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Abstract

We consider a branching model for a population of dividing cells infected by parasites.
Each cell receives parasites by inheritance from its mother cell and independent
contamination from outside the cell population. Parasites multiply randomly inside the
cell and are shared randomly between the two daughter cells when the cell divides. The
law governing the number of parasites which contaminate a given cell depends only on
whether the cell is already infected or not. We first determine the asymptotic behavior of
branching processes in a random environment with state-dependent immigration, which
gives the convergence in distribution of the number of parasites in a cell line. We then
derive a law of large numbers for the asymptotic proportions of cells with a given number
of parasites. The main tools are branching processes in a random environment and laws
of large numbers for a Markov tree.
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1. Introduction

We consider the following model for cell division with parasite infection and state-dependent
contamination. The cell population starts from one single cell and divides in discrete time. At
each generation,

(i) the parasites multiply randomly inside the cells,

(ii) each cell is contaminated by a random number of parasites which come from outside the
cell population,

(iii) each cell divides into two daughter cells and the parasites are shared randomly between
these two cells.

We will distinguish a first daughter cell from a second daughter cell by respectively labeling
them 0 and 1. We denote by T = ⋃

n∈N
{0, 1}n the binary genealogical tree of the cell population,

by Gn the set of cells in generation n, and by Zi the number of parasites of cell i ∈ T. The
labels i0 and i1 denote the two daughter cells of cell i ∈ T.

In Section 1.1 we describe by a branching process the random multiplication and sharing
of parasites in the cell, i.e. this branching process combines (i) and (iii). In Section 1.2 we
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1060 V. BANSAYE

describe the random contamination (ii) by immigration. Finally, in Section 1.3 we combine
both in an independent and identically distributed (i.i.d.) manner to fully describe the model.

1.1. Parasite infection and cell division

For every cell, we randomly choose a mechanism for the multiplication of the parasites
inside the cell and the sharing of parasites between the offspring of the cell when it divides. This
mechanism is i.i.d. for every cell. Its distribution is specified by a random couple probability
generating function (PGF) f̂ . This means that f̂ is almost surely (a.s.) the PGF of a pair of
random variables taking values in N.

More precisely, let (f̂i)i∈T be a sequence of i.i.d. PGFs distributed as f̂ . For each cell i, f̂i

gives the reproduction law and the sharing of the parasites’ offspring in the following way. For
every i ∈ T, let (X(0)

k (i), X
(1)
k (i))k∈N be a sequence of random variables such that, conditionally

on f̂i = ĝ, (X
(0)
k (i), X

(1)
k (i))k∈N are i.i.d. with common couple PGF ĝ: for all i ∈ T, k ∈ N,

and s, t ∈ [0, 1],
E(sX

(0)
k (i)tX

(1)
k (i) | f̂i = ĝ) = ĝ(s, t).

Then, in each generation, each parasite k of the cell i gives birth to X
(0)
k (i) + X

(1)
k (i) children,

X
(0)
k (i) of which go into the first daughter cell and X

(1)
k (i) of which go into the second daughter

cell when the cell divides. This is a more general model for parasite infection and cell division
than the model studied in [8], where there was no random environment (f̂ was deterministic)
and the total number of parasites was given by a Galton–Watson process. See [15] for the
original model in continuous time.

Our model also includes the following two natural models, with random binomial repartition
of parasites. Let Z be a random variable in N, and let (Pi)i∈T be an i.i.d. random variable in
[0, 1]. In each generation, every parasite multiplies independently with the same reproduction
law Z. Thus, parasites follow a Galton–Watson process. Moreover, Pi gives the mean fraction
of parasites of the cell i which goes into the first daughter cell when the cell divides. More
precisely, conditionally on Pi = p, every parasite of the mother cell i independently chooses
the first daughter cell with probability p (and the second daughter cell with probability 1 − p).
It also contains the model that every parasite independently gives birth to a random cluster of
parasites of size Z and, conditionally on Pi = p, every cluster of parasite independently goes
into the first cell with probability p (and into the second cell with probability 1 − p).

We want to take into account the asymmetric repartition of parasites and so we do not make
any assumption about f̂ . Indeed, unequal sharing has been observed when the cell divides; see,
e.g. the experiments of Paepe, Paul and Taddei (see [20]), who infected the bacteria E. coli with
a lysogen bacteriophage M13. In Section 6.1 we consider this model, where a cell receives
parasites only by inheritance from its mother cell. We determine when the number of infected
cells becomes negligible compared to the number of cells as the number of generations tends
to ∞.

1.2. State-dependent contamination

In each generation, each cell may be contaminated by a random number of parasites,
which also multiply randomly and are shared randomly between the two daughter cells. This
contamination depends only on whether the cell already contains parasites or not.

More formally, if a cell i contains x parasites, the contamination brings Y
(0)
x parasites to the

first daughter cell of i and Y
(1)
x to the second daughter cell, where, for all x ≥ 1,

Y1 : d= Y (0)
x

d= Y (1)
x , Y0 : d= Y

(0)
0

d= Y
(1)
0 .
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Cell contamination and branching processes 1061

Here, ‘
d=’ denotes equality in distribution. Moreover, we assume that contamination satisfies

0 < P(Y0 = 0) < 1, 0 < P(Y1 = 0),

which means that each noninfected cell may be contaminated with a positive probability, but
the cells are not contaminated with probability 1.

This model contains the case where the contamination is independent of the number of
parasites in the cell (Y0 and Y1 are identically distributed). It also takes into account the case
where only noninfected cells can be contaminated (Y1 = 0 a.s.), and the case where infected
cells are ‘weaker’ and parasites contaminate them easier (Y1 ≥ Y0 a.s.). For biological and
technical reasons, we do not make Yx depend on x ≥ 1. However, the results given here could
be generalized to the case where the contamination depends on the number of parasites x inside
the cells as soon as x is less than some fixed constant.

1.3. Cell division with parasite infection and contamination

We now describe the whole model (see also Figure 1). We start with a single cell with k

parasites and denote by Pk the associated probability. Unless stated otherwise, we assume that
k = 0.

For every cell i ∈ T, conditionally on Zi = x and f̂i = ĝ, the numbers of parasites,
(Zi0, Zi1), of its two daughter cells are distributed as

x∑
k=1

(X
(0)
k (i), X

(1)
k (i)) + (Y (0)

x (i), Y (1)
x (i)),

where

(i) (X
(0)
k (i), X

(1)
k (i))k≥1 is an i.i.d. sequence with common couple PGF g,

(ii) (Y
(0)
x (i), Y

(1)
x (i)) is independent of (X

(0)
k (i), X

(1)
k (i))k≥1.

