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Abstract. The K-theoretical aspect of the commutative Bezout rings is established
using the arithmetical properties of the Bezout rings in order to obtain a ring of all
Smith normal forms of matrices over the Bezout ring. The internal structure and basic
properties of such rings are discussed as well as their presentations by the Witt vectors.
In a case of a commutative von Neumann regular rings the famous Grothendieck
group K0(R) obtains the alternative description.
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1. Introduction. In [12], it is proved that for any element a of a commutative
morphic ring R, there is an element b ∈ R such that the ideals aR, bR coincides with
the annihilators Ann(b), Ann(a). Therefore, one can group principal ideals into the
annihilator pairs, allowing that some ideal may be its own annihilator. So, the structure
of principal ideals determines all the properties of the morphic rings.

We will construct an analogue of the Grothendieck group K0(R) of a Bezout ring
R using the cyclically presented modules instead of the finitely generated projective
R-modules. Such abelian group, that is denoted as K ′

0(R) and is called a weak
Grothendieck group of a ring R, becomes a ring if we define a product of two elements
of this group using the tensor product of cyclically presented modules. Moreover, the
elements of such ring can be interpreted as classes of equivalence of the Smith normal
forms of the matrices over a ring R.

In order to obtain a convenient way for the multiplication and the addition for
the elements of K ′

0(R), we will establish the connection with the subring W ′(G(R)) of
the ring of Witt vectors over some ring. As a direct consequence, it will be proved that
the functors K ′

0 and W ′G are naturally equivalent.
As any morphic ring is a Bezout one, we also describe K ′

0(R) when R is a morphic
ring. In a case of a commutative von Neumann regular ring, the structure of K ′

0(R)
becomes simpler and, as a consequence, K ′

0(R) and the usual Grothendieck group
K0(R) coincide.

The main motivation of these investigations is that in [13] it is proved that a
commutative Bezout domain is an elementary divisor ring if and only if any quotient
ring R/aR is so, where a is an arbitrary nonzero element of R. Since any quotient
ring R/aR of a commutative Bezout domain R is a morphic ring [19], then the
studies of the ring K ′

0(R/aR) become related to the famous elementary divisor ring
problem [7,8,10,18].
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2. Preliminaries. All the rings considered in the paper are supposed to be
commutative with the nonzero identity element. Let U(R) be a set of all invertible
elements of a ring R. By the Jacobson radical J(R) of a ring R, we mean the set
J(R) = {x ∈ R|∀a ∈ R : 1 − ax ∈ U(R)}, and the nilradical Nil(R) is defined as an ideal
of all nilpotent elements of a ring R. A ring R is called a reduced ring if Nil(R) = {0}.

Suppose that A is a subset in a ring R. A set Ann(A) = {x|Ax = 0} is called an
annihilator of a set A. If an element a ∈ R is a divisor of an element b ∈ R, then we will
write a|b.

We start with recalling of some definitions and facts that we will need below in our
proofs.

DEFINITION 1.
(1) If any finitely generated ideal of a ring R is principal, then a ring R is said to be

a Bezout ring.
(2) We say that a rectangular matrix A over a ring R admits canonical diagonal

reduction if there are two invertible matrices P, Q of the appropriate sizes
such that the matrix PAQ = D = (di) is a diagonal matrix with an additional
condition: for all indices we have the inclusion of the ideals di+1R ⊆ diR.

(3) If every row matrix (a, b) (column matrix (a, b)T ) admits canonical diagonal
reduction, then we say that R is a right (left) Hermite ring.

(4) If every matrix over a ring R admits canonical diagonal reduction, then R is
said to be an elementary divisor ring.
By the cyclically presented module over a ring R, we mean the R-module R/aR,
where a ∈ R. Using Bourbaki [2,3], one can show that a finitely presented cyclic
module over a Bezout ring is cyclically presented.

DEFINITION 2. We say that a ring R has the stable range 1 if for any elements a, b ∈ R
the equality aR + bR = R implies that there is some x ∈ R such that (a + bx)R = R
[1, 15].

DEFINITION 3. A ring R is called a morphic ring if for any a ∈ R there is an R-module
isomorphism R/aR ∼= Ann(a) [12].

Here is a Nicholson’s criterion for a morphic ring.

THEOREM 1 ([12]). The following statements are equivalent for a ring R:
(a) R is a morphic ring;
(b) For any a ∈ R, one can find b ∈ R such that Ann(a) = bR, Ann(b) = aR;
(c) For any a ∈ R, one can find b ∈ R such that Ann(a) = bR, Ann(b) ∼= aR .

DEFINITION 4. An element a of a ring R is said to be a von Neumann regular element
if there is some b ∈ R such that aba = a. If all elements of a ring R are von Neumann
regular, then R is called a von Neumann regular ring [5].

Also in [12], it is proved every the commutative von Neumann regular ring is a
morphic one. Moreover, there are morphic rings, that are not regular. For example, a
ring H = � + x�[[x]] is a commutative Bezout domain, but by [19] H/xH is a morphic
ring of stable range 2 (take a = 5, b = 7), so it is not von Neumann regular, as they
are the rings of stable range 1. In addition, it is useful to mention that a pair (a, b) of
elements of a ring R in the previous theorem is called a morphic pair and this fact will
be denoted as aR ∼M bR, since any morphic pair is determined by the pair of some
principal ideals, but not elements.
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3. The weak Grothendieck group. Let R be a commutative Bezout ring. We will
try to construct an analogue K ′

0(R) of the Grothendieck group K0(R) considering the
isomorphism classes of the finite direct sums of cyclically presented modules over R as
the basic objects and using some ideas from [11].

