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ABSTRACT

The paper is concerned with studying the domain of pos-~
sible motion and a field of the test body velocities in the
‘plane restricted problem of three bobdies. The study is based
on existence of a quasi-integral of areas (similar to an in-
tegral of areas in the problem of two bodies) as well as on
the Jacobi integral. The method of constructing the quasi-
integrals is a standard one (see, for example, [11,[2].

QJASI-INTEGRALS

1,1 Preliminary material

Let us consider a plane dynamic system, consisting of
the two point bodies of non-zero masses and a test body. We
assume that point bodies move around their barycenter in
circular orbits and a test body is moving around one of these
bodies.

We denote by My and My masses of the point bodies, by R
the distance between the point bodies,by 1 distance between
the point body of the mass M; and barycenter, by H distance
between the point body of the mass M; and the libration point
Ll’ by n the angular velocity of the point bodies, by u ratio
Ml/(M1+M ). Assume, for definiteness, that a point body is
moving around a body of the mass My. Further, we introduce
the plane coordinate system xy (see Fig. 1) rotating with a
constant angular velocity n, having origin in My, axis x,cro-
ssing ”2 and such unit of dlstance that for a test body

max[x (t) + y (t)l =1.
t
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Fig. 1: Coordinate System

It may be easily proved that equations of motion for a
test body in such restricted circular problem of three bodies
under appropriate choice of the time unit have the form:

i-znf;-nz(x-l) = %—x—[ Y 4 1-u ]
v’xz+y2 Y (R-x )2+ yE
@)
y+2mx-n%y = 2;-[ B4 1-¥ 1,
/x%4y% Y Rx)Z+y°
where
n=pg3/2
{1 = R(1-u)

together with Bolzmann's equation, whose particular solutions
are integrals of the system of equations (1) have the form:

9f . , 3f ., | of 2 .« X% 1y ux
— X + =7 + —T{ y + + - ———
ax y 5% R"s 72 ES' _ER (xz +y2 )3 /2
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. ) R%)
((R-x)2 + y2)3/2

af 2 . uy (1-u)y -
+ &5 f X + - - } =0 (2)
29 2372 1%3' <2+ y2)37‘7 (R )2+ y2,372

It is known that for the system of equations (1) there
exists Jacobi integral. In addition to this classical integ-
ral we shall attempt constructing approximate integrals i.e.
quasi-integrals for (1).

In this paper we assume that one accomplishes the inequa-

lities
1 < H,
1 << R
We introduce a small parameter y = /i?R; decompose the coef-
ficients by i; and 2% from (2) into series in powers of v;
ax 3y

then the euqation (2) may be rewritten in the form

R A R Sl s v TR ARG DR
3x "+ ¥y)
3f 360
+ = 1{- —zuxé_r/i voox + %y + L3 =0 3)
3y (x“+y™)

Let a single-valued particular solution of the equation (3),
having the form

L -] -e
I fi(x,y,:'(,ir)y1 = const., 4)
i=0

be called a quasi-integral of the order q of a test body of
the circular restricted three-body problem.

1.2 Jacobi's integral and quasi-integral.
A simple verification shows that the relation

0.5(1&2 "'Slz)--0.5(}t:2+yz)!'12 + nzlx- ——zu——z—i—/—z— -
(x“+y™)

1-u

- = h (5)
(R=x)2+ y2) /2
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where h = const. is an integral. It is the Jacobi integral of
restricted circular problem of three bodies, Let us rewrite
(5) leaving the terms to the sixth order inclusive:
: 2
ToTITE - vaan-v8ca.5-mx? + B )= n
(x +y (6)

0.5%+ %)~
It is easy to see that (6) is a quasi-integral of the order 6.
Let us name this quasi-integral as the Jacobi quasi-integral,

1.3 Quasi-integral of the areas,
The equation

1/2
iyt + PPy 2 oy L PV g vk
+ P y2 — 6 + P2
Y813y xy dat + 15 1£E
.2 .2 1/2
x (yy -yx“+ 2xxy)(-UX/(x~ +y )/.2 ALY ) at} = c ™)

((x + y 32 - u/(x

where C = const. shows that it is a quasi-integral of the or-
der 6. Ve call it quasi-integral of the areas of a test body
of the restricted circular problem of three-todies (if y = 0,
then (7) becomes the integral of areas xy - yx = C).

Procedures of constructing the quasi-integral (7) con-
sists in a direct substitution of (4) into (3) and by selec-
ting the terms at equal powers ¥ and searching the single-
valued particular solutions of the equations obtained. Thus,
function fo should be a particular solution of the equation.

