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Abstract Let S and T be symmetric unbounded operators. Denote by S + T the closure of the sym-
metric operator S + T . In general, the deficiency indices of S + T are not determined by the deficiency
indices of S and T . The paper studies some sufficient conditions for the stability of the deficiency indices
of a symmetric operator S under self-adjoint perturbations T . One can associate with S the largest
closed ∗-derivation δS implemented by S. We prove that if the unitary operators exp(itT ), for t ∈ R,
belong to the domain of δS and δS(exp(itT )) → 0 in the strong operator topology as t → 0, then the
deficiency indices of S and S + T coincide. In particular, this holds if S and exp(itT ) commute or satisfy
the infinitesimal Weyl relation.

We also study the case when S and T anticommute: exp(−itT )S ⊆ S exp(itT ), for t ∈ R. We show
that if the deficiency indices of S are equal, or if the group {exp(itT ) : t ∈ R} of unitary operators has no
stationary points in the deficiency space of S, then S has a self-adjoint extension which anticommutes
with T , the operator S + T is closed and the deficiency indices of S and S + T coincide.
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1. Introduction

Let S be a closed symmetric operator on a Hilbert space H with dense domain D(S)
and let S∗ be its adjoint. The deficiency spaces of S

N±(S) = {x ∈ D(S∗) : S∗x = ±ix}
are closed in H and the numbers n±(S) = dim(N±(S)) are called the deficiency indices
of S. The operator S is self-adjoint if and only if n+(S) = n−(S) = 0. Let T be another
symmetric operator with D(S)

⋂
D(T ) dense in H and let S + T be the closure of the

symmetric operator S + T .
Much work has been done on the study of the linear perturbations S + T of symmetric

operators S and of the stability of their deficiency indices:

n+(S + T ) = n+(S), n−(S + T ) = n−(S). (1.1)

In the classical example when T is bounded, not only (1.1) holds but also S + T = S + T

(see [1]). The main thrust of the study was directed towards the important case when
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S is self-adjoint. Rellich [12] and Kato [5, 6] proved (1.1) when T is S-bounded with
the S-bound less than or equal to 1. Putnam [11] showed that S + T is self-adjoint if
S and T are commuting positive operators. Vasilescu [13] and Pedersen [10] established
that S +T is self-adjoint when S and T are self-adjoint and anticommute: exp(−itT )S ⊆
S exp(itT ), for t ∈ R. Numerous applications of these results to differential operators, to
the quantum field theory and to the theory of derivations of C∗-algebras were considered
in [2,3,6–9,11].

In our paper we concentrate on the study of the stability of the deficiency indices of
symmetric operators under self-adjoint perturbations, that is, when (1.1) holds if S is
symmetric and T is self-adjoint. Unlike the case when both S and T are self-adjoint
and the Spectral Theorem can be employed to study the stability, in our case the most
suitable tool for the purpose is the theory of indefinite metric spaces: Krein spaces.
Using it in Proposition 3.1, we link the deficiency indices of S and S + T when both
S and T are symmetric. This leads to our first main result (Theorem 4.3), which can
be stated in terms of the largest derivation δS on B(H) associated with S as follows:
(1.1) holds if the group {exp(itT ) : t ∈ R} of unitary operators lies in the domain of
δS and δS(exp(itT ))x → 0, as t → 0 for x ∈ D(S∗). This is a natural generalization of
the condition that S and exp(itT ) commute and it shows, in particular, that (1.1) holds
if exp(itT ) and S satisfy the infinitesimal Weyl relation (4.5). It also points to a link
between the theory of perturbation of symmetric operators and the theory of derivations
of C∗-algebras.

Our second main result—Theorems 5.3 and 5.4—is the extension of the results of
Pedersen and Vasilescu about anticommuting operators to the case when S is symmetric.
Here, again, using the theory of Krein spaces, we show that if the deficiency indices of
S are finite and equal, or if the group {exp(itT ) : t ∈ R} has no stationary points in
N+(S) + N−(S), then the operator S + T is closed, (1.1) holds and S has a self-adjoint
extension which anticommutes with T .

