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POLYNOMIALS
OF QUADRATIC TYPE PRODUCING STRINGS OF PRIMES

R. A. MOLLIN, B. GODDARD AND S. COUPLAND

ABSTRACT. The primary purpose of this paper is to provide necessary and sufficient
conditions for certain quadratic polynomials of negative discriminant (which we call
Euler-Rabinowitsch type), to produce consecutive prime values for an initial range of
input values less than a Minkowski bound. This not only generalizes the classical work
of Frobenius, the later developments by Hendy, and the generalizations by others, but
also concludes the line of reasoning by providing a complete list of all such prime-
producing polynomials, under the assumption of the generalized Riemann hypothesis
(GRH). We demonstrate how this prime-production phenomenon is related to the expo-
nent of the class group of the underlying complex quadratic field. Numerous examples,
and a remaining conjecture, are also given.

1. Introduction. In earlier work (see [3, Theorem 4.1.4, p. 110]), we were able
to provide necessary and sufficient conditions for the Euler-Rabinowitsch polynomial
F∆Ò1(x) (defined in Section 2) to generate primes for all nonnegative values of x less than a
Rabinowitsch bound when the discriminant ∆ is negative. This provided a generalization
of the well-known Rabinowitsch criterion for complex quadratic fields, and a class
number two criterion of Sasaki. Other class number two criteria in the literature for
∆ Ú 0 involve the more general q-th Euler-Rabinowitsch polynomials F∆Òq(x) (see
Section 2), for input values of x up to a Minkowski bound. The seminal works are those
of Frobenius and Hendy, which were later generalized by others (see [3, Chapter 4,
pp. 105–145] for a general overview). In this paper, we conclude this work by providing
a complete description of all such F∆Òq(x) (under the assumption of the GRH). We also
provide necessary and sufficient conditions for the prime-producing capacity of these
polynomials in terms of the exponent e∆, of the class group C∆, satisfying e∆ � 2. We
can establish the case where ∆ � 0 (mod 4), and pose a conjecture in the remaining
case. Examples are also provided to show that the bounds involved in both our criterion
and conjecture are the best possible (in the sense that they cannot be raised or lowered
by even a fraction of an integer without invalidating the results). We conclude with
substantial evidence for our remaining conjecture.

2. Notation and preliminaries. Suppose that D Ú 0 is a square-free integer. If we
set

∆ = 4DÛõ2Ò
where õ = 2 if D � 1 (mod 4) and õ = 1 otherwise, then ∆ is called a (fundamental
or field) discriminant with (fundamental or field) radicand D. If we denote a Z-module
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over K by
[ãÒ å] = ãZ + åZÒ

with ãÒ å 2 K = Q(
p

D) for a radicand D, then the maximal order or ring of integers of
K is given by

O∆ = [1Ò °∆]Ò
where

°∆ = (õ � 1 +
p

D)Ûõ
If ã 2 K, we use ã0 to denote the algebraic conjugate of ã, and N(ã) = ãã0 to denote
the norm of ã. An ideal of O∆ (called an O∆ ideal) can be written as

I = [aÒ b + c°∆]

where aÒ bÒ c 2 Z, with aÒ c Ù 0Ò cjaÒ cjb, and acjN(b + c°∆). Furthermore, if aÒ bÒ c 2 Z
with cjbÒ cja, and acjN(b + c°∆), then I = [aÒ b + c°∆] is an ideal of O∆. The ideal I is
called primitive if it has no rational integer factors other than š1, and then c = 1. The
norm of an ideal I = [aÒ b +°∆] is defined as N(I) = a, and the conjugate ideal is denoted
by I0 = [aÒ b+°0

∆]. If I = I0, then I is called an ambiguous ideal of O∆, and if I ¾ I0 (where
¾ denotes equivalence in the class group C∆ of O∆), then fIg is said to be an ambiguous
class of O∆ (where fIg denotes the class of I in C∆). The class number, or order of C∆,
is denoted by h∆. The exponent of C∆ is the least positive integer e∆ such that Ie∆ ¾ 1
for any fIg 2 C∆. In what follows, the symbol (ŁÛŁ) will denote the Kronecker symbol.
Note that throughout the paper we will use the phrase a split prime to mean an O∆-prime
P above p such that (∆Ûp) = 1, in other words, (p) = pO∆ = PP 0, with P 6= P 0. Finally,
in terms of notation, M∆ =

q
�∆Û3 will denote the Minkowski bound.