Moreover, ((X
(0)
k (i), X

(1)
k (i))k≥1, (Y

(0)
x (i), Y

(1)
x (i))x≥0) is i.i.d. for i ∈ T.

This model is a Markov chain indexed by a tree. This subject has been studied in the literature
(see, e.g. [5], [6], and [9]) in the symmetric independent case. That is, for all (i, k) ∈ T × N,

P((Zi0, Zi1) = (k0, k1) | Zi = k) = P(Zi0 = k0 | Zi = k) P(Zi0 = k1 | Zi = k).

But this identity does not hold here since we are interested in unequal sharing of parasites.
Guyon [12] proved limit theorems for a Markov chain indexed by a binary tree where asym-
metry and dependence are allowed. His theorem is the key argument used here to prove the
convergence of asymptotic proportions of cells with a given number of parasites. Indeed,
contamination ensures that the process which counts the number of parasites along the random
walk on the binary tree of the cell population is ergodic and nontrivial (see Section 5). This
ergodic property is the fundamental hypothesis of Guyon’s law of large numbers result. Let us
now introduce more precisely the process which gives the number of parasites in a random cell
line.

Let (aj )j∈N be an i.i.d. sequence independent of (Zi)i∈T such that

P(a1 = 0) = P(a1 = 1) = 1
2 .

Denote by f (0) and f (1) the random PGFs which give the laws of the size of the offspring of a
parasite which go into the first and second daughter cells, respectively:

f (0)(s) := f̂ (s, 1) a.s., f (1)(t) := f̂ (1, t) a.s., s, t ∈ [0, 1].
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Generation 0 Generation 1 Generation 2

Parasites Contamination

Division

Multiplication
of the parasite

Figure 1: Cell division with multiplication of parasites, random sharing, and contamination. Each
parasite gives birth to a random number of light parasites and dark parasites. Light parasites go into the
first daughter cell, dark parasites go into the second daughter cell, and square parasites contaminate the
cells from outside the cell population. But light, dark, and square parasites then behave in the same way.

Let f be the mixed generating function of f (0) and f (1), i.e.

P(f ∈ dg) = P(f (0) ∈ dg) + P(f (1) ∈ dg)

2
.

Then (Zn)n∈N = (Z(a1,a2,...,an))n∈N is a branching process in a random environment with
immigration that depends on whether the state is zero or not: the reproduction law is given by
its PGF f , the immigration law in zero is distributed as Y0, and the immigration law in k ≥ 1
is distributed as Y1. Thus, we first need to prove asymptotic results for this process.

2. Main results

Galton–Watson processes with immigration are well known (see, e.g. [1], [4], and [17]). If
the process is subcritical and the expectation of the logarithm of the immigration is finite, then
it converges in distribution to a finite random variable. Otherwise, it tends to ∞ in probability.
Key [13] obtained the analogous result for branching processes in a random environment with
immigration (BPREI), in the subcritical case, with finite expectation of the logarithm. Actually,
he stated results for multitype BPREI, which have been complemented by Roitershtein [18],
who obtained a strong law of large numbers and a central limit theorem for the partial sum.

In Section 4 we give the asymptotic behavior of BPREI in the critical and supercritical cases,
and the case where the expectation of the logarithm of the immigration is infinite. To obtain these
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results, we use some general statements on Markov processes (Section 3.2), classical arguments
for Galton–Watson processes with immigration (see [17], which was inspired by [1]), and the
tail of the time when a branching process in a random environment with immigration returns
to 0 in the subcritical case, which was proved in [13].

We can then state results about branching processes in a random environment, (Zn)n∈N,
with immigration that depends on whether the state is zero or not (Section 5) using coupling
arguments and the results of Section 3.2. This process gives the number of parasites along a
random cell line. Recalling that immigration in state zero is distributed as Y0 and immigration
in state k ≥ 1 is distributed as Y1, we prove the following expected result.

Theorem 1. (i) If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then there exists
a finite random variable Z∞ such that, for every k ∈ N, Zn starting from k converges in
distribution to Z∞ as n → ∞.

(ii) If E(log(f ′(1))) ≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, then Zn converges in probability
to ∞ as n → ∞.

With additional assumptions, in Section 5 we provide an estimate of the rate of convergence
of (Zn)n∈N depending on the initial state. Then, in Section 6, we prove asymptotic results on
the population of cells in generation n as n → ∞.

Firstly, we consider the case when there is no contamination, i.e. Y0 = Y1 = 0 a.s. We
determine when the organism recovers, that is, when the number of infected cells becomes
negligible compared to the total number of cells. As stated in Proposition 2, below, the recovery
occurs a.s. if and only if E(log(f ′(1))) ≤ 0. Thus, we generalize the results of Section 3 of [8]
to a random environment. Again, for any reproduction rate of parasites, we can find a necessary
and sufficient condition on the sharing of their offspring so that the organism recovers a.s.

As explained in the introduction, a natural example is the random binomial repartition of
parasites. If the reproduction of parasites is given by the random variable Z, and the random
parameter of the binomial repartition is given by P ∈ [0, 1], the almost-sure recovery criterion
becomes

log(E(Z)) ≤ E

(
log

(
1

P

))
.

Secondly, we take into account the contamination by parasites from outside the cell popu-
lation, assuming that (1) holds. We focus on proportions of cells in generation n with a given
number of parasites:

Fk(n) := #{i ∈ Gn : Zi = k}
2n

, k ∈ N. (1)

Using [12] and Theorem 1, we prove the following law of large numbers.

Theorem 2. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then, for every
k ∈ N, Fk(n) converges in probability to a deterministic number fk as n → ∞, such that
f0 > 0 and

∑∞
k=0 fk = 1. Otherwise, for every k ∈ N, Fk(n) converges in probability to 0 as

n → ∞.

Finally, in Section 7 we give the asymptotic behavior of the total number of parasites in
generation n in the case where the growth of parasites follows a Galton–Watson process and
the contamination does not depend on the state of the cell.
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3. Preliminaries

We first recall some results about branching processes in a random environment (BPRE) and
then about Markov chains, both of which will be useful to study BPREI, (Zn)n∈N. Recall that
we denote by k the initial number of parasites and by Pk the associated probability.

3.1. Branching processes in a random environment

We consider here BPRE, (Zn)n∈N, specified by a sequence of i.i.d. generating functions
(fn)n∈N distributed as f [2], [3], [19]. More precisely, conditionally on the environment
(fn)n∈N, particles in generation n reproduce independently of each other and their offspring
has generating function fn. Then Zn is the number of particles in generation n and Zn+1 is the
sum of Zn independent random variables with generating function fn. That is, for every n ∈ N,

E(sZn+1 | Z0, . . . , Zn; f0, . . . , fn) = fn(s)
Zn, 0 ≤ s ≤ 1.

