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POLYNOMIALS
OF QUADRATIC TY PE PRODUCING STRINGS OF PRIMES

R.A. MOLLIN, B. GODDARD AND S. COUPLAND

ABSTRACT. Theprimary purpose of this paper isto provide necessary and sufficient
conditions for certain quadratic polynomials of negative discriminant (which we call
Euler-Rabinowitsch type), to produce consecutive prime values for an initial range of
input values less than a Minkowski bound. This not only generalizesthe classical work
of Frobenius, the later developments by Hendy, and the generalizations by others, but
also concludes the line of reasoning by providing a complete list of all such prime-
producing polynomials, under the assumption of the generalized Riemann hypothesis
(GRH). We demonstrate how this prime-production phenomenon is related to the expo-
nent of the class group of the underlying complex quadratic field. Numerous examples,
and aremaining conjecture, are also given.

1. Introduction. In earlier work (see [3, Theorem 4.1.4, p. 110]), we were able
to provide necessary and sufficient conditions for the Euler-Rabinowitsch polynomial
Fa.1(X) (definedin Section 2) to generate primesfor all nonnegativevaluesof x lessthana
Rabinowitsch bound when the discriminant A is negative. This provided ageneralization
of the well-known Rabinowitsch criterion for complex quadratic fields, and a class
number two criterion of Sasaki. Other class number two criteria in the literature for
A < 0 involve the more general g-th Euler-Rabinowitsch polynomials Fa o(X) (see
Section 2), for input values of x up to aMinkowski bound. The seminal works are those
of Frobenius and Hendy, which were later generalized by others (see [3, Chapter 4,
pp. 105-145] for ageneral overview). In this paper, we conclude this work by providing
acomplete description of all such Faq(x) (under the assumption of the GRH). We also
provide necessary and sufficient conditions for the prime-producing capacity of these
polynomials in terms of the exponent ex, of the class group Ca, satisfying ex < 2. We
can establish the case where A = 0 (mod 4), and pose a conjecture in the remaining
case. Examplesare also provided to show that the boundsinvolved in both our criterion
and conjecture are the best possible (in the sense that they cannot be raised or lowered
by even a fraction of an integer without invalidating the results). We conclude with
substantial evidence for our remaining conjecture.

2. Notation and preliminaries. Supposethat D < 0 is a square-freeinteger. If we
set
A=4D/o?,

wheres = 2if D = 1 (mod 4) and o = 1 otherwise, then A is called a (fundamental
or field) discriminant with (fundamental or field) radicand D. If we denote a Z-module
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over K by
[o. ] = Z + L.
with ., 3 € K = Q(+/D) for aradicand D, then the maximal order or ring of integers of
K isgiven by
OA = [1. wA].
where

wA:(o—1+\/5)/0.

If o € K, we use o to denote the algebraic conjugate of «, and N(«) = a’ to denote
the normof o. Anideal of O, (called an O, ideal) can be written as

| =[a b+ cwal

wherea. b, ¢ € Z, with a,¢ > 0. c|a. c|b, and ac|N(b + cwa). Furthermore, if a.b.c € Z
with c|b, c|a, and ac|N(b + cwp), then | = [a. b + cwa] isanideal of O,. Theideal | is
called primitive if it has no rational integer factors other than 1, and then ¢ = 1. The
normof anideal | =[a, b+w,a] isdefinedasN(I) = a, and the conjugateideal is denoted
by I’ = [a b+w)]. If I =1, then| iscaled an ambiguousideal of Oa, andif | ~ I” (where
~ denotesequivalencein the classgroup Cx of O,), then {1} is said to be an ambiguous
class of O, (where {1} denotesthe classof | in Cp). The class number, or order of Ch,
is denoted by ha. The exponent of C, is the least positive integer ey such that 192 ~ 1
for any {1} € Ca. In what follows, the symbol (x /) will denote the Kronecker symbol.
Note that throughout the paper we will use the phrase a split prime to mean an Ox-prime
P abovep suchthat (A/p) = 1, in other words, (p) = pOs = PP/, with P # P’. Finally,
in terms of notation, Ma = /—A/3 will denote the Minkowski bound.

In the next section we will have need of the following to present the aforementioned
criterion.

DEFINITION 2.1. LetA < Obeadiscriminant, andlet q > 1 beasquare-freedivisor of
it. Set o = 1if 4qdividesA and « = 2 otherwise. We define the g-th Euler-Rabinowitsch
polynomial to be

Fag() = 0 + (@ — )ax + ((a — 1)o? — A) / (4.
DEFINITION 2.2. If n=TI{_, p* isthe canonical prime factorization of n € Z, then set
t
Q) =>_a.
i=1
With Definition 2.1 in mind, we set:

F(8,q) = max{Q(Faq(x) : 0 < x < [|A[/(4q) — 1]}.

