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Abstract

Inequalities for spatial competition verify the pair approximation of statistical
mechanics introduced to theoretical ecology by Matsuda, Satō and Iwasa, among others.
Spatially continuous moment equations were introduced by Bolker and Pacala and use a
similar assumption in derivation. In the present article, I prove upper bounds for the kth
central moment of occupied sites in the contact process of a single spatial dimension.
This result shows why such moment closures are effective in spatial ecology.
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1. Introduction

Moment closure methods interest theoretical ecologists and mathematical scientists
studying spatially mediated effects of adaptive dynamics in both continuous and
discrete space [8]. Despite some effort aimed at defining formal properties of these
techniques [18, 27], the approximations required to produce the resulting system
of equations in continuous or discrete space often rely on heuristics. Nonetheless,
there have been many successful achievements supported by computer simulation
within these empirically validated frameworks [3, 14, 19, 20]. The analysis of
spatial ecological models has consolidated in recent years throughout the literature
of mathematical biology with some closures derived from variational principles.
Similar modelling techniques with improved rigor were developed in metapopulation
dynamics by Ovaskainen and Cornell [31], and in theoretical population genetics
by Barton et al. [2]. The analysis by Ovaskainen and Cornell [31] is restricted to
the equilibrium covariance structure of occupancy probabilities and studies stochastic
perturbation dynamics about the deterministic, nonspatial mean-field theory. Barton
et al. [2] use improved diffusion approximations for a stepping-stone model of
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migration, or structured coalescent process, that yield a set of stochastic partial
differential equations from which are derived classical results of Malécot on
probabilities of identity by descent. Raghib et al. [34] justify a moment closure for
a point process using constrained maximum entropy arguments.

Many of the pioneering applications of pair approximation to modelling adaptive
dynamics in discrete space are reviewed by Rand [35]. Matsuda et al. [26] studied
altruism as an evolutionary stable strategy with an individual-based statistical
mechanics extension of the grouped (or nonindividual) dynamics in a Lotka–Volterra
type model. Satō et al. [37] discovered that explicit space allows a pathogen-driven
extinction region to appear in the phase diagram of the dynamics when nearest
neighbour local interactions are included with the mean-field or global densities of
a Lotka–Volterra type model. Harada and Iwasa [17] found that the dynamics of
pair approximation correctly predicts that an optimal fraction of plant reproductive
resource allocation between vegetative reproduction and seed production maximises
the plant’s equilibrium abundance, when compared with computer simulations of the
full model. Those are pair-approximation results that the corresponding mean-field
model fails to predict.

Analytically tractable spatial models of adaptive dynamics are often obtained by
asymptotically approximating the entire model, which usually results in differential
equations being formulated. By employing various asymptotic techniques, progress
has been made in rigorous spatial modelling that is relevant to biological populations;
see the review by Krone [23]. There is a loss of explicit spatial structure under these
approximations that is still appealing, since it renders the problem more tractable
in terms of either hydrodynamic equations or mean-field limit theorems. However,
interacting particle system mathematics provides tools with which to formulate
applied probabilistic ecological models where the effects of explicit spatial structure
can be studied [10]. Adapting explicitly spatial probabilistic analysis, although
more technically demanding and a domain of applied mathematicians, is useful for
theoretical ecology [7, 29, 30].

The original spatial moment equations in ecological modelling that were proposed
by Bolker and Pacala [4] are for a single species in a single spatial dimension. There
is an established tradition of ecological modelling with spatial logistic equations [24],
and this context also remains of interest to probabilistic analysts [12]. The results
of the present article are obtained in this simple spatial arena and with simple rules
of dispersal and mortality. This new approach justifies the main assumption of the
moment closure technique. The proof developed in this article is of a technical level
that requires some training in probability to follow, however the consequence of the
result will be clear to mathematically inclined ecologists. This is an initial result that
brings rigour to the moment closure and pair-approximation strategies for explicitly
spatial ecological modelling.