The above results allow us to extend further the conditions under which the index of
the ∗-derivation δS (see [9]) is stable: making use of Example 36.3 from [9], we conclude
that if S is a maximal symmetric operator, then the index of δS is stable: ind(δS) =
ind(δS+T ), under any self-adjoint perturbation T such that S and T satisfy conditions
of Theorems 4.3 or 5.3 or 5.4.

2. Preliminaries

Let F be a closed, densely defined operator on H. Its domain D(F ) becomes a Hilbert
space with respect to the scalar product

〈x, y〉F = (x, y) + (Fx, Fy), for x, y ∈ D(F ). (2.1)

Lemma 2.1.

(i) A subset Ω in D(F ) is dense in (D(F ), 〈·, ·〉F ) if and only if (F |Ω) = F .

(ii) Let A be a bounded operator and AD(F ) ⊆ D(F ). Then Ã = A|D(F ) is a bounded
operator on (D(F ), 〈·, ·〉F ).
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Proof. Part (i) is evident. If xn → x and Ãxn → y in ‖ · ‖F , they also converge in
‖ · ‖, so y = Ax = Ãx and Ã is closed. By the Closed Graph Theorem, Ã is bounded. �

Let T = {T (t) : t � 0} be a strongly continuous one-parameter semigroup of bounded
operators on H : T (0) = 1, T (t + s) = T (t)T (s), for 0 � t, s < ∞, and

‖T (t)x − x‖ → 0, as t → 0, for x ∈ H.

Its generator T is a closed operator with dense domain D(T ) (see [3, Chapter VIII, § 1])
and

T (t)D(T ) ⊆ D(T ) and TT (t)|D(T ) = T (t)T |D(T ), for t � 0. (2.2)

Proposition 2.2. Let T be the generator of T . If F is a closed operator such that

T (t)D(F ) ⊆ D(F ), for t > 0;

and
‖FT (t)x − Fx‖ → 0, as t → 0, for x ∈ D(F ),

then D(F )
⋂

D(T ) is dense in (D(F ), 〈·, ·〉F ).

Proof. Set T̃ (t) = T (t)|D(F ). By Lemma 2.1, T̃ = {T̃ (t) : t � 0} is a one-parameter
semigroup of bounded operators on (D(F ), 〈·, ·〉F ). We have

‖T̃ (t)x − x‖2
F = ‖T (t)x − x‖2 + ‖FT (t)x − Fx‖2 → 0, as t → 0,

for x ∈ D(F ), so T̃ is strongly continuous. Hence the domain D(T̃ ) of its generator is
dense in (D(F ), 〈·, ·〉F ). Since D(F )

⋂
D(T ) contains D(T̃ ), it is dense in (D(F ), 〈·, ·〉F ).

�

Let S be a closed symmetric operator and let S∗ be its adjoint. With respect to 〈·, ·〉S∗

(see [3, Chapter XII, § 4]), D(S∗) is the orthogonal sum of the subspaces D(S), N+(S)
and N−(S):

D(S∗) = D(S)〈+〉S∗N+(S)〈+〉S∗N−(S).

Define the following indefinite form on D(S∗) (see [9, § 28]):

[x, y]S = −i{(S∗x, y) − (x, S∗y)}, for x, y ∈ D(S∗).

It is degenerate on D(S) : [x, y]S = 0 if x ∈ D(S) and y ∈ D(S∗), and [x, y]S = [y, x]S if
x, y ∈ D(S∗). It is easy to check that

[x, y]S =




〈x, y〉S∗ = 2(x, y), if x, y ∈ N+(S),

−〈x, y〉S∗ = −2(x, y), if x, y ∈ N−(S),

0, if x ∈ N−(S) and y ∈ N+(S).