Thus, denoting by Fn := f0 ◦ · · · ◦ fn−1, we have, for every k ∈ N,

Ek(s
Zn+1 | f0, . . . , fn) = E(sZn+1 | Z0 = k, f0, . . . , fn) = Fn(s)

k, 0 ≤ s ≤ 1.

When the environments are deterministic (i.e. f is a deterministic generating function), this
process is the Galton–Watson process with reproduction law N , where f is the generating
function of N .

The process (Zn)n∈N is called subcritical, critical, or supercritical if

E(log(f ′(1)))

is negative, zero, or positive, respectively. This process becomes extinct a.s.:

P(there exists n ∈ N : Zn = 0) = 1,

if and only if it is subcritical or critical [3] (see [11] for finer results).
In the critical case we make the following integrability assumption:

0 < E(log(f ′
0(1))2) < ∞, E

( [1 + log(f ′
0(1))]f ′′

0 (1)

2f ′
0(1)

)
< ∞,

so that there exist 0 < c1 < c2 < ∞ such that, for every n ∈ N (see [16]),

c1√
n

≤ P(Zn > 0) ≤ c2√
n

. (2)

See [7] for more general results in the critical case.

3.2. Markov chains

We now consider a Markov chain (Zn)n∈N taking values in N and introduce the first time T0
when (Zn)n∈N visits 0 after time 0:

T0 := inf{j > 0 : Zj = 0}.
Define

un := P0(Zn = 0), u∞ := 1

E0(T0)
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(with the convention that 1/∞ = 0). We assume that 0 < P0(Z1 = 0) < 1, and we give the
asymptotic behavior of (Zn)n∈N. The first part of Lemma 1(i),below, is the classical ergodic
property for an aperiodic positive recurrent Markov chain, and we provide an estimate of the
speed of convergence depending on the initial state. Then Lemma 1(ii) gives the null recurrent
case, which is also a classical result.

Lemma 1. (i) If, for every k ∈ N, Ek(T0) < ∞ then Zn starting from k converges in distribution
to a finite random variable Z∞, which does not depend on k and verifies

P(Z∞ = 0) > 0.

Moreover, there exists A > 0 such that, for all n, k ∈ N,∑
l∈N

|Pk(Zn = l) − P(Z∞ = l)|

≤ A
[

sup
n/2≤l≤n

{|ul − u∞|} + E0(T0 1{T0>n/4}) + Ek(T0 1{T0>n/4})
]
.

(ii) If E0(T0) = ∞ and, for every l ∈ N, Pl (T0 < ∞) > 0, then, for every k ∈ N, Zn → ∞ in
Pk-probability as n → ∞.

Proof. (i) First, note that, by the Markov property, for every n ∈ N,

|Pk(Zn = 0) − u∞| =
∣∣∣∣

n∑
j=1

Pk(T0 = j) P0(Zn−j = 0) − u∞
∣∣∣∣

≤
n∑

j=1

Pk(T0 = j)|un−j − u∞| + u∞ Pk(T0 > n). (3)

On the event {T0 ≤ n}, define Rn as the last passage time of (Zn)n∈N by 0 before time n:

Rn := sup{j ≤ n : Zj = 0}.
For l ∈ N, by the Markov property,

a Pk(Zn = l) = Pk(T0 > n, Zn = l) +
n∑

i=0

Pk(T0 ≤ n, Rn = n − i, Zn = l)

= Pk(T0 > n, Zn = l) +
n∑

i=0

Pk(Zn−i = 0) P0(Zi = l, T0 > i).

Now define

αl := u∞
∞∑
i=0

P0(Zi = l, T0 > i).

We then have

|Pk(Zn = l) − αl | ≤ Pk(T0 > n, Zn = l) + u∞
∞∑

i=n+1

P(Zi = l, T0 > i)

+
n∑

i=0

P(Zi = l, T0 > i)|u∞ − Pk(Zn−i = 0)|.
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Summing over l leads to∑
l∈N

|Pk(Zn = l) − αl | ≤ Pk(T0 > n) + u∞ E0(T0 1{T0>n+1})

+
n∑

i=0

P(T0 > i)|u∞ − Pk(Zn−i = 0)|. (4)

Moreover, using (3), we have, for all 0 ≤ n0 ≤ n,
n∑

i=0

P(T0 > i)|u∞ − Pk(Zn−i = 0)|

≤
n∑

i=0

P0(T0 > i)

(n−i∑
j=1

Pk(T0 = j)|un−i−j − u∞| + u∞ Pk(T0 > n − i)

)

≤
n∑

i=0

P0(T0 > i)

n−i∑
j=1

Pk(T0 = j)|un−i−j − u∞| + u∞
n∑

i=0

P0(T0 > i) Pk(T0 > n − i).

(5)

Finally, denoting by M := supn∈N{|un − u∞|},
n∑

i=0

P0(T0 > i)

n−i∑
j=1

Pk(T0 = j)|un−i−j − u∞|

≤ sup
n0≤l≤n

{|ul − u∞|}
n∑

i=0

P0(T0 > i)

n−i∑
j=1

Pk(T0 = j) 1{n−i−j≥n0}

+ M

n∑
i=0

P0(T0 > i)

n−i∑
j=1

Pk(T0 = j) 1{n−i−j<n0}

≤ sup
n0≤l≤n

{|ul − u∞|}
n∑

i=0

P0(T0 > i)

n−i∑
j=1

Pk(T0 = j)

+ M

n−n0∑
i=0

P0(T0 > i) Pk(T0 > n − n0 − i). (6)

Combining (4), (5), and (6), and using the facts that
n∑

i=0

P0(T0 > i) Pk(T0 > n − i) ≤ E0(T0 1{T0>n/2}) + Ek(T0 1{T0>n/2}),

n−n0∑
i=0

P0(T0 > i) Pk(T0 ≥ n − n0 − i) ≤ E0(T0 1{T0>(n−n0)/2}) + Ek(T0 1{T0>n−n0)/2}),

we obtain, for all 0 ≤ n0 ≤ n,∑
l∈N

|Pk(Zn = l) − αl | ≤ Pk(T0 > n) + u∞ E0(T0 1{T0>n+1}) + sup
n0≤l≤n

{|ul − u∞|} E0(T0)

+ [u∞ + M][E0(T0 1{T0>(n−n0)/2}) + Ek(T0 1{T0>(n−n0)/2})]. (7)
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As P0(Z1 = 0) > 0, by the renewal theorem [10], un → u∞ as n → ∞. Adding that
Ek(T0) < ∞ and E0(T0) < ∞ ensures that

∑
l∈N

|Pk(Zn = l) − αl | → 0 as n → ∞,

which proves that Zn starting from k converges in distribution to a random variable Z∞ that
does not depend on k.