In the next section we will have need of the following to present the aforementioned
criterion.

DEFINITION 2.1. Let ∆ Ú 0 be a discriminant, and let q ½ 1 be a square-free divisor of
it. Set ã = 1 if 4q divides ∆ and ã = 2 otherwise. We define the q-th Euler-Rabinowitsch
polynomial to be

F∆Òq(x) = qx2 + (ã � 1)qx +
�
(ã � 1)q2 � ∆

�
Û(4q)

DEFINITION 2.2. If n =
Qt

i=1 pai
i is the canonical prime factorization of n 2 Z, then set

Ω(n) =
tX

i=1
ai

With Definition 2.1 in mind, we set:

F(∆Ò q) = max
n
Ω
�
F∆Òq(x)

�
: 0 � x � bj∆jÛ(4q) � 1c

o


This sets the stage for the statement of a result which follows from earlier work (see
[3, Theorem 4.1.5, p. 114]).This is a generalization of the Rabinowitsch criterion for
complex quadratic fields (see [3, Theorem 4.1.2, p. 108]).
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THEOREM 2.1. Let ∆ Ú �4 be a discriminant divisible by exactly N + 1 (N ½ 0)
distinct primes qi (1 � i � N + 1) with qN+1 being the largest. If q =

QN
i=1 qi, then the

following are equivalent:
(1) e∆ � 2.
(2) F(∆Ò q) = 1 and h∆ = 2N.

3. Prime producing quadratics. We begin by examining the consequences of the
consecutive prime producing capacity of the F∆Òq(x). The following generalizes results
of Hendy [2].

THEOREM 3.1. Let ∆ Ú �3 be a discriminant divisible by exactly N + 1 (N ½ 0)
distinct primes with qN+1 being the largest. If q =

QN
i=1 qi is the product of the remaining

prime divisors of ∆ (with q = 1 if N = 0), then (1) ) (2) in what follows:
(1) F∆Òq(x) is prime for all nonnegative x 2 Z with x Ú (M∆ � ã + 1)Ûã.
(2) e∆ � 2 and M∆ Ú qN+1.

PROOF. The result will follow from two claims, which we now prove.

CLAIM 1. If p Ú M∆ is any split prime, then there exists a nonnegative x Ú
(M∆ � ã + 1)Û2 such that p divides F∆Òq(x).

If p = 2, then x = 0 suffices, so we may assume that p Ù 2. Since (∆Ûp) = 1, then
there is a y 2 Z such that ∆ � y2 (mod p). Also, since p does not divide ∆, then we may
set z � yq�1 (mod p), so ∆ � q2z2 (mod p). Since we may assume that z = 2x + ã � 1,
then q2(2x + ã � 1)2 � ∆ (mod p), and we may assume without loss of generality
that 0 � 2x + ã � 1 Ú p (since we may take the least nonnegative residue modulo
p, and when ã = 2, we may assume that the residue is odd since p is odd). Hence,
0 � x Ú (M∆ � ã + 1)Û2. This secures Claim 1, since 4qF∆Òq(x) = q2(2x + ã � 1)2 � ∆.

By hypothesis (1) and Claim 1, F∆Òq(x) = p for any split prime p Ú M∆.

CLAIM 2. P ¾ Q where P lies over p and Q lies over q.

To see this, we merely form the ideal PQ = [pqÒ (b+
p

∆)Û2] where b = (2x+ã�1)q.
Therefore, by Claim 1, N

�
(b +

p
∆)Û2

�
= qF∆Òq(x) = pq. Hence, PQ =

�
(b +

p
∆)Û2

�
,

and so P ¾ Q . This secures Claim 2.
By Claim 2, P 2 ¾ 1, since Q is ambiguous, so e∆ � 2 by [3, Theorem 1.3.1, p. 15].