(2.3)

Set
N(S) = N+(S)〈+〉S∗N−(S).
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With respect to the form [·, ·]S , N(S) is a non-degenerate indefinite metric space: for
any z ∈ N(S), there is u ∈ N(S) such that [z, u]S �= 0. The subspaces N+(S) and N−(S)
are, respectively, uniformly positive and uniformly negative. We also have that, for x, y ∈
D(S∗),

|[x, y]S | � ‖S∗x‖ ‖y‖ + ‖x‖ ‖S∗y‖ � 2‖x‖S∗‖y‖S∗ . (2.4)

3. Sums of symmetric operators

Let S and T be closed symmetric operators. Set

D = D(S)
⋂

D(T ) and D∗ = D(S∗)
⋂

D(T ).

We assume that D is dense in H and set R = S + T . Then D ⊆ D∗ ⊆ D(R∗), R|D = S+T

and R∗|D∗ = S∗ + T . If x, y ∈ D∗, then

[x, y]R = −i{(R∗x, y) − (x, R∗y)} = −i{(S∗x, y) − (x, S∗y)} = [x, y]S . (3.1)

Proposition 3.1. If (S∗|D∗) = S∗, then n+(S) � n+(R) and n−(S) � n−(R).

Proof. Let {ei} be an orthonormal basis in N+(S). By (2.3), 〈ei, ej〉S∗ = [ei, ej ]S =
δij . Choose k � n+(S). Since D∗ is dense in (D(S∗), 〈·, ·〉S∗), for any ε > 0, there are
{hi}k

i=1 in D∗ such that ‖ei − hi‖S∗ � ε, for i = 1, . . . , k. By (2.4),

|[hi, hj ]S − δij | = |[hi, hj ]S − [ei, ej ]S |
= |[hi − ei, hj − ej ]S + [ei, hj − ej ]S + [hi − ei, ej ]S |
� 2‖hi − ei‖S∗‖hj − ej‖S∗ + 2‖ei‖S∗‖hj − ej‖S∗ + 2‖hi − ei‖S∗‖ej‖S∗

� 2ε2 + 4ε

� 6ε. (3.2)

Let x =
∑k

i=1 λihi for λi ∈ C. Then [x, x]S =
∑k

i,j=1λiλj [hi, hj ]S . Choosing sufficiently
small ε and applying the Principal Minor Test to the matrix ([hi, hj ]S), we obtain from
(3.2) that the quadratic form [x, x]S is positive definite. Hence all hi are linearly indepen-
dent and the subspace M spanned by {hi}k

i=1 is positive in D(S∗), that is, [x, x]S > 0,
for x ∈ M . By (3.1), M is also positive in D(R∗).

Let Q be the projection on the subspace N(R) in (D(R∗), 〈·, ·〉R∗). By (2.3),

[Qx, Qy]R = [x, y]R, for x, y ∈ D(R∗).

Hence QM is a positive subspace in N(R) and dim(QM) = k. It follows from the Law
of Inertia for indefinite metric spaces (see [9, Corollary 1.12]) that the dimensions of all
positive subspaces in N(R) are less than or equal to dim(N+(R)). Thus k � n+(R).
Since k is arbitrary, we have n+(S) � n+(R). Similarly, n−(S) � n−(R). �

The condition (S∗|D∗) = S∗ in Proposition 3.1 is sufficient but not necessary for
n+(S) � n+(R) and n−(S) � n−(R). Indeed, if T = S �= S∗ then R = 2S and
n±(S) = n±(R). However, we have D∗ = D(S∗)

⋂
D(S) = D(S) and (S∗|D∗) = S �= S∗.

We omit the standard proof of the following lemma.
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Lemma 3.2.

(i) If (S|D) = S, then D∗ = D(R∗)
⋂

D(T ).

(ii) If (S∗|D∗) = S∗, then D = D(R)
⋂

D(T ).

Proposition 3.1 and Lemma 3.2 yield the following corollary.

Corollary 3.3. If (R∗|D∗) = R∗ and (S∗|D∗) = S∗, then n±(S) = n±(R).

4. Sum of a symmetric operator and the generator of a one-parameter group

We start with the following result.