The main assumption made in the derivation of the moment equations is that the
third central moments remain negligible at the onset of spatial structure [5, 6, 33],
where dispersal changes from infinite, or global, to finite. In lattice-based ecological
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models, the local conditional probability of a site being occupied, given the state of
two adjacent sites, is assumed to depend only on the state of one of the given sites.
Whereas pair correlations are considered significant, correlations between three or
more sites are assumed to be negligible, hence the name pair approximation [36]. Pair
approximation is not obtained as a long-range limit, since both local and global site
occupancy are connected by a feedback from local dispersal, which affects successful
colonization due to cluster formation.

The moment equations that have developed in the literature of mathematical
ecology use a competition kernel to determine establishment probabilities [8], and
thereby impose an implied spatial structure on the system. Establishment and mortality
probabilities are modelled similarly as functions of local density in the methods of
Bolker and Pacala [4, 5]. The interacting particle system here replaces the competition
kernel with the actual spatial structure of the environment. It does this by suppressing
births when the offspring is sent to a site that is already occupied, and thus density-
dependent establishment results.

In this article, the ingredients of the adaptive dynamics are those of the contact
process, namely individual birth and death rates, and density-dependent establishment,
which are components of the ecological models described above. I show that the
crucial assumption of moment closure (that spatial structure is weak but not negligible)
can be expressed as a function of the birth rate and the offspring dispersal range.
The main theorem in the next section is thus a basic measure for a Bolker–Pacala or
Dieckmann–Law power-1 closure and is generalised for k-plets in the contact process.

2. A theorem for moment closure

2.1. The contact process and its dual The contact process with finite range is the
interacting particle system on which the results here are introduced. This process lives
on a rescaled integer lattice (1/M)Z, where Z is the set of all integers and M is an
integer constant, although not necessarily a large constant. Each initially occupied
site’s offspring percolate throughout the lattice in continuous time. The complete set
of occupied sites, or particles, at time t is denoted by Mξ

µ
t , where µ describes the

distribution of the initial configuration throughout the lattice. The rules of percolation
are as follows:

(i) each particle dies at rate 1;
(ii) a particle living at site x ∈ (1/M)Z attempts to give birth to another particle at

rate β, sending the new particle to a new site chosen uniformly at random from
sites located in [x − 1, x + 1);

(iii) the birth is suppressed if the chosen site is already occupied.

Note that Mξ
µ
t is a subset of (1/M)Z. The number of particles within an interval of

the type described in (ii) is determined by M. Thus, the parameter M describes the
dispersal range of the process over which parents can attempt to place their offspring.

Define uM(t, x) = P(x ∈ Mξ
µ
t ); translation invariant initial conditions are assumed

here by taking the initial configuration’s distribution µ to be product measure.

https://doi.org/10.1017/S1446181113000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000266


58 P. F. Slade [4]

A ‘graphical representation’ allows the evolution of the process to be traced forwards
or backwards in time. The connection between the contact process, its reverse time
dual and a branching random walk is well established [9, 38]. Rather than essentially
reproducing those descriptions, only the necessary properties are mentioned here. The
Mξ

µ
t above is defined with respect to the measure µ, although my notation is adjusted

slightly in parts of this article that are made clear from the context. A special property
of the contact process is self duality, which states that for fixed sets (of sites) A, B,

P(MξA
t ∩ B , ∅) = P(M ξ̃B

t ∩ A , ∅),

where M ξ̃B
t is equal in distribution to MξB

t . It will be necessary later to start the dual
from a single occupied site x, and this is denoted by M ξ̃x

t . Note that the time parameter
used here is that of forward time, and dual time therefore runs from t down to 0.