This sets the stage for the statement of a result which follows from earlier work (see
[3, Theorem 4.1.5, p. 114]).This is a generalization of the Rabinowitsch criterion for
complex quadratic fields (see [3, Theorem 4.1.2, p. 108]).
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THEOREM 2.1. Let A < —4 be a discriminant divisible by exactly N +1 (N > 0)
distinct primes ¢ (1 < i < N+ 1) with gu+1 being the largest. If g = TTY, g, then the
following are equivalent:

(1) en <2

(2) F(A.g) =1andhy = 2N,

3. Prime producing quadratics. We begin by examining the consequencesof the
consecutive prime producing capacity of the Fa 4(X). The following generalizes results
of Hendy [2].

THEOREM 3.1. Let A < —3 be a discriminant divisible by exactly N +1 (N > 0)
distinct primeswith qn+1 being the largest. If g = TTY, q is the product of the remaining
primedivisorsof A (withq = 1if N = 0), then (1) = (2) in what follows:

(1) Faq(x)isprimefor all nonnegativex € Z withx < (Ma — o + 1)/ c.
(2) ep <2andMp < On+1-

ProOF. Theresult will follow from two claims, which we now prove.

CLaim 1. If p < M, is any split prime, then there exists a nonnegative x <
(Ma — o + 1) /2 such that p divides Fa o(X).

If p =2, then x = 0 suffices, so we may assume that p > 2. Since (A/p) = 1, then
thereisay € Z suchthat A = y? (mod p). Also, since p does not divide A, then we may
setz=yq ! (mod p), soA = g?Z% (mod p). Since we may assumethat z = 2x+ o — 1,
then g?(2x + o — 1)> = A (mod p), and we may assume without loss of generality
that 0 < 2x+a — 1 < p (since we may take the least nonnegative residue modulo
p, and when o = 2, we may assume that the residue is odd since p is odd). Hence,
0 <X < (Ma— a+1)/2. Thissecures Claim 1, since 4qFa q(X) = g2(2x+ a — 1)2 — A,

By hypothesis (1) and Claim 1, Fa 4(x) = p for any split prime p < Ma.

CLAM 2. P ~Q whereP liesover pandQ liesover g.

To seethis, wemerely formtheideal PQ = [pg. (b+\/Z)/2] whereb = (2x+a—1)q.
Therefore, by Claim 1, N((b ++/A)/2) = qFaq(x) = pa. Hence, PQ = ((b +v/1)/2),
andsoP ~ Q . ThissecuresClaim 2.

By Clam2,P2 ~ 1, sinceQ isambiguous, so ey < 2 by [3, Theorem 1.3.1, p. 15].
Now we show that My < Qns1. Set X = (gns1 — @ + 1)/« which is in Z. Therefore,

Fag(¥) = ane1(qone1 + /) /o, which is composite since the hypothesis rules out
A = —3. Therefore, x > | (Ma — « + 1)/ «|, by hypothesis (1). If My > gn+1, then

X=(On—a+1)/a>|(Ma—a+l)/a|>Ma—a+1)/a—1
> (g —a+l)/a—1=x—1,

(where | * | denotesthe greatest integer function). However, there cannot exist an integer
strictly between x and x — 1. n
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The converse of Theorem 3.1 fails for A = 1 (mod 4). For example, if A = —195,
then [Ma| = 8, and gn+1 = 13. However, Faq(3) = 11- 17, whereq = 15 and 3 <
(Map — o + 1)/ a. Nevertheless, the converse of Theorem 3.1 does hold for A = 0

(mod 4).

THEOREM 3.2. If A = 0 (mod 4), A < —4, and N, g, gn+1 are asin Theorem 3.1,
then the following are equivalent:

(1) Fag(X) isprimefor all integersxwith0 < x < (Ma — a+1)/c.

(2) ex <2andMp < gne+1.