Let �(R) = {R/a1R ⊕ · · · ⊕ R/anR|a1, . . . , an ∈ R} be a set of all finite direct sums
of the cyclically presented modules over R. Then, we consider a relation “∼” on the
set �(R) defined as

g1 ∼ g2 ⇔ g1
∼= g2

for g1, g2 ∈ �(R). Then, let F(R) be a free abelian group generated by the set �(R)/ ∼.
Since every element of �(R)/ ∼ is in the one-to-one correspondence with the set of
all finite diagonal matrices of R and by [10] every finitely presented module named by
the diagonal matrix D have canonical form, and D is equivalent to its Smith normal
form (shortly SNF), so in any class of the equivalent elements in �(R) we can choose
some SNF that represents this class in �(R)/ ∼. In fact, one can consider F(R) as a
free abelian group generated by the classes of equivalence of all SNF of the matrices
over R. The elements of the set �(R)/ ∼ we will denote as SNF(g), where g ∈ �(R).

DEFINITION 5. The quotient group K ′
0(R) of a free abelian group F(R) by the

subgroup generated by all expressions of the form SNF(g) + SNF(g′) − SNF(g ⊕ g′)
we will call a weak Grothendieck group of a morphic ring R. The elements of K ′

0(R) will
be denoted as [g].

In other words, K ′
0(R) is an abelian group of all classes of isomorphic finite direct

sums of principal ideals of a morphic ring R with the following property:

[g] + [g′] = [g ⊕ g′],

for any [g], [g′] ∈ K ′
0(R).

Remark, that SNF(R/a1R ⊕ · · · ⊕ R/anR) = SNF(R/b1R ⊕ · · · ⊕ R/bmR) in
�(R)/ ∼ if and only if

n⊕
i=1

R/aiR ∼=
m⊕

j=1

R/bjR

and

m∑
j=1

SNF(gj) =
l∑

k=1

SNF(g′
k)

in F(R) if and only if m = l and there is a permutation π ∈ Sm such that ∀j : gj ∼= g′
π(j).

LEMMA 1. Two elements [g], [g′] ∈ K ′
0(R) are equal if and only if

g ⊕ X ∼= g′ ⊕ X,

for some X = R/a1R ⊕ · · · ⊕ R/anR, where a1, . . . , an ∈ R.

https://doi.org/10.1017/S0017089515000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000373


620 O. S. SOROKIN

Proof. Suppose that [g] = [g′]. Then

SNF(g) − SNF(g′) =
∑

i

(SNF(xi) + SNF(yi) − SNF(xi ⊕ yi))

−
∑

j

(SNF(x′
j) + SNF(y′

j) − SNF(x′
j ⊕ y′

j)),

for some SNF(xi), SNF(yi), SNF(x′
j), SNF(y′

j) ∈ F(R).
After placing the summands with negative signs to the another part of the equality

and using the previous remark, we obtain that

g ⊕ X ∼= g′ ⊕ X,

where X = (
⊕

i(xi ⊕ yi)) ⊕ (
⊕

j(x
′
j ⊕ y′

j)) ∈ �(R).
Conversely, if g ⊕ X ∼= g′ ⊕ X then SNF(g ⊕ X) = SNF(g′ ⊕ X) in �(R)/ ∼.

Hence, [g ⊕ X ] = [g′ ⊕ X ] in K ′
0(R) implies that [g] + [X ] = [g′] + [X ] and [g] = [g′].

The lemma is proved. �

Now we need to formulate one well-known property of the tensor product of
modules over the commutative ring.

PROPOSITION 1 [9]. Let M be a R-module and I, J are some ideals of a commutative
ring R. Then

(i) M ⊗R R/I ∼= M/IM;
(ii) R/I ⊗R R/J ∼= R/(I + J).

In the following lemma, we apply this Proposition in order to obtain one surprising
property of the principal ideals of a morphic ring, and one rather obvous for the Bezout
ring.

LEMMA 2. For every pair of elements a, b ∈ R of a morphic ring R: aR ⊗R bR ∼=
aR ∩ bR. If R is a Bezout ring, then R/aR ⊗R R/bR ∼= R/(aR + bR).

Proof. By the definition of a morphic ring and the above-mentioned result, we have
that aR ⊗R bR ∼= R/Ann(a) ⊗R R/Ann(b) ∼= R/(Ann(a) + Ann(b)) ∼= Ann(Ann(a) +
Ann(b)) ∼= aR ∩ bR as was desired. The other statement follows from Proposition 1. �

It is useful to remak, that from previous lemma we obtain that tensor product
of two principal ideals in the morphic ring is isomorphic to principal ideal as the
intersection of principal ideals in any Bezout (and hence morphic) ring is again
principal one [10].

In the classical K-theoretical investigations, the Grothendieck’s group K0(R) can
be considered as a ring if we assume that R is a commutative ring and the product is
defined as

[P] · [Q] = [P ⊗R Q]

for any finitely generated projective R-modules P and Q over a commutative ring R.
In the similar manner, we obtain
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THEOREM 2. Let R be a commutative morphic ring. Then, an additive abelian group
K ′

0(R) becomes a commutative ring with 1, if we define a product

[R/aR][R/bR] = [R/aR ⊗R R/bR],

for any a, b ∈ R, and extend it on the arbitrary elements of K ′
0(R) by the linearity.

REMARK. The previous lemma shows that the multiplication in K ′
0(R) is defined

correctly: for Bezout rings aR + bR is principal ideal, and aR ∩ bR is principal too
for the case of morphic rings. Remark that any element any element of K ′

0(R) can be
written as [A] − [B], where A, B ∈ �(R) are reduced to the SNF and there is no pair of
terms R/aiR, R/bjR such that it can be cancellated in the expression [A] − [B]. In the
case of a morphic ring

�(R) = {a1R ⊕ · · · ⊕ anR|a1, . . . , an ∈ R},
so in fact we deal with principal ideals and [aR][bR] = [aR ∩ bR].

