Lithium for suicide and readmission prevention after electroconvulsive therapy for unipolar depression: population-based register study

Ole Brus, Yang Cao, Åsa Hammar, Mikael Landén, Johan Lundberg, Pia Nordanskog and Axel Nordenskjöld

Background
Electroconvulsive therapy (ECT) is effective for unipolar depression, but relapse and suicide are significant challenges. Lithium could potentially lower these risks, but is used only in a minority of patients.

Aims
This study quantifies the effect of lithium on risk of suicide and readmission and identifies factors that are associated with readmission and suicide.

Method
This population-based register study used data from the Swedish National Quality Register for ECT and other Swedish national registers. Patients who have received ECT for unipolar depression as in-patients between 2011 and 2016 were followed until death, readmission to hospital or the termination of the study at the end of 2016. Cox regression was used to estimate hazard ratios (HR) of readmission and suicide in adjusted models.

Results
Out of 7350 patients, 56 died by suicide and 4203 were readmitted. Lithium was prescribed to 638 (9%) patients. Mean follow-up was 1.4 years. Lithium was significantly associated with lower risk of suicide (P = 0.014) and readmission (HR 0.84 95% CI 0.75–0.93). The number needed to be treated with lithium to prevent one readmission was 16. In addition, the following factors were statistically associated with suicide: male gender, being a widow, substance use disorder and a history of suicide attempts. Readmission was associated with young age, being divorced or unemployed, comorbid anxiety disorder, nonpsychotic depression, and severe symptoms before ECT, no improvement with ECT, not receiving continuation ECT or antidepressants, usage of antipsychotics, anxiolytics or benzodiazepines, severity of medication resistance and number of previous admissions.

Conclusions
More patients could benefit from lithium treatment.

Declaration of interest
None.

Keywords
Depressive disorders; suicide; antidepressants; inpatient treatment; electroconvulsive therapy; lithium.

Copyright and usage
© The Royal College of Psychiatrists 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Method
This study was a register-based cohort study of in-patients who received ECT for the treatment of depression. Several Swedish population-based registers were compiled using the Swedish personal identity number. The outcomes were suicide rate and time to hospital readmission.

Participants
All patients in the Swedish National Quality Register for ECT who had received index ECT for unipolar depression (diagnosis codes: F321, F322, F323, F331, F332, or F333 according to the Swedish version of ICD-10-SE) between 2011 and 2016, and were registered as in-patients in the Swedish National Patient Register at the start of...
the treatment series were considered for inclusion in the study.18 If an individual had received several treatment series during the time period only the first one was selected. Exclusion criteria were age under 18 years of age, readmission on the same day as discharge, death registered before or on the day of discharge, or incomplete data on marital status.

Follow-up

Start of follow-up was calculated as the discharge date or end of ECT series, whichever came last. End of follow-up was the date of readmission to a hospital for a psychiatric diagnosis (ICD-10-SE Chapter F), death or the end of 2016, whichever came first.

Data management

Data was obtained from several registers. Information was linked by Statistics Sweden and the Swedish National Board of Health and Welfare using the Swedish personal identity number.

(a) The Swedish National Patient Register contains data on all public and private hospital admissions in Sweden. The registry has a high coverage, with 99\% of all hospital discharges registered.19 This database was used to obtain information on suicide attempts, post-traumatic stress disorder, attention-deficit hyperactivity disorder, anxiety disorder, obsessive-compulsive disorder, autism, personality disorder, substance use disorder and psychosis before admission.

(b) The Swedish Prescribed Drug Register, contains records of all prescription medications sold in Sweden since July 2005.20 This database was used to identify collection of any of the following medications within 100 days after the end of ECT: antidepressants, antiepileptics, antipsychotics, anxiolytics, benzodiazepines, central stimulants, lamotrigine, lithium, quetiapine and valproate. If follow-up time was shorter than 100 days collections before admission for 100 minus the number of follow-up days was also checked. This database was also used to identify medications obtained in the year before the start of ECT series, and this information was used to complete a version21 of the Antidepressant Treatment History Form (ATHF).22

(c) The Longitudinal Integration Database for Health Insurance and Labour Market Studies contains information on social and demographic factors and is compiled on a yearly basis.23 This database was used to obtain information on patient, gender, age, education, marital status and employment status in the year before ECT.

(d) The Swedish Cause of Death Register contains the dates and causes of deaths as determined by a physician, including suicides (ICD codes X60–X84 and Y10–Y34), for all individuals in Sweden and all Swedish residents who die in a foreign country.24

(e) The Swedish National Quality Register for ECT contains information on ECT treatment series and the patients receiving treatment. The register had a coverage of 85\% of all ECT in Sweden in 2013.25 This database was used to obtain information on the number of ECT in series, pulse width, frequency, duration, electric current, electrode placement, Clinical Global Impression (CGI)26 severity before treatment, CGI improvement and continuation ECT.

With the exception of marital status, missing values for categorical variables were identified and coded as a separate category. For marital status, patients with missing data were excluded.