PROCF. Inview of Theorem 3.1, weneed only provethat (2) = (1). If ey < 2,thenby
Theorem 2.1, wehavethat Fa o(x) isprimewhenever0 < x < |A|/(49)—1 = gn+1/—1.
If [(Map —a+1)/a] > (gu+1 — a + 1) /a — 1, then by hypothesis,

(i —a+l)/a > Ma—a+l)/a>|[(My—a+l)/a]
> (v — o+ 1)/a— 1,

acontradiction. Hence, [(Ma —a+1)/a| < (v —a+1)/a—1<guwi/a—1,and
s0 (1) holds. n

REMARK 3.1. We actually know all of the values of A < 0 with ey = 2, under the
assumption of the GRH, from the work of Weinberger [4]. A complete list, with the
prime-producing capacity of Fa ¢(X), may befound in [3, Table 4.1.2, p. 113]. There are
fifty-six values in that table, and N < 4 for each of them. With the nine well-known
values for which hy = ey = 1, namely the case where N = O (from Baker, Heegener,
Stark), we have a total of sixty-five values of fundamental discriminants A < 0 with
exn < 2.1 In other words, under the assumption of the GRH, we have a complete list of
all fundamental discriminants A < 0 with ey < 2. We also know, unconditionally, al of
the values of A < 0 for which hy = 4 from the work of Steve Arno (see [3, Chapter 4,
pp. 105-128] for background and an overview of the history of the solution of hy < 4
for A < 0). In other words, we (unconditionally) know all fundamental discriminants
A < 0withN < 2, having ey < 2. Thesevalues are as follows:

for ha =1 (namely N=0), and |A| € {3,4,7,8, 11,19, 43,67, 163},
for ha = 2 (namely N = 1), and |D| in the following set:

{5.6,10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267. 403, 427},

and,
for hy = 4 (namely N = 2), and |D| in the following set:

{21, 30, 33,42,57, 70, 78, 85, 93, 102, 130,133, 177, 190, 195, 253, 435,
483, 555, 595, 627, 715, 795, 1435} .

1 Theinterested reader may compare these values with the sixty-five values which are listed by Gauss, in
Disquisitiones Arithmeticae [1, Section 303], and called numeri odonei or convenient numbers by Euler, see
[3, p. 112-117, and pp. 347-354].
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Therefore, the only remaining values with ey < 2 from the original sixty-five, for
which we need the GRH, are asfollows:
for ha = 8 (namely N = 3), and |D| in the following set:

{105, 165, 210, 273, 330, 345, 357, 385, 462, 1155, 1995, 3003, 3315},

and
for ha = 16 (namely N = 4), and A = —1365.

Therefore, we may concludethat, if N < 2, then we know unconditionally the values

for which Theorem 3.2 holds. They are asfollows:
for A= 0 (mod 8), |D| € {6. 10, 22, 58, 78, 102, 190}, and
forA=4 (mod 8), |D| € {5, 13,21, 33, 37, 57, 85, 93,133, 177}.

In fact, the only other (known) value for which Theorem 3.2 holds is A = —345,
where hy = 8. Therefore, if the class number 8 problem were ever solved for negative
fundamental discriminants, we would have an unconditional complete list of valuesfor
which Theorem 3.2 holds (and given the current work of Arno and others, this may not
befar off indeed). Also, algebraically, the criterion in Theorem 3.2 isastight as possible.
To illustrate this, we look at D = —130 for which we have [Ma] = 13 = gus+1, and it
is precisely for this value that (1) of Theorem 3.2 fails, since Faq(X) = 10x? + 13 and
Faq(13) = 13- 131. Thus, the boundsin Theorem 3.2 are the most precise possible, in
the sensethat they are within afraction of aninteger from failing, aswith D = —130. In
fact, Fa q(On+1) is composite when o = 1 (see the proof of Theorem 3.1).

Now weturn to acriterion for A =1 (mod 4).

CoNJECTURE 3.1. If A < Oisadiscriminant with N, g and gy« asin the hypothesis
of Theorem 3.1, then the following are equivalent:

1. Faq(X) isprimewhenever 0 < x < (Ma — 1)/2.

2. en <2and M, < (gn+1 +3)/2.

REMARK 3.2. Conjecture 3.1 is valid if we assume the GRH (by Remark 3.1). Fur-
thermore, the bounds in Conjecture 3.1 are the most precise possible. To illustrate this
alegation, we let A = —483, whereq = 21, gn+1 = 23, and

Fag(X) = 212 + 21x + 11.
Here, 13 = (gns1 +3)/2 > Ma > (gue1 +2)/2 = 12,5, and
Faq(6) = Faq((ane1 +1)/4) = 19-47.

Yet, Fpq(X) is prime for al nonnegative integers x < 5 < (Ma — 1)/2 < 6. Hence
A = —483 is a counterexample to the possibility of lowering the bound in part 2 of
Conjecture 3.1to (gn+1 + 2)/2.