Now we try to understand how K ′
0(R) behaves under the base ring R change and

how one can describe its structure in the simplest case.

PROPOSITION 2. K ′
0 is a functor from the category BezoutRings of the Bezout rings

to the Rings category.

Proof. Let f : R → R′ be a homomorphism of the morphic rings. For any element

M = R/m1R ⊕ · · · ⊕ R/mnR ∈ �(R)

one can define an element M′ = f�(M) in the following manner:

f�(M) = R′ ⊗R M ∼=
n⊕

i=1

(R′ ⊗R R/miR) ∼=
n⊕

i=1

(R′/f (mi)R′) ∈ �(R′).

Thus, a ring’s map f : R → R′ rises a correspondence

f∗ :
{

K ′
0(R) → K ′

0(R′)
[A] − [B] �→ [f �(A)] − [f �(B)]

of the abelian groups K ′
0(R) and K ′

0(R′). Moreover, if [R/aR], [R/bR] ∈ K ′
0(R) then

f∗([R/aR ⊗R R/bR]) = f∗([R/(aR + bR)]) = [R′ ⊗R R/(aR + bR)] =

= [R′/(f (a)R′ + f (b)R′)] = [R′/f (a)R′ ⊗R R′/f (b)R′] = [R′/f (a)R′] · [R′/f (b)R′]

So f∗ becomes a ring’s homomorphism. Therefore,

K ′
0 : BezoutRings � Rings

is a map from the category BezoutRings of all Bezout rings and their homomorphisms
to the category Rings defined by the rule

K ′
0 :

{
R �→ K ′

0(R)

R
f−→ R′ �→ K ′

0(R)
f∗−→ K ′

0(R′)
.
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Then, we need to verify: is it a functor or not? Indeed, if f = 1R : R → R then for any
[A] − [B] ∈ K ′

0(R) we obtain

f∗([A] − [B]) = [f�(A)] − [f�(B)] = [R ⊗R A] − [R ⊗R B] = [A] − [B]

and hence K ′
0(1R) = 1K ′

0(R). If R
f−→ R′ g−→ R′′ are two homomorphisms of the morphic

rings, then we need to prove that

(g ◦ f )∗ = g∗ ◦ f∗.

Without loss of the generality, take any [R/aR] ∈ K ′
0(R). Then

(g ◦ f )∗([R/aR]) = [R′′ ⊗R R/aR] = [R′′/g(f (a))R′′]

and

g∗(f∗([R/aR])) = g∗([R′ ⊗R R/aR]) = g∗(R′/f (a)R′)
= [R′′ ⊗R′ R′/f (a)R′] = [R′′/g(f (a))R′′]

as was desired. So, K ′
0 is a functor. The proposition is proved. �

The similar arguments can prove that K ′
0 : MorphicRings � Rings is a functor too.

As a consequence, it can be shown that K ′
0 preserves direct products of the Bezout rings

as well as morphic ones:

K ′
0

(∏
i

Ri

) ∼=
∏

i

K ′
0(Ri).

THEOREM 3. Let R be a Bezout ring. Then, K ′
0(R) has a direct summand isomorphic

to the ring of integers �.

Proof. Considering any maximal ideal M of R, we define a natural homomorphism

f : R → F = R/M

of a ring R onto a field F . Then, K ′
0 induces a homomorphism

f∗ : K ′
0(R) → � ∼= K ′

0(F).

A map

i∗ :

{
� → K ′

0(R)

n �→ n[R]

is a monomorphism such that f∗i∗ = 1� and the following short exact sequence

0 → ker f∗ → K ′
0(R)

f∗−→ � → 0

splits

K ′
0(R) ∼= � ⊕ ker f∗.

The latter isomorphism proves the theorem. �
THEOREM 4. If R is a Bezout ring, then K ′

0(R) ∼= � if and only if R is a field.
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Proof. By the previous theorem, we know that K ′
0(R) ∼= � if and only if for any

maximal ideal M of a ring R

ker f∗ = 0

where f : R → F = R/M is a natural homomorphism.
Suppose that ker f∗ = {[A] − [B] | f∗([A]) = f∗([B])} = 0. This means that whether

f∗([A]) = f∗([B]) then [A] = [B]. Since R is a morphic ring an element A ∈ �(R) can be
considered in the form

A = R/a1R ⊕ · · · ⊕ R/anR

where a1R ⊆ · · · ⊆ anR. Then

f�(R/aiR) = R/M ⊗R R/aiR ∼= R/(M + aiR) =
{

F, ai ∈ M
0, ai /∈ M

.

Hence, f∗([A]) = k, where k ∈ {1, . . . , n} is such that a1, a2, . . . , ak ∈ M, ak+1, . . . , an /∈
M. Thus, the equality f∗([A]) = f∗([B]) means that the chains of the ideals a1R ⊆ · · · ⊆
anR and b1R ⊆ · · · ⊆ bmR have the same number of ideals inside M. Therefore, the
condition ker f∗ = 0 means that there is at most one chain of the ideals a1R ⊆ · · · ⊆ akR
of the length k inside M for any k ≥ 0. But if we take a unique chain of the ideals of
the length k ≥ 2 inside M, then any term of this chain is itself a chain of the length
1 inside M. But all chains of the length 1 are equal, so there is at most one principal
ideal aR inside M. If M �= aR then there is b ∈ M \ aR such that aR �= bR. But this is
impossible since aR is a unique chain of the length 1, so M = aR.