Consider a copy of Mξx
t that counts only birth events by ignoring death events, and

then denote this copy by Mηx
t . The corresponding branching process is known as the

Yule process [13]. The contact process has a further restriction in that birth events
which attempt to place offspring onto an already occupied site are suppressed. The
dual of this process can be contained in an influence set [9], which is a super-dual
process, although the full construction details of the influence set are not necessary
here. The dual process adds new particles at successful birth events and removes
particles at deaths, whereas the influence set ignores deaths and only accumulates
particles (at successful births). The use of influence sets simplifies the calculation
of the probability of collisions between multiple dual processes, since the influence
set can be coupled to a branching process. This coupling results from the fact that
collisions within a single dual will occur with probability zero as the dispersal range
tends to infinity [9, 28]. The influence sets constructed by only counting successful
births, and the associated branching processes, will dominate the dual processes;
especially so for a finite dispersal.

Most interacting particle systems have intractable dual processes. For this reason,
my probability calculations utilize influence sets rather than dual processes. The proof
is thus made robust to model choice. Obtaining an accurate upper bound on the
collision probability requires knowing how the size of the influence set grows, and
distinguishing between the types of collisions that can occur. Sections 2.2 and 2.3
allow a more direct derivation that leads to better precision when calculating collision
probabilities in Section 2.4. The proof sheds some light on the problem itself and is
not merely of a technical nature.

2.2. Central moments of degree k A previous criterion conjectured to yield a
nonzero value of the kth central moment of occupancy probabilities was that of having
at least k − 1 collisions within a pair of duals [38], but this is shown here to be
incorrect. A stronger criterion would require k − 1 collisions among the corresponding
k dual processes, however this is still not strong enough for the conjecture to hold.
To correct the previous conjecture I use much of the same notation and terminology.
My approach is also similar in spirit, yet more precise, and a new generalization is
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obtained. I prove a new theorem that sharpens the upper bound for the kth central
moments, which yields a square root of the conjectured factor M−k.

T 2.1. Define γxi
M ≡

Mξ
µ
t (xi) − uM(t, xi). There exist constants C2,C3, . . . ,Ck

(dependent on T) such that for all t ∈ [0, T ]:

(i) E[γx1
Mγ

x2
M] ≤

C2

M
;

(ii) E[γx1
Mγ

x2
Mγ

x3
M] ≤

C3

M2
;

(iii) E[γx1
Mγ

x2
Mγ

x3
Mγ

x4
M] ≤

C4

M2
.

Furthermore, the kth central moment is restricted as follows:

E
[ k∏

i=1

γxi
M

]
≤


Ck

M(k+1)/2
for k odd,

Ck

Mk/2
for k even.

Note that distinct sites are considered here and xi , x j. The theorem is proven
in Sections 2.3 and 2.4, where the constants of proportionality up to k = 6 are
shown. I note that the order of magnitude in Theorem 2.1(i) and (ii) with respect
to M are unchanged from Lemma 2.2 in the paper by Swindle [38], and his
argument does roughly justify the finiteness of the constants of proportionality.
Therefore, all subsequent results of that paper dependent on the order of magnitude
of Theorem 2.1(ii) will remain valid, and the same applies for the results of Durrett
and Neuhauser [28]. These works develop asymptotic results based on long-range
(dispersal) limits of particle dynamics; see also a second paper of Durrett and
Neuhauser [11] for fast-stirring (motion) limits. In fact, their rescaling argument
involves fast stirring of particles between lattice sites that converges in a limiting
process to a Brownian-like motion of the particles. This is comparable to taking
a long-range limit such as in the first paper of Durrett and Neuhauser [28], in the
sense that explicit spatial structure is lost. As was pointed out by Anderson and
Neuhauser [1], “A consequence of [these limits] is that neighboring sites become
independent, which greatly simplifies the analysis, but removes spatial effects that
are due to spatial correlations.”

The duality relation yields the following equation for development of the method
of proof of the theorem:

P(x < ξµt ) = P(ξµ0 ∩ ξ̃
x
t = ∅) = E

[∏
z∈ξ̃x

t

(1 − uM(0, z))
]
.