> . of of Hx of uy
0 4 4+ o y - (o] _ _po = 0. 8)

VT a7 ey (PP

Ix

Obviously
f,= xy - » (2)
is the particular solution of (8). Similarly, one finds

£, 20, f,=0. (10)

For function f3 one obtains, by taking into account (9) and
(10), the equation

312

https://doi.org/10.1017/50252921100066203 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066203

3f3 i af3 y _ 3f3 ux ) 3f3 uy
3x 3y ax (x2+ y )3/2 dy (x2+y2)3f2
-2(xx + yy) = 0; (11)
for its particular solution
£, = x% + 32, (12)

Similarly as for functions £y and fz one finds
0, f.:= 0. 13)

For f6 the equations (if one considers (9), (10), (12) and
(13)) bas the form

3t P RPN ;. RPN ux ) 3f6 vy
o 3y % (245272 gy xP+y%)3/2
-3@-u)xy = 0. 14)
f6 =31 ~u)xy dt @as5)

is (see Supplementary notes) the solution of (14). However,
if in (15) one passes to osculating elements (see,for exam-
ple, [3]) then after integrating we obtain

1/2 2

f (cos w—sinzm Y e cos E

6 = 3@ /mt 2 a-e%)

+ % e cos3E - 2 (1 -e? )eos”El + cosu sinwL§ e’E

3

- e(3+e )sin E + ]3; e(2-e )sin" E + :1- (2+e2)sin 2E1}

Since

E= (1 )k arcsin xx T ¥y ) * kn

2
i 1/2
i -(xy-YX)l
[2u/(x 2452y /2 ~x2+5%)

is

(where k = 0, #1,%2,,..), - the function thus obtained f6

ambiguous. (In it one has a summand the term)
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1—2 (1-11)(9-7/11 )1/2 cosw sinw ezE).

In order to find the desired quasi-integral of areas of order
6, instead of (12) one chooses the following single-valued
particular solution of equation (11) (in substance, one int-
roduce restrictions on some kinds of symmetry):

- X . . . 2
-—iﬁﬁq-} y(xy - yx)
(x%+y° (16)

x2+y2+ 12 (1) -

3 ANETS

bt

and instead of (15)

£,73(1-u)fxy dt+ 23 (L) (7577 - yx2 + 2x%§)

—-——zﬁcm+§’(x§’-yfi)
(x"+y )
X
(05(x+y)—u/(x+y)1/22

dt a7)

1.4 Addition

By the method presented in section 1.3, one can show
that there is no quasi-integral in the system (1), which at
Y ® 0 is turned into Laplace's integral.

THE VELOCITY FIELD

Theorem 1. Let C and h be the constants of the quasi-
integral of areas and of the Jacobi-quasi-integral of a test
body in the restricted circular three-body problem. I1f C#0,

h <0 and u?+ 2bC? > O,theninthe vicinity of the mass My the
velocity field is double-valued

Proof. First assume that x,y do not depend on Yy , 1.e.

x = A (x,y),

B (x,y).

aas)

y

Then, it follows from (6) and (7), that possihle are two
pairs of functions:
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A = - 2Cx2 1x ;ignzx [-c2 + 2(h+ — u 5173 )(x2+y2)]1/2
X +y x“+y ="+ y)
, 19)
B, = - 3oy LR et an ——fy o yHOTH2
X" +y x"+y x“+y7)
Introduce the following parameters
r = (xz + y2)1/2
(20)
b= (% + 2(n+ Jr)r?)t/2
Mw we assume that i,ir depends upon vy and upto order of 74,
we take
X = —Cy/r2 + Ayt Az'yz + A3'Y3 + A4Y4
x_sign x  ,2 2 3 4.1/2
* 3 L&+ B v+ By + By + By']
y = -Cx/rz + Ejy + EzYz + F3Y3 + E4y4+ (21)

+ y sigzn X [A2 + Fyy + F2Y2I . F3Y3 + F4Y4]1/2
r

Qibstituting (21) into (6) and (7) and successively retaining
terms for v,v%,y’ and v* , we find the functions

A] =B=E =F =0 (22)
A, =E, =0
2 2 5 (23)
B, = F, = 2Q-u)r";
4,2 2
Ay = w,cxly/2rt 22 + W y/r2,
2 4,2 2
E; = V,Cy“x/2r &% + wx/r®, (24)
BS = Wzyz/r2 + w12C,
L2, 2
Fg = Wx"/r® + ®2C,

where
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2 2.2 .2
V&=r2+%—2— 1—u[{_1_1%+Cx}2+Cz4A] (25)
h r Tr
W, =13 1o AZC[-“—+C2]
2 4 h? r -
T
Ay =B =E =F, =0, ' (26)

DOMAIN OF MOTION OF A TEST BODY

Denote by S the domain of a possible motion of a test
body in the vicinity of the point of mass M; while computing
the boundaries of this domain we have taken into account the
terms containing y!.

