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Abstract. We discuss a new program to measure the parallaxes of a number of L and T
dwarfs, objects that bridge the gap between M dwarfs and planets. This pilot project tests the
feasibility of using large telescopes with infrared detectors to determine parallaxes at the level
of milli-arcseconds (mas). First results show that we are able to achieve the required centroiding
precision and simulations indicate that when the final observations come in we should be able to
achieve our goal of parallaxes with accuracies of 2 mas. The main problems will be focal plane
astrometric distortions and stability.

1. Introduction
T and L dwarfs are ultra-cool objects cooler than M dwarfs that bridge the gap between

stellar and substellar objects, also known as brown dwarfs. They have spectra dominated
by molecular absorption due to water, methane and pressure-induced molecular hydro-
gen. Methane, which first appears prominently in T dwarfs, is expected to remain an
important atmospheric constituent down to the temperature of Jupiter (∼ 125 K), where
it is also prominent in the infrared spectrum. This means these objects provide an im-
portant link to extrasolar giant planets. Indeed, nearly ten years ago the announcements
of the discoveries of the first brown dwarf and extrasolar planet were made at the same
conference. Since then many new discoveries have been made, so the prototype of the T
class, the companion to the nearby M dwarf star Gl229 (Nakajima et al. 1995), has been
supplemented by the discovery of more than 300 L and T dwarfs. These come primarily
from the Sloan Digital Sky Survey (Strauss et al. 1999; Tsvetanov et al. 2000; Leggett
et al. 2002; Geballe et al. 2002; Knapp et al. 2004) and from 2MASS (Burgasser et al.
1999, 2000, 2002a, 2002b, 2003a, 2003b).

Model atmosphere analyses indicate temperatures of 2500 K for L dwarfs down to 750 K
for lower T dwarfs, although significant uncertainties remain. Absolute luminosities are
the most direct route toward an empirical temperature scale for ultra-cool dwarfs (e.g.,
Vrba et al. 2004). In this paper we discuss an ongoing program to measure the parallaxes
and hence distances and absolute luminosities of nine T dwarfs and two L dwarfs.

2. Observational program
In Table 1 we list the targets under observation along with their nominal 2MASS

J magnitudes (Cutri et al. 2003), spectral types in the Kirkpatrick et al. (1999) and
Burgasser et al. (2002) systems, number of observations and range of observational epoch
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Figure 1. An example field for the object 2MASS1047. The target has a large offset from the
center of the CCD to enable sufficient reference stars.

in months. For these faint magnitudes a 3-m class telescope is required, and we have
successfully obtained time on the infrared camera, Omega Cass, of the 3.5-m telescope
at Calar Alto.

In Fig. 1 we show the field of 2MASS1047. An empty field like this is typical for this
program. It forces us to offset the target star from the center in order to maximise

Table 1. Target list

Target RA Dec J Sp Number of Epoch span
epochs months

2MASS1021 10:21:09 -03:04:20 16.3 T3 7 11
2MASS1047 10:47:53 +21:24:23 15.8 T6.5 7 11
2MASS1217 12:17:11 -03:11:13 15.9 T7.5 7 13
2MASS1145 11:45:57 +23:17:29 15.4 L1 7 11
2MASS1225 12:25:54 -27:39:47 15.2 T6 6 11
2MASS1237 12:37:39 65:26:15 15.9 T6.5 8 13
SDSS1254 12:54:53 -01:22:47 14.7 T2 8 13
SDSS1346 13:46:46 -00:31:50 15.9 T6 8 13
GL570D 14:57:15 -21:21:50 15.3 T8 6 13
2MASS1507 15:07:47 -16:27:38 12.8 L5 5 13
SDSS1624 16:24:14 00:29:16 15.5 T6 5 13
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Figure 2. Normalized marginal distributions of a bright star in three phases of calibration as
indicated in the legend.

the number of reference stars, and also limits the size of any dither pattern we can
employ.