The inequality of (i) is obtained by letting n0 = n/2 in (7).
(ii) If E0(T0) = ∞ then, again by the renewal theorem [10],

un → 0 as n → ∞.

So
Dn = inf{k − n : k ≥ n, Zk = 0} → ∞ in probability, as n → ∞.

Assume that there exist l ∈ N, ε > 0, and an increasing sequence of integers (un)n∈N such that

Pk(Zun = l) ≥ ε.

As Pl (T0 < ∞) > 0 by hypothesis, there exists N > 0 such that

Pl (T0 = N) > 0.

Thus, by the Markov property,

Pk(Zun+K = 0) ≥ Pk(Zun = l) Pl (T0 = N) ≥ ε Pl (T0 = N).

Then, for all n ∈ N,
Pk(Dun ≤ N) ≥ ε Pl (T0 = N) > 0,

which is in contradiction with the fact that Dn → ∞ in Pk as n → ∞. Then, Pk(Zn = l) → 0
as n → ∞.

4. Branching processes in a random environment with immigration

We consider here BPRE, (Zn)n∈N, whose reproduction law is given by the random PGF f ,
and we add at each (n+1)th generation a random number of immigrants, Yn, i.i.d. as a random
variable Y such that

P(Y = 0) > 0.

More precisely, for every n ∈ N,

Zn+1 = Yn +
Zn∑
j=1

Xj , (8)

where (Xj )j∈N, Yn, and Zn are independent and, conditionally on fn = g, the (Xj )j∈N are
i.i.d. with common PGF g.

Note that if the contamination is not dependent on whether the cell is already infected or not
(i.e. Y0 and Y1 are identically distributed), then the number of parasites in a random cell line
defined in the introduction is a branching process in a random environment with immigration,
whose reproduction law is given by f and whose immigration is given by Y

d= Y0
d= Y1.
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We now give the asymptotic behavior of this process. These results are classical for the
Galton–Watson process with immigration [1], [17]. We follow the same method in the case of
a random environment for the subcritical and supercritical cases. In Proposition (ii), below, we
use the tail of the time,

T0 := inf{n > 0 : Zn = 0},
when the process returns to 0 in the subcritical case, which was proved in [13], and we use the
results of Section 3.2 in the critical case.

Proposition 1. (i) If E(log(f ′(1))) < 0 and E(log+(Y )) < ∞, then Zn converges in distribu-
tion to a finite random variable as n → ∞ and limn→∞ P(Zn = 0) > 0. Otherwise, Zn → ∞
as n → ∞.

(ii) If E(log(f ′(1))) < 0 and there exists q > 0 such that E(Y q) < ∞, then there exist c, d > 0
such that, for every n ∈ N,

P(T0 > n) ≤ ce−dn.

(iii) Assume that E(f ′(1)−1) < 1 and E(log+(Y )) < ∞. Then there exists a finite random
variable W such that

[n−1∏
j=0

f ′
j (1)

]−1

Zn → W in P, as n → ∞ .

Note also that, by the Borel–Cantelli lemma, if E(log+(Y1)) = ∞ then, for every c > 1,

lim sup
n→∞

c−nZn = ∞ a.s.,

since Zn ≥ Yn a.s. Moreover, the proof of Theorem 3 in Section 5 provides another approach
to prove that (Zn)n∈N tends to ∞ if E(log+(Y )) = ∞.

Proof of Proposition 1(i) and (ii) in the subcritical case: E(log(f ′(1))) < 0. The subcriti-
cal case with the assumption that E(log+(Y )) < ∞ is handled in [13]: the first part of (i) is [13,
Theorem 3.3] and (ii) is a consequence of [13, Theorem 4.2].

We now focus on the E(log+(Y )) = ∞ case and prove that Zn converges in probability to ∞.
The proof is similar to the Galton–Watson case (see [1] or [17]). First, by the Borel–Cantelli
lemma,

lim sup
k→∞

log+(Yk)

k
= ∞ a.s.

Then, for every c ∈ (0, 1),
lim sup
k→∞

ckYk = ∞ a.s. (9)

Note that

Zn =
n−1∑
k=0

Zk,n,

where Zk,n is the number of descendants in the nth generation of immigrants in the (n − k)th
generation. Thus, denoting by Yk,n the number of immigrants in the (n − k)th generation and
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by Xj(k, n) the number of descendants in the nth generation of immigrant j in the (n − k)th
generation, we have

Zn =
n−1∑
k=0

Yk,n∑
j=1

Xj(k, n).

This sum increases stochastically as n tends to ∞ and converges in distribution to

Z∞ =
∞∑

k=0

Yk∑
j=1

Xj(k),

where, conditionally on (fj : j ∈ N), the (Xj (k) : j ∈ N, k ∈ N) are independent and the PGF
of Xj(k) is equal to fk−1 ◦ · · · ◦ f0. Roughly speaking, Xj(k) is the contribution of immigrant
j , which arrives k generations before the ‘final time’ ∞. The integer Xj(k) is the population
in generation k of a branching process in a random environment without immigration starting
from 1.

Assume now that Z∞ < ∞ with a positive probability. As the (Xj (k) : k ∈ N, 1 ≤ j ≤ Yk)

are integers, then, conditionally on Z∞ < ∞, only a finite number of them are positive. Thus,
by the Borel–Cantelli lemma, conditionally on (Z∞ < ∞, Yk : k ∈ N, fj : j ∈ N),

∞∑
k=0

Yk P(X1(k) > 0) < ∞ a.s.

Moreover, by convexity, for all PGFs g and s ∈ [0, 1],
1 − g(s)

1 − s
= g(1) − g(s)

1 − s
≥ g(1) − g(0)

1 − 0
= 1 − g(0), 0 ≤ s ≤ 1.

Then 1 − g(s) ≥ (1 − g(0))(1 − s) and, by induction, we have, for every k ∈ N,

P(X1(k) > 0 | fj : j ∈ N) = 1 − fk−1 ◦ · · · ◦ f0(0)

≥
k−1∏
j=0

(1 − fj (0))

= exp(Sk),

where Sk := ∑k−1
j=0 log(1 − fj (0)). Thus, conditionally on (Z∞ < ∞, Yk : k ∈ N, fj : j ∈

N),
∞∑

k=0

Yk exp(Sk) < ∞ a.s.

Thus, on the event {Z∞ < ∞}, which has a positive probability, we obtain

∞∑
k=0

Yk exp(Sk) < ∞ a.s.