Theorem 2: Let C and h be constants of the quasi-integ-

ral of areas and those of the Jacobi quasi-integral in the
restricted circular three-body problem. If C £ 0 and h < O,

then: 9 2

with u® + 2hC™ = O the domain S3 is a circular ring
2 2 1 .2

e ec®Paaron)/? - Pan s enl/?

|A

2(hH (1-u)y2 + Cyd) 2(h+(1-0)y2 + YY)

with 12 + 200% > 0 the domain §; is an elliptical ring (in-
dices 1 and j are used to denote " the inner and outer bounda-
ries of the ring) having main axes

_ _ .2 C 15 ., _
8i(e) ~ T2ice) ~ Ti(e) T, oy 7 L1+ 75 Q-w)
' 2.2
(ur., -C%)
by ey (27)
= 2 _ << 3
bi ey = T2i(e) BRT] oyt 0 |
where
_ 2 2
Tiey = (- sy W2+ 200%)/2m, (28)
2 2.1/2
- 1 2, M * 20
Toi(ey - Y H-Y) 2h
(£) (1-u)c? v2 (29)
2hu? + 2nc2)l/2
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The first part of the theorem follows from the formulae
(20)-(25). Let us prove the second part of the theorem.

It follows from the formulae (20)-(22) that the boundary
can be computed by formula (28); from formulae (20)-(23)it
follows that the boundary S, can be computed by formula (29).
Then, it follows from formulae (20)-(24) that the boundary Sj
which is described by the end of vector r3i(e) with the ori-
gin in My and with the length

_ 3
T31(e)®1(e) Yi(e)) T Ti(e) T Pue)FicerVi(e))" s GO
is followed by the equality
2 15 Ty ey” Cz)"?(e)
(2hri(e) + u)ﬂi(e) + C[ri(e) + TE.(I‘“) hzr 1=0.
i(e) (31)
Equation (30) by virtue of (31) and (20) may be rewritten in
the form .
2
C X 2.2
i(e) 15 (uri(e) -C )
T3ice) - rZi(e) - {Zh T C[1+"T§'(1'U) h2r4 ]
T, i(e)
i(e)
2 ¢
+ yige! ]_ Y3
2hr oy t M

It remains to note that the end of the radius-vector rBi(e)
sets an ellipse with main axes (27).

Consequence 1. 81 and 82 are circular rings.

Consequence 2. Sy © S3lo,0 S5 2839 S3 k<o € S350
(see Fig., 2)

The first consequence follows from (28) and (29); the
second one - from (27) and the obvious inequalities

Zhre + <0,

2hr1 +u >0,

SUPPLEMENTARY NOTES

Let us pass in (14) from x,y, i, y to the osculating
elements a,e,w, M i.e.
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Fig. 2: The domain SS|C>0 (2); 3|C<0(b)' and
5 lC>0 / S lC<0 (¢) if |C| = comst., h = const.

f
] i+af6&-3f6 ux -3f6 uy
——ax 3y % (x2+ y2)3/2 3y %2+ 3/2
A ( y)
ey, 22 _2a 22 )
da  3X 3y 3x 9x (x + IENPY 2,4y2y3/2
y) 3y (x“+y")
af
+ —SBreey, 2e y - —“———*TZT - 22 2.3/2
3e  9x 3y x“+y%) ay x2+Y)
3f
6 9w + ., duw -
+ [_ﬂx_’_ﬂy_a_u.)_ gx 3/2_300 uy3/2]
dw X dy X (x +y) dy (x +y)
+£§[ﬂ;{+ﬂ4_§_ﬂ ___uz____ail_Lru ]
M ax 3 % 3/2 y (x2+y2)3/2
y x(x+y) 3y (xT+y7)
32)
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By using well known formulae

wa@-e)) /2 - xy - w
2u N ).{2 + 92,
a(l-e cos E) a

a(cosE-e) = x cosw + y simw ,
a(l—ez)sin E= -x sinw + y cos w,
M =E - e cos E,

one can show that in (32).

Byl fR e R M =,
89X 3y Ix (x“+y°) oy (x"+y%)

e ; 4 e g _23e ux -3 Wy _ _
x + y . T3 23/2 - 2, 2.3/2 o,
X 3y IX  (x“+y°) dy (x“+y7)
iy My -2y -,
3x dy Ix (x“+y°) 3y (x7+ y°)
mx+.a_!§7-§.! 2“’2‘ 2'_3—}:‘ _—'xTzuz 73 =0
3x 3y Ix  (x +y): 3y  (x“+y™)
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