Thus, the probability of a site being unoccupied is equal to a product, taken over
the dual of the site, of the probabilities of having been initially unoccupied. This
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can be applied to show that the central moment of a collection of sites x1, x2, . . . , xk

can be expressed in terms of the probabilities of the duals of those k sites being
initially unoccupied [38]. This approach yields a criterion for calculation of the central
moments that can be phrased in terms of collisions between the duals.

Firstly, modified duals will be required that depend on an increasing number of
the collection of duals being considered. Collisions between a pair of duals occur at
particular spatial locations and times. To make this concrete, let

IM[T, x, y] = {(s, z) : 0 ≤ s ≤ T, M ξ̃x
s (z) = M ξ̃

y
s(z),

and either

[M ξ̃x
s−(z) = 0, M ξ̃

y
s−(z) = 1] or [M ξ̃x

s−(z) = 1, M ξ̃
y
s−(z) = 0]}.

Define a hierarchy of modified dual processes that eliminate redundancies by
forming a partition of the particles within the k dual processes under consideration:
• χx1

t is an independent copy of M ξ̃x1
t , and its own particles are unaffected by

collisions;
• χx2

t is an independent copy of M ξ̃x2
t , and let ζ(x1,x2)

t be a modified version of the
copy such that its particles are annihilated by collisions with particles of χx1

t ;
• χx3

t is an independent copy of M ξ̃x3
t , and let ι(x1,x2,x3)

t be a modified version of
the copy such that its particles are annihilated by collisions with particles of χx1

t
and χx2

t .
Continuing as follows, χxk

t is an independent copy of M ξ̃xk
t , and let κxk

t be a modified
version of the copy such that its particles are annihilated by collisions with particles of
χx1

t , χ
x2
t , . . . , χ

xk−1
t .

It is convenient to define the following random variables:

f x ≡
∏
z∈χx

t

(1 − uM(0, z)),

gx
y ≡

∏
z∈ζ x,y

t

(1 − uM(0, z)),

hx
y,y′ ≡

∏
z∈ι(x,y,y′)

t

(1 − uM(0, z)),

ix ≡
∏
z∈κx

t

(1 − uM(0, z)).

Writing these out according to expressions obtained from the duality relation yields,
for instance,

P(x1 <
Mξ

µ
t ) = E[ f x1 ],

P(x1 <
Mξ

µ
t , x2 <

Mξ
µ
t ) = E[ f x1 gx2

x1
],

P(x1 <
Mξ

µ
t , x2 <

Mξ
µ
t , x3 <

Mξ
µ
t ) = E[ f x1 gx2

x1
hx3

x1,x2
].
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Under generalization to a collection of duals, note that the f xi for i = 1, . . . , k
are independent. Other members of the hierarchy of duals are dependent due to
the modification procedure. Now, armed with this representation, the relationship
between the central moments and collisions between duals is made precise in the next
subsection.

2.3. Precise resolution of central moments Intuitively, no dual can be independent
of the others in the central moment since first central moments are identically zero,
and in the product the expectation would then trivially collapse. Any dual whose
percolation up to time T has avoided collision has therefore percolated in a mutually
exclusive way from the other duals, even though it had the possibility of collision. Self
collision that occurs within a dual causes the corresponding birth to be suppressed,
but it does not cause a collision with another dual process. I show how, up to time
T , nonzero central moments of degree k result when none of the k duals have avoided
collision within the group of k duals.

Consider the third central moment. Then the hierarchy of duals consists of only
three tiers; the function ix is omitted and the subscripts in hx

y,y′ can be dropped. The
following equation is also arrived at by Swindle [38], except for the replacement of the
correct signs in the sum:

E[γx1
Mγ

x2
Mγ

x3
M] = E[− f x1 gx2

x1
hx3 + f x1 gx2

x1
f x3 + f x1 gx3

x1
f x1 + f x2 gx3

x2
f x1 − 2 f x1 f x2 f x3 ].