Now we show that M∆ Ú qN+1. Set x = (qN+1 � ã + 1)Ûã which is in Z. Therefore,
F∆Òq(x) = qN+1(qqN+1 + ãÛõ)Ûã2, which is composite since the hypothesis rules out
∆ = �3. Therefore, x Ù b(M∆ � ã + 1)Ûãc, by hypothesis (1). If M∆ Ù qN+1, then

x = (qN+1 � ã + 1)Ûã Ù b(M∆ � ã + 1)Ûãc Ù (M∆ � ã + 1)Ûã � 1

Ù (qN+1 � ã + 1)Ûã � 1 = x � 1Ò

(where bŁc denotes the greatest integer function). However, there cannot exist an integer
strictly between x and x � 1.
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The converse of Theorem 3.1 fails for ∆ � 1 (mod 4). For example, if ∆ = �195,
then bM∆c = 8, and qN+1 = 13. However, F∆Òq(3) = 11 Ð 17, where q = 15 and 3 Ú
(M∆ � ã + 1)Ûã. Nevertheless, the converse of Theorem 3.1 does hold for ∆ � 0

(mod 4).

THEOREM 3.2. If ∆ � 0 (mod 4), ∆ Ú �4, and N, q, qN+1 are as in Theorem 3.1,
then the following are equivalent:

(1) F∆Òq(x) is prime for all integers x with 0 � x Ú (M∆ � ã + 1)Ûã.
(2) e∆ � 2 and M∆ Ú qN+1.

PROOF. In view of Theorem 3.1, we need only prove that (2)) (1). If e∆ � 2, then by
Theorem 2.1, we have that F∆Òq(x) is prime whenever0 � x � j∆jÛ(4q)�1 = qN+1Ûã�1.
If b(M∆ � ã + 1)Ûãc Ù (qN+1 � ã + 1)Ûã � 1, then by hypothesis,

(qN+1 � ã + 1)Ûã Ù (M∆ � ã + 1)Ûã Ù b(M∆ � ã + 1)Ûãc
Ù (qN+1 � ã + 1)Ûã � 1Ò

a contradiction. Hence, b(M∆ � ã + 1)Ûãc � (qN+1 � ã + 1)Ûã � 1 � qN+1Ûã � 1, and
so (1) holds.

REMARK 3.1. We actually know all of the values of ∆ Ú 0 with e∆ = 2, under the
assumption of the GRH, from the work of Weinberger [4]. A complete list, with the
prime-producing capacity of F∆Òq(x), may be found in [3, Table 4.1.2, p. 113]. There are
fifty-six values in that table, and N � 4 for each of them. With the nine well-known
values for which h∆ = e∆ = 1, namely the case where N = 0 (from Baker, Heegener,
Stark), we have a total of sixty-five values of fundamental discriminants ∆ Ú 0 with
e∆ � 2.1 In other words, under the assumption of the GRH, we have a complete list of
all fundamental discriminants ∆ Ú 0 with e∆ � 2. We also know, unconditionally, all of
the values of ∆ Ú 0 for which h∆ = 4 from the work of Steve Arno (see [3, Chapter 4,
pp. 105–128] for background and an overview of the history of the solution of h∆ � 4
for ∆ Ú 0). In other words, we (unconditionally) know all fundamental discriminants
∆ Ú 0 with N � 2, having e∆ � 2. These values are as follows:

for h∆ = 1 (namely N = 0), and j∆j 2 f3Ò 4Ò 7Ò 8Ò 11Ò 19Ò 43Ò 67Ò 163g,
for h∆ = 2 (namely N = 1), and jDj in the following set:

f5Ò 6Ò 10Ò 13Ò 15Ò 22Ò 35Ò 37Ò 51Ò 58Ò 91Ò 115Ò 123Ò 187Ò 235Ò 267Ò 403Ò 427gÒ

and,
for h∆ = 4 (namely N = 2), and jDj in the following set:

f21Ò 30Ò 33Ò 42Ò 57Ò 70Ò 78Ò 85Ò 93Ò 102Ò 130Ò133Ò 177Ò 190Ò 195Ò 253Ò 435Ò
483Ò 555Ò 595Ò 627Ò 715Ò 795Ò 1435g

1 The interested reader may compare these values with the sixty-five values which are listed by Gauss, in
Disquisitiones Arithmeticae [1, Section 303], and called numeri odonei or convenient numbers by Euler, see
[3, p. 112–117, and pp. 347–354].

https://doi.org/10.4153/CMB-1997-026-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-026-5


218 R. A. MOLLIN, B. GODDARD AND S. COUPLAND

Therefore, the only remaining values with e∆ � 2 from the original sixty-five, for
which we need the GRH, are as follows:

for h∆ = 8 (namely N = 3), and jDj in the following set:

f105Ò 165Ò 210Ò 273Ò 330Ò 345Ò 357Ò 385Ò 462Ò 1155Ò 1995Ò 3003Ò 3315gÒ

and
for h∆ = 16 (namely N = 4), and ∆ = �1365.