Moreover, if we take [A] = [R ⊕ R ⊕ R/aR] and [B] = [R ⊕ R/aR], then f∗([A]) =
f∗([B]) = 1 and hence [A] = [B]. Then

[R ⊕ R ⊕ R/aR] = [R ⊕ R/aR]

implies that [R] = [0] that is a contradiction, and such maximal ideal M cannot exist.
After repeating the similar procedure to the other maximal ideals, we obtain that there
are no maximal ideals in R and R have to be a field. The theorem is proved. �

4. The connection of K ′
0 and the Witt vectors. In the current section, we will try

to find a convenient way for the addition and multiplication of the elements of K ′
0.

DEFINITION 6. A Witt ring (or Witt vectors) for a commutative ring R is called a
set

W (R) = 1 + tR[[t]] = {1 + a1t + a2t2 + · · · |a1, a2, . . . ∈ R}

that is an abelian group under the multiplication operation between the formal power
series (this operation represents the additive operation of a ring W (R)) and the ring
multiplication operation is defined by the convolution rule in the following way: any
f (t) ∈ W (R) can be written as

f (t) =
∞∏

i=1

(1 + rit)
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so for the arbitrary r ∈ R we define

(1 + rt) ∗ f (t) = f (rt)

and extend this rule to the infinite products. An identity of a ring W (R) is an element
1 + t and 1 is a zero element.

Before applying the mentioned ring construction, we need to formulate the
following definition.

DEFINITION 7. Let R be a commutative Bezout ring. A semiring

G(R) = {aR | a ∈ R}

of all its principal ideals under the addition and intersection of the ideals is called a
globalization of a ring R.

Thus, for any be a commutative Bezout ring R, we can consider a subsemiring

W0(G(R)) = {1 + (a1R)t + (a2R)t2 + · · · + (anR)tn|a1R ⊇ · · · ⊇ anR, n ≥ 0}

of a ring W (G(R)) considered as a semiring.
Any element f (t) = 1 + (a1R)t + (a2R)t2 + · · · + (anR)tn ∈ W0(G(R)) can be

expressed in the form

f (t) =
n∏

i=1

(1 + aiRt).

An identity element of W0(G(R)) is 1 + Rt and 1 is its zero element. Furthermore, if

f (t) = 1 +
n∑

i=1

(aiR)ti, g(t) = 1 +
m∑

j=1

(bjR)tj

are any elements of W0(G(R)) then their sum and product can be computed by the
formulae

f (t) · g(t) = 1 +
n+m∑
k=1

(
∑

i+j=k

(aiR ∩ bjR))tk,

f (t) ∗ g(t) =
m∏

j=1

f ((bjR)t) =
n∏

i=1

g((aiR)t) =
n,m∏

i,j=1,1

(1 + (aiR ∩ bjR)t).

After the direct computations, one can conclude that the above definitions of the sum
and product also belongs to W0(G(R)).

THEOREM 5. If R is a Bezout ring, then

K ′
0(R) ∼= W ′(G(R)),

where W ′(R) is a ring completion of a semiring W0(G(R)).

Proof. In the following consideration, the subtraction operation in the ring
completion W ′(G(R)) will be denoted by f (t)

g(t) , for f (t), g(t). In fact, it is a formal
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polynomial’s division. So, the ring W ′(R) can be described as

W ′(R) =
{

1 + (a1R)t + · · · + (anR)tn

1 + (b1R)t + · · · + (bmR)tm

∣∣∣∣ a1R ⊇ · · · ⊇ anR,

b1R ⊇ · · · ⊇ bmR, n, m ≥ 0
}

with the addition

a(t)
b(t)

· c(t)
d(t)

= a(t)c(t)
b(t)d(t)

and multiplication

a(t)
b(t)

∗ c(t)
d(t)

= (a(t) ∗ c(t))(b(t) ∗ d(t))
(a(t) ∗ d(t))(b(t) ∗ c(t))

for any a(t), b(t), c(t), d(t) ∈ W0(G(R)). We define a map

FR :

{
K ′

0(R) → W ′(G(R))

[A] − [B] �→ a(t)
b(t) = (1 +∑n

i=1(aiR)ti)/(1 +∑m
j=1(bjR)tj)

where A = R/a1R ⊕ · · · ⊕ R/anR, B = R/b1R ⊕ · · · ⊕ R/bmR are reduced to the SNF.
The map FR is a bijection since the SNF is defined uniquely and a(t) and b(t) have a
uniquely determined decompositions

a(t) =
n∏

i=1

(1 + (aiR)t), b(t) =
m∏

j=1

(1 + (bjR)t).

Also, it is a homomorphism since

FR(([A] − [B]) + ([C] − [D])) = FR([A ⊕ C] − [B ⊕ D]) = a(t)c(t)
b(t)d(t)

= FR([A] − [B]) · FR([C] − [D])

and

FR(([A] − [B])([C] − [D])) = FR([A ⊗R C] + [B ⊗R D] − [B ⊗R C] − [A ⊗R D])

=
∏

i,j(1 + (aiR ∩ cjR)t)
∏

k,l(1 + (bkR ∩ dlR)t)∏
i,l(1 + (aiR ∩ dlR)t)

∏
k,j(1 + (bkR ∩ cjR)t)

= (a(t) ∗ c(t))(b(t) ∗ d(t))
(a(t) ∗ d(t))(b(t) ∗ c(t))

= a(t)
b(t)

∗ c(t)
d(t)

= FR([A] − [B]) ∗ FR([C] − [D]).