Lemma 4.1. Let ∆ be a linear manifold in D(S) such that (S|∆) = S. Let A and B

be bounded operators such that A∆ ⊆ D(S), B∗∆ ⊆ D(S) and let (SA − BS)|∆ extend
to a bounded operator K. Then A and B∗ preserve D(S) and D(S∗) and

K|D(S∗) = (S∗A − BS∗)|D(S∗). (4.1)

Proof. Let x ∈ D(S). Since (S|∆) = S, there are xn ∈ ∆ such that xn → x and
Sxn → Sx. Then Axn → Ax and SAxn = BSxn+Kxn → BSx+Kx. Since Axn ∈ D(S)
and S is closed, Ax ∈ D(S) and (SA − BS)|D(S) = K. Thus A preserves D(S).

For x, y ∈ ∆,

(K∗x, y) = (x, Ky) = (x, (SA − BS)y) = ((A∗S − SB∗)x, y).

Since ∆ is dense in H, K∗|∆ = (A∗S − SB∗)|∆. Repeating the argument used above, we
prove that B∗D(S) ⊆ D(S) and K∗|D(S) = (A∗S − SB∗)|D(S).

Let y ∈ D(S∗). For any x ∈ D(S),

(Sx, Ay) = (A∗Sx, y) = (K∗x, y) + (SB∗x, y) = (x, Ky) + (x, BS∗y).

Hence Ay ∈ D(S∗) and (4.1) holds. Similarly, B∗ preserves D(S∗). �

Let S and T be symmetric operators and let iT be the generator of a strongly contin-
uous one-parameter semigroup {T (t) : t � 0} of bounded operators.

Proposition 4.2. Let T (t)D(S) ⊆ D(S) and let there exist a family of bounded
operators {A(t) : t > 0} on H such that

(1) A(t)∗D(S) ⊆ D(S), for t > 0;

(2) A(t)x → x, as t → 0, for x ∈ H;

(3) (ST (t) − A(t)S)|D(S) extends to a bounded operator K(t), for t > 0;

(4) K(t)x → 0, as t → 0, for any x ∈ D(S∗).
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Then

(i) the linear manifolds D = D(S)
⋂

D(T ) and D∗ = D(S∗)
⋂

D(T ) are dense in H;

(ii) (S|D) = S and (S∗|D∗) = S∗;

(iii) D(S + T )
⋂

D(T ) = D;

(iv) n+(S) � n+(S + T ) and n−(S) � n−(S + T ).

Proof. For x ∈ D(S),

‖ST (t)x − Sx‖ = ‖(A(t)Sx + K(t)x) − Sx‖ � ‖A(t)Sx − Sx‖ + ‖K(t)x‖ → 0,

as t → 0. By Proposition 2.2, D is dense in (D(S), 〈·, ·〉S), so it is dense in H.
It follows from Lemma 4.1 that T (t)D(S∗) ⊆ D(S∗), for t > 0, and

‖S∗T (t)x − S∗x‖ = ‖(A(t)S∗x + K(t)x) − S∗x‖
� ‖A(t)S∗x − S∗x‖ + ‖K(t)x‖ → 0,

as t → 0, for x ∈ D(S∗). Hence, by Proposition 2.2, the manifold D∗ is dense in
(D(S∗), 〈·, ·〉S∗), so it is dense in H. Part (i) is proved. Part (ii) follows from Lemma 2.1.
Part (iii) follows from (ii) and Lemma 3.2, and part (iv) follows from (ii) and Proposi-
tion 3.1. �

By Stone’s Theorem, T is self-adjoint if and only if iT is the generator of a strongly
continuous group {T (t) : t ∈ R} of unitary operators: T (t) = exp(itT ).

Theorem 4.3. Let T be a self-adjoint operator. Let

(i) T (t)D(S) ⊆ D(S) for each t ∈ R;

(ii) (ST (t) − T (t)S)|D(S) extends to a bounded operator K(t) for each t ∈ R;

(iii) K(t)x → 0, as t → 0, for each x ∈ D(S∗).

Then n+(S) = n+(S + T ) and n−(S) = n−(S + T ).

