWAS for the association between methylation and wellbeing. aMean and standard deviation of the methylation proportion (�-value) in
the entire 450K cohort. bEstimate from the regression of methylation proportion on wellbeing score. cRobust standard error of the estimate (accounting
for the clustering of observations within families).

FIGURE 2

(Colour online) Manhattan plot showing the p values for the association between wellbeing and DNA methylation level at genome-wide
autosomal sites.
Note: The horizontal grey line represents the Bonferroni-adjusted p value threshold. The blue horizontal line represents the FDR q value
<0.05.

The nearest gene associated with this site is the DK-
FZP761M1511 gene (synonym is NEURL1B). This gene
spans 50,274 bps of chromosome 5 and ranges from
172641266 to 172691540. The other site reaching Bon-
ferroni genome-wide significance is cg01940273 (p =
2.34 ∗ 10-8), located on chromosome 2:233284934, which
showed a positive relationship between DNA methylation
and WB (Figure 3b). The gene closest located to this site
is the ALPPL2 gene, which ranges from chromosome
2:232406843 to 2: 232410714 (3871 bps) (Supplementary
Figure S2). The four additional CpG sites that were
genome-wide significant using FDR q value < 0.05 are
cg03329539 (p = 2.76∗ 10-7, chromosome 2), cg09716613
(p = 3.23 ∗ 10-7, chromosome 13), cg04387347 (p = 3.95
∗ 10-7, chromosome 16), and cg02290168 (p = 5.23 ∗
10-7, chromosome 1). The significant CpG sites located
on chromosomes 1 and 2 were positively associated with
WB, whereas the CpG sites located on chromosomes 13
and 16 were negative associated with WB. Characteristics
of genome-wide significant methylation sites as well as the
location of the nearest genes are provided in Table 3.

Next, we looked at the association with WB for all CpGs
in relatively close proximity (within 10 kb) of each signifi-
cant CpG site (for an overview of all CpG sites located within

this window and their p value and regression coefficient, see
Supplementary Table S1). For the highest ranked CpG site
(cg10845147, chromosome 5), CpG site cg07853407 was
located closest at 2563 bp. This side showed no associa-
tion with WB (p = 8.17 ∗ 10-1, �-1.22 ∗ 10-5). The two
genome-wide significant CpG sites on chromosome 2 were
located within 1,606 bp from each other. Within this win-
dow, five additional probes were measured. All of these
probes showed a change in methylation in the same direc-
tion of association with WB (see Supplementary Table S1).
On chromosome 13, CpG site cg12054869 was located clos-
est to the significant CpG site (cg09716613) at 716 bp, while
for chromosome 16, the CpG site located most closely to
the leading CpG site cg04387347 was located 73 bp away.
Finally, the CpG site located closest to the leading CpG site
at chromosome 1 was cg01062937, 668 bp away. For each
of these probes, the regression coefficient for WB indicated
a similar direction of effect as the significant probe in that
specific region.

Enrichment of Genomic Locations

Table 4 shows the results of the regression of the EWAS test
statistics on annotation categories across all genome-wide
sites. Enrichment of signal was seen in the gene body (p =
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TABLE 4

Results From the Regression of EWAS Test Statistics on Genomic
Annotation Categories

Regression parameter Estimate SE t value p value

Intercept 1.110 0.012 85.59 0
Gene body 0.035 0.008 4.35 1.34 ∗ 10-5

Proximal promotor 0.077 0.009 8.63 6.01 ∗ 1018

Distal promotor 0.009 0.014 0.60 .54
Downstream region 0.022 0.021 1.05 .29
DNase I hypersensitive site (DHS) 0.048 0.006 7.57 3.68 ∗ 10-14

CGI shore 0.048 0.008 6.12 9.26 ∗ 10-10

CGI shelf 0.002 0.010 0.23 .82
CpG island 0.001 0.008 0.06 .94
Mean methylation levela -0.086 0.011 -7.75 9.13 ∗10-15

SD methylation levelb 3.57 0.182 19.64 6.63 ∗ 10-86

Note: aMean methylation level of the site. bStandard deviation of the methylation
level. Results based on jackknife are presented in Supplementary Table 2.