Thus, FR is an isomorphism. The theorem is proved. �
PROPOSITION 3. The maps

W ′ = W−1
0 W0 : Rings � Rings

W0 : Semirings � Semirings
G : BezoutRings � Semirings

defined above are the functors.
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Proof. If we set

W ′(f ) :

{
W ′(R) → W ′(R′)
1+a1t+···+antn

1+b1t+···+bmtm �→ 1+f (a1)t+···+f (an)tn

1+f (b1)t+···+f (bm)tm

W0(f ) :

{
W0(R) → W0(R′)
1 + a1t + · · · + antn �→ 1 + f (a1)t + · · · + f (an)tn

G(f ) :

{
G(R) → G(R′)
aR �→ f (a)R′

for any homomorphism f : R → R′ in the appropriate source category, then images of
f such as W ′(f ), W0(f ), G(f ) are precisely the homomorphisms in the target categories
of the given maps. The fact that W ′, W0 and G preserves identity homomorphisms and
the compositions can be shown by the routine calculations. So, W ′, W0 and G are the
functors. �

THEOREM 6. There is a natural equivalence of functors

K ′
0 ≈ W ′G.

Proof. By Theorem 5 K ′
0(R) ∼= W ′(G(R)) for any Bezout ring R via the isomorphism

FR. So, if f : R → R′ is any homomorphism of Bezout rings R and R′ then

K ′
0(R)

FR−−−−→ W ′(G(R))⏐⏐�K ′
0(f )

⏐⏐�W ′(G(f ))

K ′
0(R′)

FR′−−−−→ W ′(G(R′))

is a commutative diagram since

(W ′(G(f )) ◦ FR)([A] − [B]) = W ′(G(f ))

⎛
⎝
⎛
⎝1 +

n∑
i=1

(aiR)ti)/(1 +
m∑

j=1

(bjR)tj

⎞
⎠
⎞
⎠

=
(

1 +
n∑

i=1

(f (ai)R′)ti

)
/

⎛
⎝1 +

m∑
j=1

(f (bj)R′)tj

⎞
⎠ = (

FR′ ◦ K ′
0(f )

)
([A] − [B]).

Thus, K ′
0 ≈ W ′G as was desired. The theorem is proved. �

The latter result shows the way that one can compute the SNF of the block sum
A ⊕ B and Kroneker’s product A ⊗ B of two given matrices A and B that are already
reduced to their SNF’s. Since the multiplication in K ′

0(R) can be done after some
number of the addition operations (this follows from the distributivity of the tensor
product over the direct sums) then naturally arises a question: are there any other way
to represent the elements of K ′

0(R) for more efficient evaluation of the sums of the given
elements?
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The answer is affirmative and below we give a solution. If [A] = [R/a1R ⊕ · · · ⊕
R/anR] and [B] = [R/b1R ⊕ · · · ⊕ R/bmR] are the elements of K ′

0(R) that are reduced
to their SNF, then we represent [A] and [B] in a form

[X ] �→

⎛
⎜⎜⎜⎜⎝

xn xn−1 · · · x1 1 0 0 · · · 0 0
0 xn · · · x2 x1 1 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 0 · · · xn xn−1

0 0 · · · 0 0 0 0 · · · 0 xn

⎞
⎟⎟⎟⎟⎠ ∈ Mn+m(G(R))

and multiply the respective matrices for [A] and [B] in Mn+m(G(R)), then the resulting
matrix will represent the sum [A ⊕ B]. In other words: if J is a Jordan matrix in
Mn+m(G(R)) with the zero eigenvalue, then

[A] ↔ anE + an−1J + · · · + a1Jn−1 + Jn

[B] ↔ bnE + bm−1J + · · · + b1Jm−1 + Jm

[A ⊕ B] ↔ (anE + · · · + a1Jn−1 + Jn)(bnE + · · · + b1Jm−1 + Jm)

and the latter product will be the necessary result. On the other hand, it is not necessary
to multiply pairwise every row and column in order to obtain the result. In fact, the
situation can be solved even simpler – the product

⎛
⎜⎜⎜⎝

c1

c2
...

cn+m

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

an an−1 · · · a1 1 0 0 · · · 0 0
0 an · · · a2 a1 1 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 0 · · · an an−1

0 0 · · · 0 0 0 0 · · · 0 an

⎞
⎟⎟⎟⎟⎠×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
b1
...

bm−1

bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

represents the sum [C] = [A ⊕ B] in the SNF.

5. The cancellation of cyclically presented modules over Bezout rings. In the case
of Bezout and morphic rings, the computations that involves the elements of the group
K ′

0(R) rise to the expressions with the principal ideals. So we need to know: how the
preimages of the equal elements of K ′

0(R) can be described in the terms of R?

LEMMA 3 (Cancellation Lemma). Let R be a Bezout ring and A, B, R/xR ∈ �(R)
and A, B are reduced to the SNF. Then

A ⊕ R/xR ∼= B ⊕ R/xR ⇔ A = B.

Proof. Suppose that A = R/a1R ⊕ · · · ⊕ R/anR, B = R/b1R ⊕ · · · ⊕ R/bn+mR,
a1R ⊇ · · · ⊇ anR, b1R ⊇ · · · ⊇ bn+mR. By [8] if A1 and B1 are the SNF of A ⊕ R/xR
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and B ⊕ R/xR, then A1 = B1. So we are going to compute explicitly SNF A1 and B1

using the Fitting invariants.
For the simplification of the notations in the proof below, we will write a + b and

ab for aR + bR and aR ∩ bR respectively. The ordering "≤" corresponds to the natural
inclusion of the sets.

After computing the Fitting invariants, the normal forms A1 and B1 are

A1 = (a1 + x) ⊕ (a2 + a1x) ⊕ · · · ⊕ (an + an−1x) ⊕ (anx)

B1 = (b1 + x) ⊕ (b2 + b1x) ⊕ · · · ⊕ (bn + bn−1x) ⊕ (bn+1 + bnx)

⊕ · · · ⊕ (bn+m−1 + bn+mx) ⊕ (bn+mx)

From the equality A1 = B1, we obtain the system of the principal ideal equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b1 + x = a1 + x
b2 + b1x = a2 + a1x
. . .

bn + bn−1x = an + an−1x
bn+1 + bnx = anx

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bn+2 + bn+1x = 0

. . .

bn+m−1 + bn+mx = 0

bn+mx = 0

From the equation bn+2 + bn+1x = 0, we obtain that bn+2 = 0 and so bn+2 = · · · =
bn+m = 0. As bn+1 + bnx = anx, we conclude that bn+1 ≤ x and bnx = anx.