Proof. Since T (t)∗ = T (−t), we obtain from Proposition 4.2 that

D(R)
⋂

D(T ) = D, S = (S|D), n+(S) � n+(R) and n−(S) � n−(R). (4.2)

It follows from (2.2) that T (t)D ⊆ D, for t ∈ R. Hence

(RT (t) − T (t)R)|D = (ST (t) − T (t)S)|D + (TT (t) − T (t)T )|D = K(t)|D.

Since R = (R|D), it follows from Lemma 4.1 that

T (t)D(R) ⊆ D(R) and (RT (t) − T (t)R)|D(R) = K(t)|D(R). (4.3)
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The operator −iT is the generator of the group {T (−t) : t ∈ R} and, by (4.3), the
group and the operator R satisfy the conditions of Proposition 4.2. Let W be the closure
of the operator (R − T )|D. We obtain from (4.2) and from Proposition 4.2 that

D(W )
⋂

D(T ) = D and n+(R) � n+(W ), n−(R) � n−(W ). (4.4)

Since W |D = (R − T )|D = (S + T − T )|D = S|D, it follows from (4.2) that
W = (W |D) = (S|D) = S. Comparing (4.2) and (4.4), we have n+(S) = n+(R) and
n−(S) = n−(R). �

A self-adjoint operator T and a symmetric operator S commute if

exp(itT )D(S) ⊆ D(S) and S exp(itT )|D(S) = exp(itT )S|D(S), for t ∈ R.

They satisfy the infinitesimal Weyl relation (see [4]) if exp(itT )D(S) ⊆ D(S) and

(S exp(itT ) − exp(itT )S)|D(S) = t exp(itT )|D(S), for t ∈ R. (4.5)

Corollary 4.4. Let S be a symmetric operator and T be a self-adjoint operator. If T

and S commute or satisfy the infinitesimal Weyl relation (4.5), then

n+(S + T ) = n+(S) and n−(S + T ) = n−(S).

Even if S is self-adjoint and commutes with T (T ), the operator S+T is not necessarily
closed. If, for example, T = −S, then S + T = 0|D(S) is not closed. Putnam [11] showed
that if S and T are positive and commute, then S + T is self-adjoint.

5. Anticommuting operators

A self-adjoint operator T and a symmetric operator S anticommute (cf. [10, 13]) if
exp(itT )D(S) ⊆ D(S) and

S exp(itT )|D(S) = exp(−itT )S|D(S), for t ∈ R. (5.1)

For self-adjoint S, Vasilescu [13] and Pedersen [10] proved that the operator S + T is
closed and self-adjoint. We study the case when S is symmetric.

We have from Proposition 4.2 that, for any anticommuting operators S and T ,
n+(S) � n+(S + T ) and n−(S) � n−(S + T ). Hence if n+(S) = n−(S) = ∞, then

n+(S) = n+(S + T ) and n−(S) = n−(S + T ).

We will extend this to all symmetric S. Set T (t) = exp(itT ). From Lemma 4.1 we have

T (t)D(S∗) ⊆ D(S∗) and S∗T (t)|D(S∗) = T (−t)S∗|D(S∗), for t ∈ R. (5.2)

Set T̃ (t) = T (t)|D(S∗). As in Proposition 2.2, {T̃ (t) : t ∈ R} is a strongly continuous one-
parameter group of bounded operators on (D(S∗), 〈·, ·〉S∗).
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Lemma 5.1. All operators T̃ (t) are unitary and preserve N(S).

Proof. Since all T (t) are unitary, it follows from (5.2) that

〈T̃ (t)x, T̃ (t)y〉S∗ = (T (t)x, T (t)y) + (S∗T (t)x, S∗T (t)y)

= (x, y) + (T (−t)S∗x, T (−t)S∗y) = (x, y) + (S∗x, S∗y) = 〈x, y〉S∗ ,

for x, y ∈ D(S∗). Hence all operators T̃ (t) are unitary. Since they preserve the subspace
D(S) of (D(S∗), 〈·, ·〉S∗), they also preserve its orthogonal complement N(S). �

Set U(t) = T̃ (t)|N(S) and J = −iS∗|N(S). Then U = {U(t) : t ∈ R} is a strongly
continuous one-parameter group of unitary operators on the Hilbert space (N(S), 〈·, ·〉S∗),

Jx = x if x ∈ N+(S), Jx = −x if x ∈ N−(S),

and
JU(t) = U(−t)J, for t ∈ R.