When |I[x, y, T ]| = 0 there is pairwise independence as no duals collide. Promotions
in the hierarchy of duals result: hx3 ≡ f x3 and gxi

x j
≡ f xi ; the expectation above cancels

to a zero sum. When |I[x, y, T ]| = 1, one pair collides once only. The promotions in
this case depend on which particular pair collides. For instance, if it is x2 and x3 that
collide then hx3 ≡ gx3

x2
, gx3

x1
≡ f x3 and gx2

x1
≡ f x2 . The expectation collapses to zero in any

case, whichever pair it is that does collide.
Performing calculations that extend the approach taken above, the fourth central

moment is written out by definition and, after taking complements, a similar equation
is found. The next equation describes the fourth central moment and suggests the true
criterion to ensure nonzero central moments:

E[γx1
Mγ

x2
Mγ

x3
Mγ

x4
M] = E[− f x1 gx2

x1
hx3

x1,x2
ix4 + f x1 gx2

x1
hx3

x1,x2
f x4 + f x1 gx2

x1
hx4

x1,x2
f x2

+ f x1 gx3
x1

hx4
x2,x3

f x2 + f x2 gx3
x2

hx4
x2,x3

f x1 − f x1 gx2
x1

f x3 f x4 − f x1 gx3
x1

f x2 f x4

− f x1 gx4
x1

f x2 f x3 − f x2 gx3
x2

f x1 f x4 − f x2 gx4
x2

f x1 f x3 − f x3 gx4
x3

f x1 f x2

+ 3 f x1 f x2 f x3 f x4 ].

The first two cases are identical to those in the preceding paragraph. When
|I[x, y, T ]| = 0 or |I[x, y, T ]| = 1 the expectation collapses to zero. When |I[x, y, T ]| = 2
there are two pairwise collisions. However, the particular duals involved determine
whether the expectation collapses or not. For instance, assuming the collisions occur
between x1 and x2, and between x1 and x3, the promotions are as follows: ix4 ≡ f x4 ,
hx3

x1,x2
≡ gx3

x1
, hx4

x1,x2
≡ f x4 , hx4

x1,x3
≡ f x4 , gx3

x2
≡ f x3 , hx4

x2,x3
≡ f x4 , gx4

x1
≡ f x4 , gx3

x2
≡ f x3 , gx4

x2
≡

f x4 and gx4
x3
≡ f x4 . In that case, the expectation does indeed collapse to zero. In contrast,
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assuming the colliding pairs are x1, x2 and x3, x4, the promotions are the same as above
except for the following: ix4 ≡ gx4

x3
, hx3

x1,x2
≡ f x3 , gx3

x1
≡ f x3 , hx4

x1,x3
≡ gx4

x3
, hx4

x2,x3
≡ gx4

x3
and

gx4
x3

= gx4
x3

(identical). In this case, the expectation above is

E[− f x1 gx2
x1

f x3 gx4
x3

+ f x1 gx2
x1

f x3 f x4 + f x1 f x3 gx4
x3

f x2 − f x2 f x4 f x1 f x3 ] , 0

and the fourth central moment has not collapsed. Thus I have a counter-example to
the criterion for the collapse of all central moments as being the number of collisions
between a pair of duals. Replacing the pair with a collection of duals does not prevent
the same failure.

Proceeding similarly to the central moment of degree k, it can be shown that

E[γx1
Mγ

x2
M · · · γ

xk
M] = E[− f x1 gx2

x1
hx3

x1,x2
ix4
x1,x2,x3

· · · ωxk

+ f x1 gx2
x1

hx3
x1,x2
· · · φxk−1

x1,x2,...,xk−2
f xk + f x1 gx2

x1
hx3

x1,x2
· · · φxk

x1,x2,...,xk−2
f xk−1

+ · · · − f x1 gx2
x1

hx3
x1,x2
· · · ψxk−2

x1,x2,...,xk−3
f xk−1 f xk

− f x1 gx2
x1

hx3
x1,x2
· · · ψxk−1

x1,x2,...,xk−3
f xk−2 f xk − · · ·

+ − · · · + (−1)k f x1 f x2 · · · f xk ]. (2.1)