Multiplying (in fact intersecting!) by an the equation bn + bn−1x = an + an−1x, we
obtain

an + anx = anbn + anbn−1x = anbn + bnbn−1x = anbn + bnx ≤ bn.

But an = an + anx and so an ≤ bn. Analogously, multiplying the same equation by bn

we will have that bn ≤ an. So an = bn.
Again, from the equation bn+2 + bn+1x = 0 we conclude that bn+1x = 0. Therefore,

multiplying the equation bn+1 + bnx = anx by the ideal bn+1 we have

bn+1 = bn+1 + bnbn+1x = anbn+1x = bnbn+1x = 0.

So, the given system of the principal ideal equations simplifies and we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 + x = a1 + x
b2 + b1x = a2 + a1x
. . .

bn−1 + bn−2x = an−1 + an−2x
bn + bn−1x = an + an−1x
bnx = anx

Again, we multiply the equation bn−1 + bn−2x = an−1 + an−2x by an−1 and hence obtain

an−1bn−1 + an−1bn−2x = an−1

If we multiply by x the equation bn + bn−1x = an + an−1x, we will obtain

bnx + bn−1x = anx + an−1x
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and hence bn−1x = an−1x. Thus, the equation

an−1 = an−1bn−1 + an−1bn−2x

implies that an−1 ≤ bn−1. Similarly, bn−1 ≤ an−1. Therefore, an−1 = bn−1. After the finite
number of steps using the prescribed procedure, we will have the following finally
reduced system: {

b1 + x = a1 + x
b1x = a1x

But, multiplying the first equation by a1, we obtain

a1 = a1 + a1x = a1b1 + a1x = a1b1 + b1x ≤ b1.

Again, by the similar consideration, we can conclude that a1 = b1.
So, having SNFs of A and B such that A ⊕ R/xR ∼= B ⊕ R/xR, we have obtained

that the summand R/xR can be cancellated and A = B as was desired. The lemma is
proved. �

In the case of morphic ring �(R) = {a1R ⊕ · · · ⊕ anR|a1, . . . , an ∈ R} and hence
we can cancel not only cyclically presented modules, but principal ideals too.

As a corollary, we obtain the following result.

THEOREM 7. Let R be a Bezout ring and [A], [B] ∈ K ′
0(R). Then [A] = [B] if and only

if A = B in case when A, B are reduced to the SNF, and A ∼= B in the other case.

Proof. Suppose that [A] = [B]. Then A ⊕ X ∼= B ⊕ X for some X = R/x1R ⊕ · · · ⊕
R/xnR by Lemma 3. Let A′ and B′ be the SNFs of

A ⊕ (R/x1R ⊕ · · · ⊕ R/xn−1R), B ⊕ (R/x1R ⊕ · · · ⊕ R/xn−1R)

respectively. Then by the previous lemma A′ ⊕ R/xnR ∼= B′ ⊕ R/xnR implies that A′ =
B′ and hence

A ⊕ (R/x1R ⊕ · · · ⊕ R/xn−1R) ∼= B ⊕ (R/x1R ⊕ · · · ⊕ R/xn−1R).

Continuing this process, we will finally obtain that A ∼= B. If A and B are reduced to
the SNF, then A = B. The theorem is proved. �
REMARK. In the Cancellation lemma, the existence of canonical forms of direct sums
of cyclically presented modules is equivalent to the fact that R is a Bezout ring [10].
Moreover, as it is shown in [4], if R is a ring of stable range 1, then the isomorphism
of cokernels of matrices implies the equivalence of matrices, so {a1R ⊕ · · · ⊕
anR|a1, · · · , an ∈ R} ∼= {R/a1R ⊕ · · · ⊕ R/anR|a1, . . . , an ∈ R}. The same situation we
saw in the case of morphic rings.

In general, when �(R) is a set of finitely generated modules that have canonical
forms over the ring R, where R is a ring in some subcategory C of Rings we need
the following properties in order to construct the weak Grothendieck group functor
K ′

0 : C � Rings:
� the direct sum and tensor product of any two elements of �(R) are isomorphic to

elements of �(R);
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� the image of any element of �(R) under the base ring R change to R′ is isomorphic
to an element of �(R′);

� the finitely generated direct summands of elements of �(R) are isomorphic to
elements of �(R).

Note that, the mentioned properties provide all the above statements about K ′
0 to

be true even in such general case. Before we continue the investigation of K ′
0 for the case

of Bezout rings, it is good to provide a few examples when the mentioned construction
works:

(1) elementary divisor rings and finitely presented modules over them [10];
(2) principal ideal rings and finitely generated modules over them;
(3) CF-rings and direct sums of cyclic modules [14].
In the K-theoretical literature, there is also some notion that is between the classical

K0(R) and K ′
0(R). It is known as G0(R) and defined on the all isomorphism classes

of finitely generated R-modules modulo the relations generated by the short exact
sequences [17]. If one consider a morphic ring R and a short exact sequence 0 → aR →
R → Ann(a) → 0, then in G0(R) we have [R] = [aR] + [Ann(a)]. The same relation is
obtained in K ′

0(R) when R ∼= aR ⊕ Ann(a), that means that a is a von Neumann regular
element. Not all morphic rings are von Neumann regular and hence the arithmetical
properties of G0(R) and K ′

0(R) differ.

6. The internal properties of K ′
0. For this section, we assume that R is a morphic

ring or a Bezout ring of stable range 1. However, the same can be proved for case of
an arbitrary Bezout ring, as we use only the Cancellation lemma, Fitting invariants,
distributivity of intersection over the addition of principal ideals and uniqueness of
canonical forms.