Now consider A = —195 where q = 15, gn+1 = 13 and

Fagq(X) = 15x% + 15x + 7.
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Here,
Faq(3) = Fag((Gva — 1)/4) = 11- 17,

where 3 < (Ma — 1)/2. Since (gn+1 +4) /2 = 8.5 > My, then A = —195 is a counterex-
ample to the possibility of raising the bound in part 2 of Conjecture 3.1to (n+1 + 4)/2.
Hence, the bound in part 2 cannot be moved even half an integer in either direction. Not
often are mathematical bounds this demonstrably tight.

REMARK 3.3. We just miss being able to prove that (1) = (2) of Conjecture 3.1
holds. We know that Fa o(n — 1) = n(nq — q + 1), where n = (q + gne1) /4. Therefore,
if (1) of Conjecture 3.1 holds, then (gn+1 +0)/4 — 1 > (Ma — 1)/2. In other words,
(On+1 +0)/2 — 1 > Ma. However, we cannot get closer than this in general. Observe
that if ha = 2, then x = n — 1 is the first value for which Fa ¢(X) is composite for the
A listed in Remark 3.1. We note that, in fact, if My < (gn+1 + 3)/2, then hy < 4 from
the aforementioned listed values. However, we need the GRH to make this inference.
We also observe from the list that if Ma < (gn+1 +3)/2 and hy < 4, thenq = n? +r
where |r| € {1,2 4}. If we could (unconditionally) verify that (1) of Conjecture 3.1
must imply this condition on g, then we would have a constructive proof that (1) = (2).
For example, if g+ 1 isasquare, then

Fag((Ones — 1)/4) = [ + 1) /4% + 1) — [(Gnea — 1)/4)°

is a difference of squares, so My < (gn+1 + 1)/2. The valuesin Remark 3.1 for which
q+lisasquare, A= 1 (mod 4),hy < 4, and Ma < (On+1 +1)/2, arethose |A| in the
following set:

{15, 51, 123, 267. 435, 555, 795}.

In fact, we observe that

Fag(n—1) = Fag((Ones +0)/4—1)
= [((anes +q—4)(@+1) +8)/8]" — [(a— D(anw + ad— 4)/81%

Furthermore, each of the relevant valuesin Remark 3.1 first makes Fa ¢(X) composite for
an x value such that Fa ¢(X) is a difference of squaresin a unique way depending upon
the aforementioned special shapefor g. That this phenomenon even occursis of interest
in its own right, so we tabulate the values below. The column labeled X represents the
smallest nonnegative value of x such that Fa q(Xo) is composite. The column labeled
Fa.q(Xo) lists the value as a difference of squares, and the column labeled g lists it in its
special form m? +r as above. A column for Fa o(X) is also given. To prove that g must
be of one of these special forms, say q = n? — 4, we must verify that g = Xox1 Where

o x4 = 4,since (60 + /2" — (660 —x0/2)" =0
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N Xo Fa.q(Xo) q On+1 Faq(X)

15 [ 1=(gwn—1)/4 | 3-12 [ 3=22-1| 5 3AZ+3x+2
35 | 2=(ua+1)/4 | P-4 | 5=3F—-4| 7 5x% + 5x + 3
51 | 4=(Qna—1)/4 | -4 | 3=22-1 | 17 32 +3x+5
91 | 4=(gna+3)/4 | 177—122 | 7=3F -2 | 13 72 +7x+5
15| 6=(gna+1)/4 | 192—122 | 5=22+1 | 23 5x% +5x + 7
123 | 10=(gne1 — 1)/4 | 212—10% | 3=22—-1 | 41 | 3P+3x+11
187 | 6=(gnu+7)/4 | 377—307 | 11=3P+2 | 17 | 1% +11x+7
235 | 12=(Qus1+1)/4 | 372—242 | 5=22+1 | 47 | 5x*+5x+13
267 | 22=(gu+1—1)/4 | 452 —22%2 | 3=22—1 | 89 | 3+3x+23
403 | 10=(gn+1 +9)/4 | 712—60% | 13=32+4 | 31 | 13x%+ 13x+11
427 | 16=(Qne1+3)/4 | 652 —482 | 7=32—-2 | 61 | 72+ T7x+17
435 | 7=(qn1—1)/4 | 30°—77 | 15=4—1| 29 | 15x%+15x+ 11
483 | 6=(gn+1+1)/4 | 332—14%2 | 21=52—4 | 23 | 21x%+21x+11
555 | 9=(gn+1—1)/4 | 382—9% | 15=42—1| 37 | 15x%+15x+13
795 | 13=(gn+1—1)/4 | 542 — 132 | 15=42—1 | 53 | 15x%+ 15x+17

What we have achieved is the first necessary and sufficient conditions (namely those
in Theorem 3.2 and Conjecture 3.1), since the earlier combined efforts of Hendy and
others cited above are insufficient to give the criterion.
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