Observe that identical terms arise and can be collected with coefficients of alternating
sign according to the binomial theorem. That is, the expectation has the following
form: there is a unique term of the first type shown above; k distinct terms of the
second type in which each term contains two members at the top tier of the hierarchy
of modified duals;

(
k
2

)
distinct terms of the third type in which each term contains three

members at the top tier; and so on, where the final term consists only of members at
the top tier of the hierarchy. Note that the final term just described and the terms of
the penultimate type will be the same, and so the final term cancels one of them out.
Thus, (−1)k−1(k − 1) f x1 f x2 · · · f xk is the sum of the final term and penultimate terms,
and is the actual final term of the expectation.

Promotions in the hierarchy of modified duals result from nominating certain
duals to have avoided all collisions, up to a fixed time T . It can be shown by
examining the consequences of an increasing number of particular duals that have
avoided collision that a symmetry arises in the right-hand side of (2.1). There is a
symmetric precipitation of terms that are promoted and that subsequently cancel out
of the right-hand side of (2.1). These cancellations leave no remaining terms and the
expectation collapses to zero without exception whenever promotions arise. Once each
of the k duals are involved in at least one collision with some other dual there are no
promotions. In this case, the first term on the right-hand side of (2.1) is unique and
therefore the central moment cannot be zero.

2.4. The constants of proportionality in the theorem In Section 2.3, it was shown
how promotions that result from collisions among the hierarchy of modified duals
determine whether or not the kth central moment is negligible. More specifically,
to avoid the collapse of the central moment, a certain number of targeted collisions
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must be accumulated. These targeted collisions involve pairs of newly colliding duals,
or colliding pairs in which only one of the duals had so far avoided any collisions.
The minimum number of targeted collisions that leaves no dual having avoided a
collision is k/2 when k is even, and (k + 1)/2 when k is odd. This is equivalent to
the minimum number of targeted collisions that would yield a nonzero value of the
kth central moment. A threshold results over which the central moments are rendered
nonzero. That is, using an indicator function I,

E[γx1
Mγ

x2
M · · · γ

xk
M] =

E[γx1
Mγ

x2
M · · · γ

xk
M I{≥k/2 targeted collisions}] for k even,

E[γx1
Mγ

x2
M · · · γ

xk
M I{≥(k + 1)/2 targeted collisions}] for k odd.

In both cases, |E[γx1
Mγ

x2
M · · · γ

xk
M]| ≤ 1 by definition, for all k. Therefore, the expectations

on the right-hand side above cannot be greater than P(≥k/2 targeted collisions), and
P(≥(k + 1)/2 targeted collisions), respectively.

As discussed in Section 2.1, each dual corresponds to a single particle initially, and
the number of particles present in the dual after some time T is dominated by a Yule
process. In the Yule process, starting from a single particle, the number of particles
present after a fixed time T has a negative binomial distribution with parameters
(1, e−βT ) [13]. Note that the probability of a collision between a pair of duals is
highest when they both start from adjacent locations on the lattice, since they then
share the highest number of potential sites for each other’s offspring. By assuming that
all offspring of an original particle remain within its own dispersal range, after m births
the proportion of sites occupied by the dual is at most (m + 1)/(2M) [38]. Therefore,
the conditional probability of a collision between a pair of duals, given that m births
have occurred, is at most E(m(m + 1)/2M), in which m has the negative binomial
distribution mentioned above. It is convenient to have omitted multiplication of the
probability of the noncolliding birth events from this upper bound, since a decrease in
the probabilistic bound and a more complicated expression would result. This bound
is calculated under the assumption that collisions are rare, as is the case when M is
fairly large. This is a reasonable way of characterizing the build up of collisions,
which yield nonnegligible higher-order correlations, when dispersal is substantial but
not (asymptotically) long range. Evaluating this expectation yields e2βT/M. Collisions
with particles of other duals do not count for this calculation and can be ignored
without loss of generality of the upper bound.