Moreover, Sn is a random walk with negative drift E(log(1−f0(0))). So letting α < E(log(1−
f0(1))), P(Sn < αn) decreases exponentially by classical large deviation results. Then, by the
Borel–Cantelli lemma, Sn is less than αn for a finite number of n, and

L := inf
n∈N

{Sn − αn} > −∞ a.s.
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Using the fact that, for every k ∈ N, Sk ≥ αk + L a.s., we obtain

∞∑
k=0

exp(αk)Yk < ∞,

with positive probability. This is in contradiction with (9). Then Z∞ = ∞ a.s. and Zn

converges in probability to ∞ as n → ∞.

Proof of Proposition 1(i) in the critical and supercritical cases: E(log(f ′(1))) ≥ 0. First,
we focus on the critical case. Recall that T0 = inf{j > 0 : Zj = 0}, and consider (Z̄n)n∈N to
be the BPRE associated with (Zn)n∈N, that is, the critical BPRE with reproduction law f and
no immigration. Thanks to (2), there exists c1 > 0 such that, for every n ∈ N,

P1(Z̄n > 0) ≥ c1√
n

.

Adding that
P1(T0 > n) = P1(Zn > 0) ≥ P1(Z̄n > 0),

ensures that
E1(T0) = ∞.

Then E0(T0) = ∞, since the BPREI, (Zn)n∈N, starting from 1 are stochastically larger than
(Zn)n∈N starting from 0. Moreover, for all k ∈ N, Pk(T0 < ∞) > 0, since Pk(T̄0 < ∞) = 1
and P(Y = 0) > 0. Then Lemma 1(ii) ensures that Zn → ∞ in P as n → ∞.

For the supercritical case, follow the proof in the critical case (or use the result with a
coupling argument) to show that Zn → ∞ in probability as n → ∞.

Proof of Proposition 1(iii). Again, we follow the proof in [17]. If E(log+(Y )) < ∞, by the
Borel–Cantelli lemma,

lim sup
k→∞

log+(Yk)

k
= 0.

Then, for every c > 1,
∞∑

k=0

c−kYk < ∞ a.s. (10)

Define

Pn :=
[n−1∏

j=0

f ′
j (1)

]−1

,

and denote by Fn the σ -field generated by (Zj : 0 ≤ j ≤ n), (Pj : 0 ≤ j ≤ n), and (Yk : k ∈ N).
Then, using (8), we have

E(Pn+1Zn+1 | Fn) = E

(
Pn+1

[ Zn∑
j=1

Xj + Yn

] ∣∣∣∣ Fn

)

= Pn E

(
f ′

n(1)−1
Zn∑
j=1

Xj

∣∣∣∣ Fn

)
+ Pn E(f ′(1)−1)Yn

= Pn E(f ′
n(1)−1Zn E(X1 | fn) | Fn) + Pn E(f ′(1)−1)Yn

= PnZn + Pn E(f ′(1)−1)Yn.
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So PnZn is a submartingale. Moreover,

E(PnZn | F0) = Z0 +
n−1∑
j=0

E(f ′(1)−1)j+1Yj .

By (10), if E(f ′(1)−1) < 1, PnZn has bounded expectations and then converges a.s. to a finite
random variable.

5. Ergodicity and convergence for a random cell line

Recall that (Zn)n∈N defined in the introduction is the number of parasites in a random cell
line. The Markov chain (Zn)n∈N is a branching process in a random environment with state-
dependent immigration. The reproduction law is given by the PGF f , immigration in state 0 is
distributed as Y0, and immigration in state k ≥ 1 is distributed as Y1. More precisely, for every
n ∈ N, conditionally on Zn = x,

Zn+1 = Y (n)
x +

x∑
j=1

X
(n)
j ,

where

(i) (X
(n)
j )j∈N and Y

(n)
x are independent,

(ii) conditionally on fn = g, the (X
(n)
j )j∈N are i.i.d. with common PGF g,

(iii) for all x ≥ 1 and n ∈ N, Y
(n)
x

d= Y1.

We have the following results, which generalize those of the previous section to the case
where immigration depends on whether the state is zero or not.

Theorem 3. (i) If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then there exists
a finite random variable Z∞ such that, for every k ∈ N, Zn starting from k converges in
distribution to Z∞ as n → ∞.

Moreover, if there exists q > 0 such that max(E(Y
q
i ) : i = 0, 1) < ∞, then, for every ε > 0,

there exist 0 < r < 1 and C > 0 such that, for all n ∈ N and k ∈ N,

∞∑
l=0

|Pk(Zn = l) − P(Z∞ = l)| ≤ Ckεrn.

(ii) If E(log(f ′(1))) ≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, Zn converges in probability to
∞ as n → ∞.

Note again that, by the Borel–Cantelli lemma, if E(log+(Y1)) = ∞ then, for every c > 1,

lim sup
n→∞

c−nZn = ∞ a.s.,

since Zn ≥ Yn a.s.
The proof of Theorem 3(ii) in the critical or supercritical case (E(log(f ′(1))) ≥ 0) is derived

directly from Proposition 1, and so we now focus on the subcritical case:

E(log(f ′(1))) < 0.
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Recall that T0 is the first time after 0 when (Zn)n∈N visits 0. Using BPREI (see Section 4), we
prove the following result in the subcritical case.

Lemma 2. If max(E(log+(Yi)) : i = 0, 1) < ∞ then, for every k ∈ N, Pk(T0 < ∞) = 1 and

sup
n∈N

{Pk(Zn ≥ l)} → 0 as l → ∞.

Moreover, if there exists q > 0 such that max(E(Y
q
i ) : i = 0, 1) < ∞, then, for every ε > 0,

there exist r > 0 and C > 0 such that, for all n ∈ N and k ≥ 1,

P0(T0 ≥ n) ≤ Crn, Pk(T0 ≥ n) ≤ Ckεrn.

Proof. We couple (Zn)n∈N with BPREI, (Z̃n)n∈N, whose reproduction law is given by the
random PGF f (such as (Zn)n∈N) and whose immigration Y is defined by

Y := max(Y0, Y1, Ỹ ),

where Y0, Y1, and Ỹ are independent, and Ỹ is defined by

P(Ỹ = 0) = 1
2 , P(Ỹ = n) = αn−1−ε for all n ∈ N

∗, α :=
[

2
∞∑

j=1

j−1−ε

]−1

.

Thus, immigration Y for Z̃n is stochastically larger than the immigration for Zn (whereas the
reproduction law is the same), so that coupling gives

Zn ≤ Z̃n a.s. for all n ∈ N.

Moreover, Z̃n is still subcritical. Recalling that min(P(Yi = 0) : i = 0, 1) > 0, P(Ỹ = 0) = 1
2 ,

and that the expectation of the logarithm of every random variable is finite, we have

E(log+(Y )) < ∞, P(Y = 0) > 0.