Let iW be the generator of the group U . Then W is a self-adjoint operator on N(S) and
the operators W and J anticommute (see (5.1)). It follows from Proposition 1.1 in [10]
that

JD(W ) ⊆ D(W ), JW |D(W ) = −WJ |D(W ). (5.3)

Since J2 = 1N(S), we have JD(W ) = D(W ). Set D± = D(W )
⋂

N±(S).

Lemma 5.2.

(i) The linear manifolds D+ and D− are dense in N+(S) and N−(S), respectively,

WD+ ⊆ N−(S), WD− ⊆ N+(S) and D(W ) = D+〈+〉S∗D−. (5.4)

(ii) If one of the deficiency indices of S is finite, then D+ = N+(S), D− = N−(S), W is
a bounded operator and the group U is uniformly continuous.

Proof. If x ∈ D+, then J(Wx) = −WJx = −Wx, so Wx ∈ N−(S). Thus
WD+ ⊆ N−(S). Similarly, WD− ⊆ N+(S). If x ∈ D(W ), then Jx ∈ D(W ) and
J(x + Jx) = x + Jx, so that x + Jx ∈ D(W )

⋂
N+(S) = D+. Similarly, x − Jx ∈ D−.

Thus D(W ) = D+〈+〉S∗D−. Since D(W ) is dense in N(S), D− is dense in N−(S) and
D+ is dense in N+(S).

Assume now that n+(S) < ∞. Since D+ is dense in N+(S), we have D+ = N+(S). Set

K± = {x ∈ D± : Wx = 0}. (5.5)

Since WD− ⊆ D+, we have dim(WD−) � n+(S) < ∞, so the quotient space D−/K− is
finite dimensional. Since W is closed and D− is dense in N−(S), we have D− = N−(S).
Thus D(W ) = N(S) and W is bounded. By Corollary VIII.1.9 in [3], the group U is
uniformly continuous. �

https://doi.org/10.1017/S0013091501000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000372


Symmetric operators under self-adjoint perturbations 391

Let L be a subspace of N(S). Its [·, ·]S-orthogonal ‘complement’ is defined by

L[⊥] = {y ∈ N(S) : [x, y]S = 0, for x ∈ L}.

L is called neutral if L ⊆ L[⊥], that is, [x, y]S = 0, for x, y ∈ L. It is maximal neutral if
it is not contained in any larger neutral subspace.

Similarly, a subspace L of D(S∗) is neutral if [x, y]S = 0 for x, y ∈ L. If L is a neutral
space in N(S) then, by (2.3), L = D(S)〈+〉S∗L is a neutral space in D(S∗). The operator
S̃ = S∗|L is a symmetric extension of S (see [3, § XII.4]) and

n+(S̃) = n+(S) − dim(L) and n−(S̃) = n−(S) − dim(L). (5.6)

The operator S̃ is self-adjoint, that is, n+(S̃) = n−(S̃) = 0, if and only if

L = L[⊥]. (5.7)

It follows from (2.2) and from the properties of the operator J that

[x, y]S = 〈Jx, y〉S∗ , for x, y ∈ N(S). (5.8)

Theorem 5.3. Let a symmetric operator S and a self-adjoint operator T anticommute.
Set G = {x ∈ H : exp(itT )x = x, for t ∈ R}. If

G
⋂

N(S) = {0}, (5.9)

then

(i) n−(S) = n+(S);

(ii) S has a self-adjoint extension which anticommutes with T ;

(iii) if the deficiency indices of S are finite, the operator S + T is closed;

(iv) n+(S) = n+(S + T ) and n−(S) = n−(S + T ).