Exact collision probabilities depend on the history of the process. Collisions
occur sequentially and can be treated independently by taking the probability of
each collision as the maximal value calculated in the preceding paragraph. Other
nontargeted collisions can also be ignored without loss of generality in this way. At a
collision event the probability of it being a targeted collision is found combinatorially,
with a uniform distribution over the particular pairs involved. Namely, calculate a
quotient in which the denominator is the number of ways of forming j collisions in

total,
(

k
2

) j
, when j targeted collisions have occurred.
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The kth central moment remains zero until each of the k modified duals is involved
in at least one collision with another dual in the group. The very first collision is
always a pairwise targeted collision, and therefore this first targeted collision occurs
with probability e2βT/M. This is an upper bound for the second central moment, and
C2 = e2βT in Theorem 2.1. There are two cases in general. Let i denote the number of
single targeted collisions, and recall that these are targeted collisions where one newly
colliding dual is involved. When k is odd, i = 1, 3, 5, . . . , k − 2, and when k is even,
i = 0, 2, 4, . . . , k − 2. Let di denote the conditional probability of the total number of
targeted collisions (k + i)/2. When k ≥ 3 is odd,

P(≥(k + 1)/2 targeted collisions) ≤
e(k+1)βT

M(k+1)/2

[ (k + 1)(k − 1)!
2[k(k − 1)](k−1)/2

+ d3
e2βT

M
+ d5

e4βT

M2

+ · · · +
(k − 1)!(k − 2)!(

k
2

)k−2

e(k−3)βT

M(k−3)/2

]
, (2.2)

in which there are (k − 1)/2 coefficients and d1, dk−2 are shown. Note that when k = 3,
only the first term in the sum on the right-hand side above is required. When k ≥ 4 is
even,

P(≥k/2 targeted collisions) ≤
ekβT

Mk/2

[ (k − 2)!
[k(k − 1)]k/2−1

+
(k − 1)!k2(k2 − 4)

8[k(k − 1)]k/2

e2βT

M

+ d4
e4βT

M2
+ · · · +

(k − 1)!(k − 2)!(
k
2

)k−2

e(k−2)βT

Mk/2−1

]
, (2.3)

in which there are k/2 coefficients and d0, d2, dk−2 are shown. I have shown the
coefficients up to and including that of the sixth central moment. Calculating higher-
order coefficients is, in principle, straightforward using the combinatorial approach as
above.

Essentially, the exponential quantity described above needs to be calibrated as the
average number of offspring surviving an individual after T units of time, where
offspring can be displaced M units away from a parent. This yields values of
e2βT/M� 1 in many situations. At the onset of spatial structure, when M is still quite
large but e2βT/M remains significant, it is now clear that the bound on the third central
moment 2e4βT/(3M2) will indeed often be negligible.

3. Polynomial density dependence

Allowing for nonlinear competitive interaction is another piece of the ecological
puzzle, and is likely to allow new spatio-temporal mechanisms to be found [7].
Consider a polynomial density-dependent fecundity or establishment. In the current
model, define fecundity as C(x, y; η) = βη(x)[1 − η(y)], where β > 0 is a constant birth
rate. This is a translation invariant fecundity. Clearly, η(x) = 1 when only occupied
sites can give birth, and η(y) = 0 for offspring placement to succeed. This is abstracted
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to a process with generalized rate functions as follows. Consider f as a polynomial
function of some collection of sites in the neighborhood about x. This collection is
{x1, x2, . . . , xn} ∈ Nx such that

C(x, x1, x2, . . . , xn, y; η) = βη(x) f (x1, x2, . . . , xn)[1 − η(y)].