Therefore, we may conclude that, if N � 2, then we know unconditionally the values
for which Theorem 3.2 holds. They are as follows:

for ∆ � 0 (mod 8), jDj 2 f6Ò 10Ò 22Ò 58Ò 78Ò 102Ò 190g, and
for ∆ � 4 (mod 8), jDj 2 f5Ò 13Ò 21Ò 33Ò 37Ò 57Ò 85Ò 93Ò 133Ò 177g.

In fact, the only other (known) value for which Theorem 3.2 holds is ∆ = �345,
where h∆ = 8. Therefore, if the class number 8 problem were ever solved for negative
fundamental discriminants, we would have an unconditional complete list of values for
which Theorem 3.2 holds (and given the current work of Arno and others, this may not
be far off indeed). Also, algebraically, the criterion in Theorem 3.2 is as tight as possible.
To illustrate this, we look at D = �130 for which we have bM∆c = 13 = qN+1, and it
is precisely for this value that (1) of Theorem 3.2 fails, since F∆Òq(x) = 10x2 + 13 and
F∆Òq(13) = 13 Ð 131. Thus, the bounds in Theorem 3.2 are the most precise possible, in
the sense that they are within a fraction of an integer from failing, as with D = �130. In
fact, F∆Òq(qN+1) is composite when ã = 1 (see the proof of Theorem 3.1).

Now we turn to a criterion for ∆ � 1 (mod 4).

CONJECTURE 3.1. If ∆ Ú 0 is a discriminant with NÒ q and qN+1 as in the hypothesis
of Theorem 3.1, then the following are equivalent:

1. F∆Òq(x) is prime whenever 0 � x Ú (M∆ � 1)Û2.
2. e∆ � 2 and M∆ Ú (qN+1 + 3)Û2.

REMARK 3.2. Conjecture 3.1 is valid if we assume the GRH (by Remark 3.1). Fur-
thermore, the bounds in Conjecture 3.1 are the most precise possible. To illustrate this
allegation, we let ∆ = �483, where q = 21, qN+1 = 23, and

F∆Òq(x) = 21x2 + 21x + 11

Here, 13 = (qN+1 + 3)Û2 Ù M∆ Ù (qN+1 + 2)Û2 = 125, and

F∆Òq(6) = F∆Òq

�
(qN+1 + 1)Û4

�
= 19 Ð 47

Yet, F∆Òq(x) is prime for all nonnegative integers x � 5 Ú (M∆ � 1)Û2 Ú 6. Hence
∆ = �483 is a counterexample to the possibility of lowering the bound in part 2 of
Conjecture 3.1 to (qN+1 + 2)Û2.

Now consider ∆ = �195 where q = 15, qN+1 = 13 and

F∆Òq(x) = 15x2 + 15x + 7

https://doi.org/10.4153/CMB-1997-026-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-026-5


QUADRATIC TYPE PRODUCING STRINGS 219

Here,

F∆Òq(3) = F∆Òq

�
(qN+1 � 1)Û4

�
= 11 Ð 17Ò

where 3 Ú (M∆ � 1)Û2. Since (qN+1 + 4)Û2 = 85 Ù M∆, then ∆ = �195 is a counterex-
ample to the possibility of raising the bound in part 2 of Conjecture 3.1 to (qN+1 + 4)Û2.
Hence, the bound in part 2 cannot be moved even half an integer in either direction. Not
often are mathematical bounds this demonstrably tight.