LEMMA 4. Every idempotent e of K ′
0(R) can be written in the following form:

e = [aR]([R] − [bR]),

for some a, b ∈ R.

Proof. Let [A] − [B] be some idempotent of K ′
0(R) that is written in the reduced

form (i.e. A, B are reduced to the SNF and there is no pair of aiR, bjR that can be
cancellated). Then, ([A] − [B])2 = [A] − [B] and thus

[A]2 + [B]2 + [B] = [A] + 2[A][B].

Suppose that A′ = a2R ⊕ · · · ⊕ anR �= 0. Hence, [A]2 = [a1R ⊕ A′][A] = [A] + [A′][A]
and so

[A]2 + [B]2 + [B] = [A] + 2[A][B].

Since the highest terms (with respect to the inclusion) of the LHS and RHS have to
be equal then a1R ∩ a2R + b1R = a1 ∩ b1 and hence a2R ⊆ b1R, a2R = a1R ∩ b1R.

Moreover, if A′′ = a3R ⊕ · · · ⊕ anR, then

[A′][A] = [a2R ⊕ A′′][a1R ⊕ a2R ⊕ A′′] = [a2R ⊕ a2R ⊕ 3A′′] + [A′′]2 = · · ·
= [2a2R ⊕ 4a3R ⊕ · · · ⊕ (2n − 2)anR],

[B]2 + [B] = [2b1R ⊕ 4b2R ⊕ · · · ⊕ (2m)(bmR)].
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Therefore,

m∑
k=1

2k[bkR] +
n∑

i=2

(2i − 2)[aiR] = 2[a1R ∩ b1R]

+ 2
n∑

i=2

[aiR ∩ b1R] + 2
m∑

k=2

[a1R ∩ bkR] + 2
n,m∑

i,k=2

[aiR ∩ bkR].

But aiR ∩ b1R = aiR, for 2 ≤ i ≤ n and a2R = a1R ∩ b1R, so cancellating both parts
we have

m∑
k=1

2k[bkR] +
n∑

i=3

(2i − 4)[aiR] = 2
n∑

i=2

[aiR ∩ b2R] + 2
m∑

k=2

[a1R ∩ bkR]

+ 2
n,m∑

i=2,k=3

[aiR ∩ bkR].

Again, using the equality of the highest terms we have that b1R + a3R = a1R ∩ b2R and
hence b1R ⊆ a1R, b1R = b2R. Using the fact that a1R ∩ BkR = bkR, for 1 ≤ k ≤ m,
we can obtain a simplification

4[b2R] +
m∑

k=3

(2k − 2)[bkR] +
n∑

i=4

(2i − 6)[aiR] = 2[a2R] + 2
n,m∑

i=2,k=3

[aiR ∩ bkR].

The equality of the highest terms implies that a2R = b1R = b2R and hence the
combination [A] − [B] is not written in the reduced form. The obtained contradiction
implies that A′ = 0 and A = aR, for some a ∈ R. Then, ([aR] − [B])2 = [aR] − [B]
implies that

[aR] + [B]2 + [B] = [aR] + 2[aR][B]

and hence

m∑
k=1

(2k)[bkR] = 2
m∑

k=1

[aR ∩ bkR].

Since the both parts of the latter equality are already written in the SNF, then b1R =
aR ∩ b1R. Therefore, b1R ⊆ aR and hence

m∑
k=1

(2k)[bkR] = 2
m∑

k=1

[bkR].

The number of terms in the LHS is m2 + m and in the RHS is 2m. Since we have
assumed that [B] is in the reduced form then the only possible case is m2 + m = 2m
and hence m = 1.
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So, any idempotent [A] − [B] can be written as [A] − [B] = [aR] − [aR ∩ bR], where
aR ⊇ bR or equivalently

[A] − [B] = [aR]([R] − [bR]).

The lemma is proved. �
LEMMA 5. [A] is an invertible element of K ′

0(R) if and only if [A] = [R].

Proof. Let [A]([C] − [D]) = [R] and [C] − [D] is written in the reduced form. Then,
[A][C] = [R] + [A][D] and hence the equality of the highest terms implies that a1R ∩
c1R = R. The latter implies that a1R = c1R = R. Suppose that A = R ⊕ A′, C = R ⊕
C′, C′ �= 0. Then,

[A′] + [C′] + [A′][C′] = [D] + [A′][D]

implies that a2R + c2R = d1R. Let A′ = a2R ⊕ A′′, C′ = c2R ⊕ C′′, D = (a2R +
c2R) ⊕ D′.

After the substitution, we will obtain

[a2R] + [A′′] + [c2R] + [C′′] + [a2R ∩ c2R] + [a2R][C′′] + [c2R][A′′]
+ [A′′][C′′] = [a2R + c2R] + [D′] + [a2R + c2R][A′] + [a2R + c2R][D′]

and hence

[a2R + c2R] + 2[a2R ∩ c2R] + [A′′] + [C′′] + [a2R][C′′] + [c2R][A′′]
+ [A′′][C′′] = [a2R + c2R] + 2[D′] + [a2R] + [A′′].

After the cancellation of the equal terms in the both sides, we will have

2[a2R ∩ c2R] + [C′′] + [a2R][C′′] + [c2R][A′′] + [A′′][C′′] = 2[D′] + [a2R].