The determination of a parallax in the infrared follows the same process as that of the
optical. See, for example, Smart et al. 2003, however, for a number of reasons it should
be more precise:
1) The refraction of the atmosphere is lower and varies more slowly so the effects of
differential refraction are smaller and probably negligible.
2) The PSFs have smaller FWHM, so in theory can be centred better.
3) The exposure times are in general shorter (of the order of seconds as opposed to
minutes), so more observations can be made leading to a higher redundancy.
4) The sky background is always higher, but observations can be made during the period
between astronomical and civil twilight leading to observations at marginally higher par-
allax factors and the possibility to observe when optical observations are not possible.
However, most of these benefits are outweighed by the noisier background and the sub-
sequent necessity to carry out sky subtraction.

In Fig. 2 we show the normalized marginal distributions of a relatively bright star in
three phases of calibration: the raw profile, the flattened profile and the sky subtracted
profile. To obtain our precision goal we are required to center to at least 0.05 pixels. The
centroids from these three distributions vary by over 0.3 pixels using standard weighted
moments and 0.2 pixels using 2 dimensional Gaussians.

A number of experiments are being carried out to find the best way to centroid these
images. Applying offset images for sky subtraction is the normal procedure, and, as such,
we flattened all frames, made 10′′ dithered images and sky subtracted using adjacent
frames. In these cleaned images we found positions of all stars using two dimensional
Gaussian fitting and then aligned them using a linear transform. From these multiple
observations of each star we found positional standard deviations. In Fig. 3 we show
two comparisons, one of observations in the same positions (i.e. no offsets) and one of
all observations (i.e. including dithered images). The larger standard deviations in the
comparison of offset images is indicative of a variable astrometric distortion map, or
perhaps because of the lower number of stars in common. Further work is under way to
understand these differences.
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Figure 3. Centroiding sigmas for consecutive observations of the field 2MASS1047. Left panel:
detector position always the same. Right panel: dithered positions.

Given that we are able to centroid to within 0.05 pixels we have used simulations
(Smart et al. 2001) to see the expected precision with various observational strategies.
The best approach is to have a season of intensive observations to sample the parallax
ellipse, and then carry out only nominal observations in the following years to sample the
proper motion movement. This means the precision of the final parallax, given a fixed
number of observations, is a maximum when they are they are distributed in the manner
indicated in Fig. 4. This simulation with a centroiding error of 0.05 pixels predicted a
final parallax precision of 2 mas.

3. Conclusions
In Fig. 5 we plot absolute magnitudes derived from all published T dwarf distances

– 30 distances for 23 objects. The overall trend of a hump in the middle of the range
can be clearly seen. However, the details are lost in the noise which is mainly due to
inaccurate parallaxes. The results of this project will improve this picture and allow us

Figure 4. Simulation of the expected motion and observations for a star at RA 12 h and Dec
17◦, distance 10 pc and proper motion 1′′ yr−1.
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Figure 5. Absolute J magnitudes derived from all known T dwarf distances. 2MASS J
magnitudes and spectral types taken from Burgasser (ref).

to distinguish between competing scenarios: cloud disruption (Burgasser et al. 2002a) or
a thin dust cloud deep in the photosphere (Tsuji 2002).

The work on T dwarfs has, however, only just begun. While these results will aid the
understanding of such features as the L-T transition and the T hump, as more objects
are found more issues will present themselves. For example, the differences between T
dwarf spectra appear to be relatively subtle. The T8 dwarf Gl570D (Burgasser et al.
2000) must be around 250 K cooler than Gl229B, yet their spectra are similar and bear
more resemblance to the reflectance spectra of Jupiter (e.g. ?) than to L dwarfs (Geballe
et al. 2002). Indeed, spectral types may have as much to do with cloud properties as
with effective temperatures. Thus absolute luminosities are a key ingredient to a better
understanding of T dwarf spectra.

It is also important to point out that for these objects we would be mistaken to wait
for the results of the planned space astrometric missions. Gaia (Perryman et al. 2001)
will probably not observe any of the T dwarfs, and not many of the L dwarfs, as they are
too faint in the magnitude band of the astrometric field. JASMINE (Yamada et al., these
proceedings) will observe some of the brighter L and T dwarfs in the Galactic plane, but
the number and hence range of properties will be limited. It appears that only dedicated
programs such as the present one will provide distances for future objects discovered in
the large surveys such as 2MASS, SDSS and UKIDSS.
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