FIGURE 3

Scatterplots for the two top CpGs based on the entire NTR study sample. (a) The relationship between WB and methylation level of
CpG site cg10845147. (b) The relationship between WB and methylation level of CpG site cg01940273.
Note: Wellbeing scores are plotted against methylation level.
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1.34 ∗ 10-5), proximal promoters (p = 6.01 ∗ 10-18), CGI
shores (p = 9.26 ∗ 10-10), and DHS (p = 3.68 ∗ 10-14). CpG
sites with a lower mean methylation level, showed, on aver-
age, a stronger association with WB (p = 9.13 ∗ 10-15). To
account for the fact that the errors in this regression are not
normally distributed, jackknife standard errors were com-
puted, but this analysis led to the same conclusions as the
normal linear regression standard errors (see Supplemen-
tary Table S2). These findings indicate that methylation sites
associated with WB are enriched in gene bodies promoter
areas and other regions of regulatory active DNA.

Gene Ontology Analysis

GO enrichment analysis based on EWAS p value rank
identified a large number of GO terms that were signif-
icantly enriched among higher ranked methylation sites.
The strongest enriched GO term were positive regulation
of biological processes (GO:0048518, p = 5.38 ∗ 10-21),
positive regulation of cellular processes (GO:0048522, p =
1.34 ∗ 10-16) and developmental processes (GO:0032502,
p = 2.38 ∗ 10-16). Also, many brain and central ner-
vous system processes, such as regulation of neurogenesis
(GO:0050767, p = 3.72 ∗ 10-12), neuron projector guidance
(GO:0097485, p = 5.77 ∗ 10-10), neurotrophic signaling
pathway (GO:0038179, p = 2.53 ∗ 10-8), as well as reg-
ulation of neuron differentiation (GO:0045664, p = 1.81
∗ 10-8), were significantly enriched among higher ranking
methylation sites (see Supplementary Table S3 for a com-
plete list of significant GO terms).

Discussion
By performing an epigenome-wide methylation analysis,
the aim of the present study was to identify genomic loca-
tions at which differences in DNA methylation level are as-
sociated with differences in WB in a population-based sam-
ple of adults. Six genome-wide significant hits were iden-
tified after correction for multiple testing (FDR q value <

0.05), while two hits remained significant after applying the
stricter Bonferonni correction. Annotation analysis showed
that enrichment of signal was seen in the gene body, prox-
imal promoters, CpG shores and DHS. GO analysis, which
tests categories of genes instead of single methylation sites,
revealed that genes involved in regulation of cellular pro-
cesses and central nervous system processes were enriched
among higher-ranking genes from our EWAS. Here, we de-
scribe the six CpGs that were genome-wide significant using
an FDR q value < 0.05. The gene located closest (at �500 kb
distance) to our top-ranked CpG site cg10845147 (genomic
location: chr5:172149624) is DKFZP761M1511 (synonym
is NEURL1B). NEURL1B (Neuralized E3 Ubiquitin Protein
Ligase 1B) is a ligase that is involved in the regulation of the
Notch pathway by influencing the stability and activity of
several Notch ligands. Notch pathways acts as a regulator
of cell survival and cell proliferation (Artavanis-tsakonas

et al., 1999; Miele & Osborne, 1999) and are suggested to
play a role in human mammary development (Dontu et al.,
2004). ENCODE data on transcription factor binding sites
(TFBS) and DHS were accessed through the UCSC genome
browser and showed that our top CpG, cg10845147, does
not overlap with a TFBS but is located within a DHS peak in
several cell types, suggesting that it is located within a reg-
ulatory region (ENCODE TFBS ChIP-seq data Mar 2012
Freeze).