Then Proposition 1(i) ensures that Z̃n converges in distribution to a finite random variable, so
that

sup
n∈N

{Pk(Zn ≥ l)} ≤ sup
n∈N

{Pk(Z̃n ≥ l)} → 0 as l → ∞.

Proposition 1(i) also ensures that, for every k ∈ N, limn→∞ Pk(Zn = 0) > 0. Thus, for every
k ∈ N, Pk(T̃0 < ∞) = 1, and then Pk(T0 < ∞) = 1. This completes the first part of the
lemma.

We now assume that there exists q > 0 such that max(E(Y
q
i ) : i = 0, 1) < ∞. Moreover,

E(Ỹ ε/2) < ∞, so letting q ′ = min(ε/2, q), we have

E(Y q ′
) < ∞.

We can then apply Proposition 1(ii) to BPREI, (Z̃n)n∈N, so that there exist c, d > 0 such that,
for every n ∈ N,

P0(T̃0 > n) ≤ ce−dn.

Recalling that, for all k, n ∈ N,

Pk(T0 ≥ n) ≤ Pk(T̃0 ≥ n),
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we obtain P0(T0 ≥ n) ≤ ce−dn. Moreover, for every k ∈ N,

P0(T̃0 > n) ≥ P(Y ≥ k) Pk(T̃0 ≥ n).

By the definition of Y , there exists β > 0 such that, for every n ∈ N,

P(Y ≥ n) ≥ βn−ε.

Using these inequalities gives

Pk(T0 ≥ n) ≤ Pk(T̃0 ≥ n) ≤ β−1kε P0(T̃0 > n) ≤ β−1ckεe−dn.

This completes the proof.

Proof of Theorem 3(i) and (ii) in the subcritical case: E(log(f ′(1))) < 0. Split the proof
into four cases.

Case 1. max(E(log+(Yi)) : i = 0, 1) < ∞.

Case 2. There exists q > 0 such that max(E(Y
q
i ) : i = 0, 1) < ∞.

Case 3. E(log+(Y1)) = ∞.

Case 4. E(log+(Y0)) = ∞.

First, note that P(Y0 = 0) > 0 ensures that P0(Z1 = 0) > 0, and we can use the results of
Section 3.2.

Case 1. In this case, by Lemma 2, (Zn)n∈N is bounded in distribution:

sup
n∈N

{P0(Zn ≥ l)} → 0 as l → ∞.

If E0(T0) = ∞ then Zn → ∞ in P0 by Lemma 1(ii), which is in contradiction with the previous
limit.

Then E0(T0) < ∞. We now prove that, for all k ≥ 1, Ek(T0) < ∞ by a coupling argument.
Let k ≥ 1, and change only the immigration to obtain a Markov process, (Z̃n)n∈N, which is
larger than (Zn)n∈N:

Z̃n ≥ Zn a.s. for all n ∈ N.

Its immigrations, Ỹ0 and Ỹ1, satisfy

Ỹ1
d= Y1, P(Ỹ0 ≥ n) ≥ P(Y0 ≥ n) for all n ∈ N,

P(Ỹ0 ≥ k) > 0, max(E(log(Ỹi)) : i = 0, 1) < ∞.

Then, we again have E0(T̃0) < ∞, which entails that Ek(T̃0) < ∞ since P(Ỹ0 ≥ k) > 0. As,
for every n ∈ N, Z̃n ≥ Zn a.s., we have

Ek(T0) ≤ Ek(T̃0) < ∞.

Then Lemma 1(i) ensures that, for every k ∈ N, (Zn)n∈N converges in distribution to a finite
random variable Z∞, which does not depend on k and verifies P(Z∞ = 0) > 0.
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Case 2. By Lemma 1(i) we have
∑
l∈N

|Pk(Zn = l) − P(Z∞ = l)|

≤ A
[

sup
n/2≤l≤n

{|ul − u∞|} + E0(T0 1{T0>n/4}) + Ek(T0 1{T0>n/4})
]
. (11)

Moreover, by Lemma 2, for every ε > 0, there exists C > 0 such that

Pk(T0 ≥ n) ≤ Ckεrn, P0(T0 ≥ n) ≤ Crn. (12)

So, for every r ′ ∈ (r, 1), E0(exp(− log(r)T0)) < ∞. Then, by Kendall’s renewal theorem [14],
there exist ρ ∈ (0, 1) and c > 0 such that, for every n ∈ N,

|un − u∞| ≤ cρn. (13)

Finally, (12) ensures that there exists D > 0 such that, for every n ∈ N,

E0(T0 1{T0>n/4}) ≤ Dnrn/4,

Ek(T0 1{T0>n/4}) ≤ Dnkεrn/4.

Combining these two inequalities with (11) and (13), we obtain
∑
l∈N

|Pk(Zn = l) − P(Z∞ = l)| ≤ A[cρn + Dnrn/4 + Dnkεrn/4],

which completes the proof of Case 2.

Case 3. Change the immigration of (Zn)n∈N to obtain BPREI, (Z̃n)n∈N, whose immigration
is distributed as Y1 and whose reproduction law is still given by f . Then Proposition 1(i) and
E(log+(Y1)) = ∞ ensure that (Z̃n)n∈N starting from 0 tends in distribution to ∞.

Then Lemma 1(i) entails that E0(T̃0) = ∞, so that, for every k ≥ 1,

Ek(T̃0) ≥ E0(T̃0) = ∞,

since the BPREI, (Z̃n)n∈N, starting from k ≥ 1 are stochastically larger than (Z̃n)n∈N starting
from 0.

Moreover, under Pk , (Zn)n∈N is equal to (Z̃n)n∈N until time T0 = T̃0. So Ek(T0) = ∞. Let
k ≥ 1 such that P0(Z1 = k) > 0. Then E0(T0) ≥ P0(Z1 = k) Ek(T0 − 1). This entails that

E0(T0) = ∞.

By Lemma 1(ii), (Zn)n∈N starting from any k ∈ N tends to ∞ in probability.

Case 4. Denote by

Xj := P(Zj > 0 | Zj−1 = 1, fj−1), j ≥ 1,

the survival probability in environment fj−1 and introduce the following random walk:

Sn =
n∑

j=1

log(Xj ).
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Then

P1(Zn > 0 | (f0, f1, . . . , fn−1)) ≥
n∏

j=1

Xj = exp(Sn) a.s.,

so that

Pk(Zn > 0 | (f0, f1, . . . , fn−1)) = 1 − Pk(Zn = 0 | (f0, f1, . . . , fn−1))

= 1 − [1 − P1(Zn > 0 | (f0, f1, . . . , fn−1))]k
≥ 1 − [1 − exp(Sn)]k a.s.