REMARK 3.3. We just miss being able to prove that (1) ) (2) of Conjecture 3.1
holds. We know that F∆Òq(n � 1) = n(nq � q + 1), where n = (q + qN+1)Û4. Therefore,
if (1) of Conjecture 3.1 holds, then (qN+1 + q)Û4 � 1 ½ (M∆ � 1)Û2. In other words,
(qN+1 + q)Û2 � 1 ½ M∆. However, we cannot get closer than this in general. Observe
that if h∆ = 2, then x = n � 1 is the first value for which F∆Òq(x) is composite for the
∆ listed in Remark 3.1. We note that, in fact, if M∆ Ú (qN+1 + 3)Û2, then h∆ � 4 from
the aforementioned listed values. However, we need the GRH to make this inference.
We also observe from the list that if M∆ Ú (qN+1 + 3)Û2 and h∆ � 4, then q = m2 + r
where jrj 2 f1Ò 2Ò 4g. If we could (unconditionally) verify that (1) of Conjecture 3.1
must imply this condition on q, then we would have a constructive proof that (1) ) (2).
For example, if q + 1 is a square, then

F∆Òq

�
(qN+1 � 1)Û4

�
= [(qN+1 + 1)Û4]2(q + 1) � [(qN+1 � 1)Û4]2

is a difference of squares, so M∆ � (qN+1 + 1)Û2. The values in Remark 3.1 for which
q + 1 is a square, ∆ � 1 (mod 4)Ò h∆ � 4, and M∆ � (qN+1 + 1)Û2, are those j∆j in the
following set:

f15Ò 51Ò 123Ò 267Ò 435Ò 555Ò 795g

In fact, we observe that

F∆Òq(n � 1) = F∆Òq

�
(qN+1 + q)Û4 � 1

�

=
h�

(qN+1 + q � 4)(q + 1) + 8
�
Û8
i2 � [(q � 1)(qN+1 + q � 4)Û8]2

Furthermore, each of the relevant values in Remark 3.1 first makes F∆Òq(x) composite for
an x value such that F∆Òq(x) is a difference of squares in a unique way depending upon
the aforementioned special shape for q. That this phenomenon even occurs is of interest
in its own right, so we tabulate the values below. The column labeled x0 represents the
smallest nonnegative value of x such that F∆Òq(x0) is composite. The column labeled
F∆Òq(x0) lists the value as a difference of squares, and the column labeled q lists it in its
special form m2 + r as above. A column for F∆Òq(x) is also given. To prove that q must
be of one of these special forms, say q = m2 � 4, we must verify that q = x0x1 where

x0 � x1 = 4, since
�
(x0 + x1)Û2

�2 �
�
(x0 � x1)Û2

�2
= q.
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j∆j x0 F∆q(x0) q qN+1 F∆q(x)
15 1 = (qN+1 � 1)Û4 32 � 12 3 = 22 � 1 5 3x2 + 3x + 2
35 2 = (qN+1 + 1)Û4 72 � 42 5 = 32 � 4 7 5x2 + 5x + 3
51 4 = (qN+1 � 1)Û4 92 � 42 3 = 22 � 1 17 3x2 + 3x + 5
91 4 = (qN+1 + 3)Û4 172 � 122 7 = 32 � 2 13 7x2 + 7x + 5
115 6 = (qN+1 + 1)Û4 192 � 122 5 = 22 + 1 23 5x2 + 5x + 7
123 10 = (qN+1 � 1)Û4 212 � 102 3 = 22 � 1 41 3x2 + 3x + 11
187 6 = (qN+1 + 7)Û4 372 � 302 11 = 32 + 2 17 11x2 + 11x + 7
235 12 = (qN+1 + 1)Û4 372 � 242 5 = 22 + 1 47 5x2 + 5x + 13
267 22 = (qN+1 � 1)Û4 452 � 222 3 = 22 � 1 89 3x2 + 3x + 23
403 10 = (qN+1 + 9)Û4 712 � 602 13 = 32 + 4 31 13x2 + 13x + 11
427 16 = (qN+1 + 3)Û4 652 � 482 7 = 32 � 2 61 7x2 + 7x + 17
435 7 = (qN+1 � 1)Û4 302 � 72 15 = 42 � 1 29 15x2 + 15x + 11
483 6 = (qN+1 + 1)Û4 332 � 142 21 = 52 � 4 23 21x2 + 21x + 11
555 9 = (qN+1 � 1)Û4 382 � 92 15 = 42 � 1 37 15x2 + 15x + 13
795 13 = (qN+1 � 1)Û4 542 � 132 15 = 42 � 1 53 15x2 + 15x + 17

What we have achieved is the first necessary and sufficient conditions (namely those
in Theorem 3.2 and Conjecture 3.1), since the earlier combined efforts of Hendy and
others cited above are insufficient to give the criterion.
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