Put a restriction on the polynomial rate functions such that the state of each site
examined contributes to the value of the function. Specifically, f must take the form

f (η(x1), η(x2), . . . ) =

n∏
i=1

η(xi).

For example, the contact process has C(x, y; η) = βη(x)[1 − η(y)]; the so-called sexual
reproduction process [28] has C(x, y; η) = βη(x)η(x + ε)[1 − η(y)], where ε = 1/M.

For polynomial density-dependent fecundity, an upper bound of the collision
probability for a pair of adjacent duals can be found similarly to the previous section.
Thus, the average size up to a fixed time T of the influence set, when each birth event
adds n particles, cannot be greater than enβT . An upper bound on the probability of
collisions under polynomial density-dependent fecundity can be found by adapting the
approach of the previous subsection. However, this will become decreasingly accurate
as n increases, since the effective birth rate in the resulting process is considerably
lower than the rate given above due to the constraints on the occurrence of reproduction
events.

Alternatively, density-dependent establishment may be incorporated in an identical
way. Consider sites in Ny, and redefine f =

∏n
i=1(1 − η(yi)). In this process, the

proportion of successful births is less than or equal to that of the regular duals. In
this case, the growth of the dual will be slower, and the upper bounds derived in the
previous subsection will not be exceeded.

4. Discussion

The main assumption made in spatial moment equations and pair approximation is
studied with an interacting particle system that captures the ingredients of the kinds
of models in which moment closure strategies are applied. It is shown that collisions
of duals of the contact process can be interpreted as corresponding to the value of
central moments that describe spatial structure in ecological modelling. Inequalities
are proven that describe the emergence of spatial structure in the contact process as
dispersal range decreases below the asymptotic long-range limit. I have shown that
nonnegligible central moments are more extensive than was previously thought, and
the rate of decay of the higher-order moments is over-estimated by anticipating a
zero expectation based only on the number of regular collisions among a collection
of duals.

These results provide steps toward understanding how significant higher-order
spatial correlations can build up due to a trade-off between dispersal range and
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birth rate. The benefits of looking more carefully at how collisions contribute to the
higher-order correlations is also recognized as useful in the literature of theoretical
ecology [32].

The use of influence sets has the benefit of making my results robust to complicated
dual processes that allow for deaths of particles, but in which direct calculation of
similar bounds is complex and would require consideration of the criticality of the birth
rate. I have shown that the ratio of the third to the second central moment is 2e2βT/3M,
and that an upper bound on the fourth central moment is e4βT/3M2(1/2 + e2βT/M).

An ecological outcome that the moment closure and pair-approximation techniques
currently fail to predict is competitive exclusion when inter-species competition is
more intense than intra-species competition, which leads to a phalanx strategy (see the
papers by Bolker et al. [7, p. 141] and Neuhauser [29, pp. 363–365] for discussion).
Instead, founder control is seen which simply depends upon the initial densities, and as
noted by Bolker et al. [7] this may be due to the effects of large scale spatial structure
being underestimated [21]. This is one of many areas of theoretical ecology that
suggest explicit, rather than implicit, spatial interaction and consideration of transient
spatial structure.

Adaptive dynamics in spatial mathematical models ascertain patterns observable
in biology; there are exceptions to this where such patterns are merely transient and
fragile artifacts of the models themselves [1]. Identifying these causality relationships
correctly equates to understanding more fully the role of spatial axes in ecological
interactions [22].

As Bolker [3] points out in his review, “Spatial moment equations, and also
pair approximations, eliminate the explicitly stochastic, discrete-individual nature
of the population dynamics they are meant to represent,” and “moment equations
are not technically stochastic since they represent average behavior over space or
across ensembles of similar ecological arenas.” The statistics of clusters and their
evolution under interface motion are crucial to the outcomes of competing species
dynamics [15, 16]. Extensions of moment closure techniques have been developed
to analyse detraction from spatial equilibrium in continuous space by Lewis and
Pacala [25], and in discrete space by Thomson and Ellner [39].
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