Thus,
Pk(Zn > 0) ≥ E(1 − [1 − exp(Sn)]k).

Using the Markov property, we have

E0(T0 + 1) ≥
∞∑

k=1

P(Y0 = k) Ek(T0)

=
∞∑

k=1

P(Y0 = k)

∞∑
n=1

Pk(T0 ≥ n)

≥
∞∑

k=1

P(Y0 = k)

∞∑
n=1

Pk(Zn > 0)

≥
∞∑

k=1

P(Y0 = k)

∞∑
n=1

E(1 − [1 − exp(Sn)]k).

Moreover, for all x ∈ [0, 1) and k ≥ 0, exp(k log(1 − x)) ≤ exp(−kx), and by the law of large
numbers, Sn/n tends a.s. to E(X1) < 0 so that there exists n0 ≥ 1 such that, for every n ≥ n0,

P

(
Sn

n
≥ 3 E(X1)

2

)
≥ 1

2
.

We then obtain

E0(T0 + 1) ≥
∞∑

k=1

P(Y0 = k)

∞∑
n=1

E(1 − exp(−k exp(Sn)))

≥ [1 − e−1]
∞∑

n=1

∞∑
k=1

P(k exp(Sn) ≥ 1) P(Y0 = k)

≥ [1 − e−1]
∞∑

n=n0

P

(
Sn

n
≥ 3 E(X1)

2

) ∞∑
k≥exp(−3n E(X1)/2)

P(Y0 = k)

≥ 2−1[1 − e−1]
∞∑

n=n0

P

(
Y0 ≥ exp

(
−3n E(X1)

2

))

≥ 2−1[1 − e−1]
∞∑

n=n0

P(β log(Y0) ≥ n),
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where β := [−3 E(X1)/2]−1 > 0. Then E(log(Y0)) = ∞ ensures that E0(T0 + 1) = ∞, so

E0(T0) = ∞.

We conclude that (Zn)n∈N tends to ∞ in Pk using Lemma 1(ii).

6. Asympotics for proportions of cells with a given number of parasites

6.1. Asymptotics without contamination

Here we consider the case where there is no contamination, i.e. Y0 = Y1 = 0 a.s., and we
determine when the organism recovers, that is, when the number of contaminated cells becomes
negligible compared to the total number of cells. We obtain the same result as Theorem 1 of [8]
for the more general model considered here. Denote by Nn the number of contaminated cells.

Proposition 2. As n increases, Nn/2n decreases. If E(log(f ′(1))) ≤ 0 then Nn/2n → 0 a.s.
as n → ∞. Otherwise, Nn/2n → 0 as n → ∞ if and only if all parasites die out, which
happens with a probability of less than 1.

Example. Consider the case of the random binomial repartition of parasites mentioned in the
introduction. Let Z ∈ N be a random variable, and let (Pi)i∈T be an i.i.d. sequence distributed
as a random variable P ∈ [0, 1], such that P

d= 1 − P . In every generation, each parasite gives
birth independently to a random number of parasites distributed as Z. When cell i divides,
conditionally on Pi = p, each parasite of cell i goes independently into the first daughter cell
with probability p (or it goes into the second daughter cell with probability 1 − p). Then,

P(f ′(1) ∈ dx) = P(E(Z)P ∈ dx).

Thus, the organism recovers a.s. (i.e. Nn/2n tends a.s. to 0) if and only if

log(E(Z)) ≤ E

(
log

(
1

P

))
.

The same criterion also holds for the case in which the offspring of each parasite goes a.s. into
the same daughter cell (here, p is the probability that this offspring goes into the first daughter
cell.)

Proof of Proposition 2. Note that Nn/2n decreases to L as n → ∞, since one infected cell
has at most two daughter cells which are infected. Moreover, for every n ∈ N,

E

(
Nn

2n

)
= E(

∑
i∈Gn

1{Zi>0})
2n

=
∑
i∈Gn

1

2n
E(1{Zi>0})

=
∑
i∈Gn

P((a0, . . . , an−1) = i) P(Zi > 0)

= P(Zn > 0).

If E(log(f ′(1))) ≤ 0 (subcritical or critical case) then P(Zn > 0) tends to 0 as n → ∞ (see
Section 3.1). Thus, E(L) = 0 and Nn/2n tends to 0 a.s. as n → ∞.

If E(log(f ′(1))) > 0 (supercritical case) then P(Zn > 0) tends to a positive value, which is
equal to P(L > 0) > 0. We complete the proof with Lemma 3, below.
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Let us prove the following zero-one law, where Pn is the total number of parasites in
generation n.

Lemma 3. If E(log(f ′(1))) > 0 then{
lim

n→∞
Nn

2n
> 0

}
= { for all n ∈ N : Pn > 0} a.s.

Proof. First, we prove that, conditionally on the nonextinction of parasites, for every K ∈ N,
there exists a.s. a generation n such that Nn ≥ K . Letting K ∈ N, we fix p as the first integer
such that 2p ≥ K . Then q := P1(Np ≥ K) > 0 since P(N1 = 2) > 0.

Either the number of infected cells in generation p is more than K , which happens with
probability q, or we can choose in generation p an infected cell, which we denote by i(1), since
parasites have not died out. Then, with probability larger than q, the number of infected cells
in generation p of the subtree rooted in cell i(1) contains more than K parasites. Note that this
probability is exactly equal to q if and only if the infected cell i(1) contains one single parasite.
Recursively, we find a.s. a generation n such than Nn ≥ K .

Then, recalling that we still work conditionally on the nonextinction of parasites, the stopping
time T := inf{n ∈ N : Nn ≥ K} < ∞ a.s. We now also condition by T = n and NT = k.
We can then choose one parasite in every infected cell in generation n, which we label by
1 ≤ j ≤ k, and we denote by N

(j)
p the number of cells in generation n+p infected by parasites

whose ancestor in generation n is the parasite j . By the branching property, the integers
(N

(j)
p : 1 ≤ j ≤ k) are i.i.d. and N

(j)
p /2p → L(j) as p → ∞, where the (L(j) : 1 ≤ j ≤ k) are

independent and P(L(j) > 0) = P(L > 0) > 0 for every 1 ≤ j ≤ k. Using the fact that

Nn+p ≥
k∑

j=1

N
(j)
p a.s.,

and as k ≥ K , we obtain

lim
p→∞

Nn+p

2p
≥ max(L(j) : 1 ≤ j ≤ K) a.s.

As sup(L(j) : j ∈ N) = ∞ a.s., letting K → ∞ ensures that, a.s., Np/2p does not tend to 0.

6.2. Asymptotics with contamination in the E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i =
0, 1) < ∞ cases

Define Fk(n) to be the proportion of cells with k parasites in generation n:

Fk(n) := #{i ∈ Gn : Zi = k}
2n

, k ∈ N.