Proof. Since W is closed, Ker(W ) is closed in N(S). By (2.2), Ker(W ) is invariant
for all U(t). Therefore, if x ∈ Ker(W ), then exp(itT )x = U(t)x = x, for t ∈ R. Since
G

⋂
N(S) = {0}, we have Ker(W ) = {0}, so that K− = K+ = {0}. If n+(S) < ∞, then,

by Lemma 5.2, D− = N−(S) and WD− ⊆ N+(S). Since K− = {0}, we have

n−(S) = dim(D−) = dim(WD−) � n+(S).

Similarly, n+(S) = dim(D+) = dim(WD+) � n−(S). Part (i) is proved.
Let E(t) be the spectral function of W . Since Ker(W ) = {0}, we have E(0) =

limt→0+ E(t). Set M = E(0)N(S) and L = (1N(S) − E(0))N(S). Then

N(S) = M〈+〉S∗L. (5.10)
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Since J and W anticommute and since J is bounded, it follows from Proposition 1.4
in [10] that E(t)J = J(1N(S) − E(−t)), for t ∈ R. Thus

JL = J(1N(S) − E(0))N(S) = E(0)JN(S) = E(0)N(S) = M. (5.11)

Since J2 = 1N(S), we have JM = L.
If x ∈ L, then Jx ∈ M . Making use of (5.8) and (5.10), we obtain that [x, y]S =

〈Jx, y〉S∗ = 0, for y ∈ L, so that L is a neutral subspace. Similarly, M is neutral and,
moreover, L and M are maximal neutral subspaces in N(S) and they coincide with their
[·, ·]S-orthogonal ‘complements’ in N(S): L[⊥] = L and M [⊥] = M .

Set L = D(S)〈+〉S∗L and S̃ = S∗|L. We obtain from (5.6) and (5.7) that S̃ is a self-
adjoint extension of S and that

0 = n+(S̃) = n+(S) − dim(L) and 0 = n−(S̃) = n−(S) − dim(L). (5.12)

Since the projection E(0) commutes with all operators U(t), the subspaces L and M are
invariant for U(t) with t ∈ R. Hence

exp(itT )D(S̃) = exp(itT )L = exp(itT )(D(S)〈+〉S∗L)

⊆ D(S)〈+〉S∗U(t)L = D(S̃)

and, by (5.2),

S̃ exp(itT )|D(S̃) = S∗ exp(itT )|D(S̃)

= exp(−itT )S∗|D(S̃) = exp(−itT )S̃|D(S̃).

Thus the operators S̃ and T anticommute. Part (ii) is proved.
Assume now that the deficiency indices of S are finite. It follows from Lemma 5.2

that N(S) ⊂ D(T ). Set D = D(S)
⋂

D(T ). We obtain from Proposition 4.2 that
D(S + T )

⋂
D(T ) = D. Since L ⊂ N(S) ⊂ D(T ) and L

⋂
D = {0}, we have

D(S + T )
⋂

L = {0}.
On the other hand, the operator S̃ + T is defined on

M = D(S̃)
⋂

D(T ) = (D(S)〈+〉S∗L)
⋂

D(T )

=
(
D(S)

⋂
D(T )

)
〈+〉S∗L = D〈+〉S∗L.

Since S̃ and T anticommute, it follows from Theorem 2.1 in [10] that S̃ + T is self-adjoint
and hence closed: D(S̃ + T ) = M. Clearly, S̃ + T is a self-adjoint extension of S + T .
Thus S + T ⊆ S + T ⊆ S̃ + T . If S + T �= S + T , then D ⊂ D(S + T ) ⊆ D〈+〉S∗L, so
D(S + T )

⋂
L �= {0}. This contradiction shows that S + T is closed. Part (iii) is proved.