Then, a2R ∩ c2R = a2R + d2R and d2R ⊆ a2R. Moreover, a2R ∩ c2R = a2R and
a2R ⊆ c2R. Thus, we conclude that d1R = a2R + c2R = c2R and so the combination
[C] − [D] is not written in the reduced form. The obtained contradiction implies
that C′ = 0 and c2R = 0. Thus, [A′] = [A′][D] + [D] and hence a2R = d1R. Therefore,
[a2R] + [A′′] = ([a2R] + [A′′])([a2R] + [D′]) + [a2R] + [D′] implies that [a2R] + 2[D′] +
[A′′][D′] = 0 and hence a2R = 0. As a result, we have that [A] = [R]. �

LEMMA 6. If the highest terms of [A], [B] ∈ K ′
0(R) are coprime and have zero

intersection, then [A] − [B] ∈ U(K ′
0(R)) if and only if [A] − [B] = [R] − 2[xR], for some

[xR] ∈ K ′
0(R).

Proof. Suppose that [A] − [B] ∈ U(K ′
0(R)). Then, [A]2 + [B]2 = ([A] − [B])2 ∈

U(K ′
0(R)) and by Lemma 5 [A]2 + [B]2 = [R]. The first and the second terms of

[A]2 + [B]2 are a1R + b1R, a2R + a1Rb1R + b2R and by Theorem 6 we obtain that
a1R + b1R = R and a2R + b2R = a2R + a1Rb1R + b2R = 0. Then, a2R = b2R = 0
and [A] − [B] = [aR] − [bR], for some coprime elements a, b ∈ R. So, [A] − [B] =
[aR ⊕ bR] − 2[bR] = [(aR + bR) ⊕ (aR ∩ bR)] − 2[bR] = [R] − 2[bR]. The lemma is
proved. �

PROPOSITION 4. A ring K ′
0(R) is a reduced, that is there are no nonzero nilpotent

elements.
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Proof. Suppose that [A] − [B] ∈ K ′
0(R) is a nilpotent element such that

([A] − [B])2 = [0].

Then, [A]2 + [B]2 = 2[A ⊗R B]. By Theorem 6, this equality is equivalent to the fact
that SNF of (A ⊗R A) ⊕ (B ⊗R B) and (A ⊗R B) ⊕ (A ⊗R B) are equal. But the highest
term of the right-hand side is a1R ∩ b1R and a1R + b1R of the left-hand side. Then

a1R, b1R ⊆ a1R + b1R = a1R ∩ b1R ⊆ a1R, b1R.

Hence, a1R = b1R and they can be cancellated in the expression [A] − [B]. Continuing
this process, we obtain that [A] − [B] is simply [X ] = [x1R ⊕ · · · ⊕ xkR] such that
[X ]2 = 0.

But the highest term of [X ]2 is x1R and it is zero, so the whole [X ] and [A] − [B]
are [0]. So, K ′

0(R) is a reduced ring. The proposition is proved. �
In a case when R is a commutative von Neumann regular ring, the structure of a

ring K ′
0(R) becomes rather simple. Suppose that a ∈ R. Then, there is x ∈ R such that

a2x = a and

aR ∼M (1 − ax)R.

Indeed, (1 − ax) ∈ Ann(a), and 0 = Ann(aR + (1 − ax)R) = Ann(a) ∩ Ann(1 − ax),
hence if aR ∼M bR, 1 − axR ∼M cR then bc = 0 and b ∈ Ann(c) = (1 − ax)R. The
las implies that (1 − ax)R = Ann(a). Then

aR + Ann(a) = R, aR ∩ Ann(a) = aR ∩ (1 − ax)R = aR · (1 − ax)R = 0.

Thus, if [A] − [B] ∈ K ′
0(R), then

[A] − [B] =
[

n⊕
i=1

aiR

]
+
⎡
⎣ m⊕

j=1

Ann(bj)

⎤
⎦−

m∑
j=1

[bjR ⊕ Ann(bj)] = [A′] − m[R]

for some [A′] ∈ K ′
0(R). In other words, we have obtained the following result.

PROPOSITION 5. If R is a commutative von Neumann regular ring, then

K ′
0(R) = {[A] − m[R]|m ≥ 0, A = a1R ⊕ · · · ⊕ anR,∀i : a2

i = ai}.

The latter result is rather important since it has a connection with the usual Grothendieck’s
group K0(R) of a von Neumann regular ring R.

THEOREM 8. If R is a commutative von Neumann regular ring, then

K0(R) = K ′
0(R).

Proof. Since any von Neumann regular ring is an exchange one then by [16]
any finitely generated projective module is a direct sum of principal idempotent
ideals. Conversely, any principal idempotent ideal is a projective module, so are their
direct sums. Therefore, K0(R) = K ′

0(R) since their generators coincide. The theorem is
proved. �
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The main advantage of the weak Grothendieck group is the fact that it always
becomes a commutative ring. Looking forward, it is an open question how to construct
a ring K ′

0(R) in a case of noncommutative ring R, even for unit-regular rings. These
rings are two-sided morphic and every matrix over unit-regular ring is equivalent to
some diagonal matrix. The construction of K ′

0(R) and its connection with K0(R) can
help to solve an open problem of Goodearl [6]: is K0(R) of simple unit-regular ring
necessarily strictly unperforated?

THEOREM 9. If R is a commutative elementary divisor ring, then

K0(R) ⊆ K ′
0(R).

Proof. Any finitely generated projective module over R is a finitely presented one
and it decomposes into a direct sum of cyclically presented modules, so generators of
K0(R) are among the generators of K ′

0(R). The theorem is proved. �
It is known that for any projective module P over a ring R there are some free

R-module F and a submodule Q of F such that

P ⊕ Q = F.

Thus, as any element of K ′
0(R) can be expressed in form [P1] − [P2] then

[P1] − [P2] = [P1 ⊕ Q2] − [P2 ⊕ Q2] = [P1 ⊕ Q2] − n[R],

where P2 ⊕ Q2
∼= RN and we conclude that the studying of the structure of K ′

0(R) help
to understand the Grothendieck’s group K0(R).
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