We introduce the Banach space, l1(N), and the subset of frequencies, S
1(N), which we endow

with the norm ‖ · ‖1 defined by

l1(N) :=
{
(xj )j∈N :

∞∑
j=0

|xj | < ∞
}
, ‖(xj )j∈N‖1 =

∞∑
j=0

|xj |,

S
1(N) :=

{
(fj )j∈N : for all j ∈ N, fj ∈ R

+,

∞∑
j=0

fj = 1

}
.
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The main argument used here is the law of large numbers proved by Guyon [12] for asymmetric
Markov chains indexed by a tree.

Theorem 4. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then (Fk(n))k∈N

converges in probability in S
1(N) to a deterministic sequence (fk)k∈N as n → ∞, such that

f0 > 0 and
∑∞

k=0 fk = 1. Moreover, for every k ∈ N, fk = P(Z∞ = k).

Proof. Recall that (Zi)i∈T is a Markov chain indexed by a tree and that we are in the
framework of bifurcating Markov chains studied in [12]. Thanks to the ergodicity of the
number of parasites in a random cell line proved in the previous section (Theorem 1(i)), we can
directly apply Theorem 8 of [12] to obtain the convergence of proportions of cells with a given
number of parasites.

It seems that we cannot apply Theorem 14 or Corollary 15 of [12] to obtain almost-sure
convergence of proportions, because of the kε term in the estimation of Theorem 1. For
examples, we refer the reader to Section 6.1.

Again, using [12], we can also prove a law of large numbers and a central limit theorem for
the proportions of cells with a given number of parasites before generation n. Define, for every
n ∈ N,

Pk(n) := #{i ∈ ⋃
0≤i≤n Gi : Zi = k}

2n+1 , k ∈ N.

Theorem 5. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then (Pk(n))k∈N

converges in probability in S
1(N) to the deterministic sequence (fk)k∈N as n → ∞. Moreover,

for every k ∈ N,
√

n(Pk(n)−fk) converges in distribution to a centered normal law as n → ∞,
with a nonexplicit variance.

Proof. Use Theorem 1(i) again and Theorem 8 of [12] to prove the law of large numbers.
For the central limit theorem, use Theorem 19 of [12] by letting F be the set of continuous
functions taking values in [0, 1].
6.3. Asymptotics with contamination in the E(log(f ′(1))) ≥ 0 or max(E(log+(Yi)) : i =

0, 1) = ∞ case

In this case, cells become infinitely infected as the number of generations tends to ∞.

Theorem 6. If E(log(f ′(1))) ≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, then, for every k ∈ N,
Fk(n) tends to 0 as n → ∞. That is, for every K ∈ N,

lim
n→∞

#{i ∈ Gn : Zi ≥ K}
2n

p= 1.

Proof. By Fubini’s theorem we have

E

(
#{i ∈ Gn : Zi ≥ K}

2n

)
=

∑
i∈Gn

P(Zi ≥ K)

2n

=
∑
i∈Gn

P((a0, . . . , an−1) = i) P(Zi ≥ K)

= P(Zn ≥ K).

By Theorem 1, P(Zn ≥ K) tends to 1, so 1 − #{i ∈ Gn : Zi ≥ K}/2n converges to 0 in L1,
which gives the result.
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7. Asymptotics for the number of parasites

We assume here that parasites multiply following a Galton–Watson process with determin-
istic mean m, independently of the cell they belong to. That is, s �→ f̂ (s, s) is deterministic
and every parasite multiplies independently with reproduction law whose PGF is equal to
g : s �→ f̂ (s, s). Moreover, we assume that contamination of a cell does not depend on the
number of enclosed parasites. That is,

Y
d= Y0

d= Y1.

Let Pn be the number of parasites in generation n. Without contamination, in the supercritical
case, m > 1, it is well known that either Pn becomes extinct or Pn/mn converges to a positive
finite random variable. In the presence of contamination, we have the following result.

Proposition 3. If E(Y ) < ∞ and P(Y0 > 0) > 0, log(Pn)/n converges in P to log(max(2, m)).

Proof. First, we prove the lower bound. This is a consequence of the fact that Pn is larger
than

(i) the total number of parasites P 1
n which contaminate cells of generation n,

(ii) the number of parasites Pn(p) in generation n with the same given parasite ancestor in
generation p.

Indeed, P 1
n is the sum of 2n i.i.d. random variables with mean E(Y ), so the law of large

numbers ensures that
P 1

n

2n
→ E(Y ) > 0 in P, as n → ∞.

Then, since Pn ≥ P 1
n a.s. for every n ∈ N,

Pn → ∞ in P, as n → ∞. (14)

Moreover, for every p < n,

Pn(p)

mn−p
→ W a.s., as n → ∞, (15)

with P(W > 0) > 0. Now let P 2
n be the sum of the number of descendants in generation n

of each parasite of generation p. We then obtain the sum of Pp i.i.d. quantities distributed as
Pn(p). Then (14) and (15) ensure that we can choose p such that

P 2
n

mn−p
→ W ′ a.s., as n → ∞,

with P(W ′ > 0) ≥ 1 − ε.
Using the fact that Nn is larger than P 1

n and P 2
n ensures that, for every ε > 0,

lim sup
n→∞

P

(
log(Pn)

n
≤ log(max(2, m))

)
< ε.

Letting ε → 0 gives the lower bound.
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We now prove the upper bound. Note that the total number of parasites in generation n can
be written as

Pn =
n∑

i=1

2i∑
j=1

Y i,j∑
k=1

Z
i,j
k ,

where Y i,j is the number of parasites which contaminate the j th cell of generation i, labeling
these parasites as 1 ≤ k ≤ Y i,j , Z

i,j
k is the number of descendants in generation n of the

kth parasites. Moreover, (Y i,j : i ∈ N, j ∈ N) are identically distributed and independent of
(Z

i,j
p (k), i ∈ N, j ∈ N, k ∈ N), (Z

i,j
k , i ∈ N, j ∈ N, k ∈ N) are independent, and Z

i,j
p (k) is

the population of a Galton–Watson process in generation n − i with offspring PGF equal to g.
Thus,

E(Pn) =
n∑

i=1

2i∑
j=1

E

(Y i,j∑
k=1

Z
i,j
k

)

=
n∑

i=1

2i∑
j=1

E(Y i,j ) E(Z
i,j
k )

= E(Y )

n∑
i=1

2i∑
j=1

mn−i

= 2 E(Y )
mn − 2n

m − 2
if m �= 2.

If m = 2 then E(Pn) = E(Y )nmn. This gives the upper bound by the Markov inequality and
completes the proof.
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