If n±(S) = ∞, then (iv) follows from Proposition 4.2. Let n±(S) be finite. By (iii),
R = S + T is closed, D(R) = D and R ⊆ S̃ + T . Since S̃ + T is self-adjoint, S̃ + T ⊆ R∗,
so that S̃ + T = R∗|M. Since L is neutral, we have from (2.3) that M is a neu-
tral subspace in D(S∗). Hence, by (3.1), M is a neutral subspace in D(R∗). Since
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D(R∗) = D(R)〈+〉R∗N(R) = D〈+〉R∗N(R), we obtain that M = D〈+〉R∗L′, where
dim(L) = dim(L′) and L′ is a neutral subspace in N(R). By (5.6),

n+(R∗|M) = n+(R) − dim(L′) and n−(R∗|M) = n−(R) − dim(L′).

Since S̃ + T = R∗|M is self-adjoint, we have n+(R∗|M) = n−(R∗|M) = 0. Therefore,

n+(R) = n−(R) = dim(L′) = dim(L).

Comparing this with (5.12), we complete the proof. �

In the next theorem we consider the case when n−(S) = n+(S) < ∞ and prove the
results of Theorem 5.3 without the restriction given in (5.9).

Theorem 5.4. Let the operators S and T be the same as in Theorem 5.3. If n−(S) =
n+(S) < ∞, then

(i) S has a self-adjoint extension which anticommutes with T ;

(ii) the operator S + T is closed;

(iii) n+(S) = n+(S + T ) and n−(S) = n−(S + T ).

Proof. Since n±(S) < ∞, it follows from Lemma 5.2 that D± = N±(S), so K± = {x ∈
N±(S) : Wx = 0} (see (5.5)). Let P+ be the orthogonal complement of K+ in N+(S) and
let P− be the orthogonal complement of K− in N−(S). By Lemma 5.2, WP+ ⊆ N−(S).
Since W is self-adjoint, if y ∈ P+ and x ∈ K−, then 0 = 〈Wx, y〉S∗ = 〈x, Wy〉S∗ . Hence
WP+ ⊆ P−. Similarly, WP− ⊆ P+. Thus

dim(P+) = dim(WP+) � dim(P−) and dim(P−) = dim(WP−) � dim(P+).

Therefore, dim(P+) = dim(P−), so that dim(K+) = dim(K−).
The subspace P = P+〈+〉S∗P− is invariant for W . If e is an eigenvector of W in P

with eigenvalue λ, it follows from (5.3) that W (Je) = −JWe = −λJe, so Je is an
eigenvector of W with eigenvalue −λ. Since Ker(W | P ) = {0}, there is an orthonormal
basis {e1, . . . , en, f1, . . . , fn} in (P, 〈·, ·〉S∗) such that

fi = Jei, Wei = λiei, Wfi = −λifi and λi > 0.

We obtain from (5.8) that

[ei, ej ]S = 〈Jei, ej〉S∗ = 〈fi, ej〉S∗ = 0

for all i, j. Thus the subspace M spanned by all {ei}n
i=1 is neutral, invariant for W and

its [·, ·]S-orthogonal complement in P coincides with M.
Let K = K+〈+〉S∗K−, let m = dim(K+) = dim(K−) and let {h−

i }m
i=1 and {h+

i }m
i=1 be

orthonormal bases in K− and K+, respectively. By (5.8),

[h−
i + h+

i , h−
j + h+

j ]S = 〈J(h−
i + h+

i ), h−
j + h+

j 〉S∗ = 〈−h−
i + h+

i , h−
j + h+

j 〉S∗

= −〈h−
i , h−

j 〉S∗ + 〈h+
i , h+

j 〉S∗ = 0,
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for all i, j. Hence the subspace N spanned by {h−
i + h+

i }m
i=1 is neutral and its

[·, ·]S-orthogonal complement in K coincides with N . Since N ⊂ Ker(W ), we have that
N is invariant for W .

The subspace L = M〈+〉S∗N is invariant for W . Since JM ⊂ P and JN ⊂ K,
the subspaces M and N are orthogonal with respect to [·, ·]S . Hence L is neutral and
L[⊥] = L. Setting L = D(S)〈+〉S∗L and S̃ = S∗|L and repeating the argument used in
the proof of Theorem 5.3, we complete the proof of the theorem. �
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