The second- and third-ranked CpG sites (cg01940273,
location: chr2:233,284,934 and cg03329539, location:
chr:233283329) are approximately 875 kb located from the
nearest gene called alkaline phosphatase, placental-like 2
(ALLPL2). Alkaline phosphatases (ALPs) are responsible
for the dephosphorylation of various molecules, including
proteins, nucleotides or alkaloids. Circulating ALP con-
centration is associated with premature birth (Meyer et al.,
1995), and low birth weight (Brock & Barron, 1988). ALLP2
enzyme levels are increased up to 10-fold in 80% of cigarette
smokers (Koshida et al., 1990) and elevated in patients
with a number of cancers (Koshida et al., 1996). Both CpGs
found in our study have been associated with smoking
in several studies (Kleinschmidt et al., 2013; Philibert
et al., 2015; Tsaprouni et al., 2014). In those studies, it
was shown that methylation at multiple CpGs, including
our two CpGs, was decreased among heavy smokers,
but slowly increased among former smokers. Because of
their association with smoking, we tested whether adding
smoking as a covariate would alter the significance level
of the two CpGs. For both sites, the p values did not reach
the genome-wide significance threshold when adjusting
for smoking (cg01940273, p = 1.21 ∗ 10-5 and cg03329539,
p = 7.89 ∗ 10-5). Although no longer significant, the asso-
ciation with WB was reduced rather than fully attenuated
when correcting for smoking. The regression coefficient re-
mained in the same direction as before, suggesting a positive
relationship between WB and an increase in methylation.
A growing field of research has been focusing on the effects
of smoking cessation on WB. The general findings of these
studies are all pointing in the same direction: smoking
cessation improves WB. For instance, a study by Wilson
et al. (1999) found that light, moderate, and heavy smokers
scored significantly lower than never-smokers as well
as ex-smokers on the health-related quality-of-life scale
(HR-QoL), with the strongest difference between heavy
smokers and never-smokers. A similar finding was found
by Piper et al. (2012) and Shahab & West (2012), who found
that successful quitters reported improved subjective WB,
in contrast to continuing smokers, after one to three years.
Finally, the genes located nearby the other significant CpG
sites, were CGO18/N4BP2L1 (chromosome 13), ZFPM1
(chromosome 16), and ZNF687 (chromosome 1) and have
not been previously linked to WB or related phenotypes.

Additionally, we looked up the top three probes associ-
ated with depression as reported by Dempster et al. (2014),
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and the genes located most closely to these probes (DPYSL4,
STK32C, KIF13B, DUSP4, PQLC3, and KCNF1) to investi-
gate whether these genes are also associated with WB. The
six genes were located in close proximity to 341 probes in
our dataset, but none of these probes reach genome-wide
significance, with p values ranging from p = .001 to p = .99.
Also, alterations in DNA methylation of the BDNF path-
way have been associated with depression (Dalton et al.,
2014). However, the 80 probes lying in close proximity in
our dataset did not show an association with WB with p
values ranging from .003 to .99 (for a complete overview
see Supplementary Table S4).

A limitation of this study is that we did not have ac-
cess to a validation data set. Therefore, future studies are
warranted, especially for follow-up of the CpG sites that
reached genome-wide significance. Additionally, we lim-
ited this study to WB and did not consider other aspects of
behavior such as different personality traits or psychiatric
symptoms. Since WB is strongly associated with a wide
range of mental health diseases like depression or neu-
roticism, DNA methylation levels associated with WB as
measured in this study may be informative for associated
phenotypes. The ideal EWAS approach would therefore en-
compass WB and related phenotypes (e.g., different aspects
of personality and depression). Such an approach would
give insight into which methylation sites are common for
WB and its related phenotypes and which sites are specific
for WB.

In conclusion, this study provides the first genome-wide
methylation association study of WB. We found six genome-
wide significant DNA methylation sites of which two re-
mained significant after the more stringent Bonferonni cor-
rection. Once genetic variants have been identified for WB,
future studies that integrate both genetic and epigenetic
information are warranted to investigate the intriguing in-
terplay between genetic and environmental mechanisms in
a complex trait like WB.
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