ATHF

The ATHF was used to evaluate the pharmacological treatment for depression in the year before ECT.27 The ATHF quantifies which types of antidepressant treatments and how much of each type a patient has used. Medication dosage was used rather than blood levels. A single dispensing of a drug was taken to indicate a usage of less than 4 weeks. Two or more dispensations were taken to indicate usage of 4 weeks or more. The following changes were made from the original ATHF:

(a) collections of fluoxetine and citalopram were counted separately and not combined;

(b) tranylcypromine was combined with isocarboxazid (same categories as for isocarboxazid);

(c) usage of ECT and lithium as an augmenting agent was not considered;

(d) levomepromazine, alimemazine, and promethazine were added with one point for any dispensation;

(e) vortioxetine was added with one point for one dispensation or multiple dispensions with doses <5 mg/day, two points for multiple dispensions with doses 5–9 mg/day, three points for multiple dispensions with doses 10–19 mg/day and four points for multiple dispensions with doses ≥19 mg/day;

(f) agomelatine was added with one point for a single dispensation or multiple dispensions with doses under 15 mg/day, two points for multiple dispensions with doses 15–35 mg/day, three points for multiple dispensions with doses 35–65 mg/day and four points for multiple dispensions with doses ≥65 mg/day;

(g) escitalopram was added with one point for a single dispensation or multiple dispensions with doses <5 mg/day, two points for multiple dispensions with doses 5–10 mg/day, three points for multiple dispensions with doses 10–20 mg/day and four points for multiple dispensions with doses >20 mg/day;

(h) duloxetine was added with one point for a single dispensation or multiple dispensions with doses <30 mg/day, two points for multiple dispensions with doses 30–39 mg/day, three points for multiple dispensions with doses 40–59 mg/day and four points for multiple dispensions with doses ≥60 mg/day or more;

(i) reboxetine was added with one point for a single dispensation or multiple dispensions with doses <4 mg/day, two points for multiple dispensions with doses 4–7 mg/day, three points for multiple dispensions with doses 8 mg/day and four points for multiple dispensions with doses ≥8 mg/day.

Statistics

Chi-square tests and descriptive statistics were used to characterise the data. For sparse data Fisher’s exact tests were used instead of χ^2.

Kaplan–Meier plots and survival analysis using proportional hazards Cox regression was performed to estimate differences in time to suicide and readmission between groups based on treatment, social and individual background factors. Both unadjusted and adjusted models were used. The adjusted model included the variables listed in supplementary Table 1 available at https://doi.org/10.1192/bjo.2019.37. If Cox estimates could not be calculated because of few (or most) of the patients having the outcome, pairwise Fisher’s exact tests were used instead. Models stratified by use of antidepressants and lithium use were used to investigate if the effect of lithium/antidepressant use differed between those with and without antidepressant/lithium use. Models with interaction effects between lithium and antidepressants were generated. Numbers needed to treat were calculated from the adjusted Cox model. In addition, times to death by non-suicide causes between lithium and non-lithium users were calculated.

In separate analysis, the outcome of time to suicide using the same follow-up period as in readmission analysis but with time to suicide as the outcome with censoring for hospital readmission, non-suicide death and the end of 2016 was analysed.
In the adjusted model, patients who collected lithium had a lower risk of readmission than patients who did not collect lithium (HR = 0.84, 95% CI 0.75–0.93). The number of patients who needed to be treated with lithium to prevent one readmission was 16 (95% CI 10–38). Patients aged 18–29 years, were more likely to be readmitted than older patients. Divorced patients were more likely to be readmitted than married or cohabiting patients, and unemployed patients were more likely to be readmitted than employed patients. Patients with a history of anxiety were more likely to be readmitted than patients without diagnosed anxiety disorder. Patients with psychotic depression were less likely to be readmitted than patients with non-psychotic depression. Patients who were scored as severely ill or among the most severely ill prior to ECT were more likely to be readmitted than patients with less severe symptoms prior to ECT. Patients who were minimally improved, did not change or got worse after ECT were more likely to be readmitted than patients who were very much improved after ECT. Patients who received continuation ECT were less likely to be readmitted than patients who did not receive continuation ECT. Patients taking antidepressants after ECT were less likely to be readmitted than patients not taking antidepressants after ECT. Patients taking antipsychotic medications, anxiolytic medications or benzodiazepines after ECT were more likely to be readmitted than patients not taking those medications after ECT. A higher measure of pharmacological resistance (represented by a higher AHTFH score) was associated with higher risk of readmission as was a greater number of previous in-patient treatments for psychiatric disorders.

In the analysis stratified by antidepressant use, the HR of lithium for time to hospital readmission after ECT was 0.71 (95% CI 0.53–0.94) for patients who did not collect antidepressants. For patients who collected antidepressants after ECT the HR for lithium was 0.86 (95% CI 0.77–0.97). The analysis stratified by lithium use showed no significant effect of antidepressants (HR = 1.18, 95% CI 0.86–1.63) for those who used lithium but the effect of antidepressants was significant for those not using lithium (HR = 0.82, 95% CI 0.74–0.91). In the model with the interaction effect between lithium and antidepressant the interaction was statistically significant (HR = 1.41, 95% CI 1.05–1.89).

We performed a sensitivity analysis without the 40% of patients who lacked CGI-improvement scores and obtained similar results.

Discussion

Main findings and comparison with findings from other studies

Patients treated with lithium after ECT for unipolar depression were less likely to die by suicide or be readmitted to hospital than patients not treated with lithium after ECT for unipolar depression. Our model with data on more than 7000 patients followed for an average of over 1 year indicates that to prevent 1 readmission 16 patients need to be treated with lithium. This is a clinically relevant effect for a disorder that is hard to treat and whose consequences are severe. This finding supports existing Swedish guidelines that advocate the use of lithium for prophylaxis after ECT for depression. In this population-based study only 9% of patients were treated with lithium. Thus, there is a potential to increase the usage of lithium.

Antidepressants also seem to lower the risk of readmission, but were not associated significantly with suicide risk. Antidepressants are used widely and the potential for increased use is low. Our data suggest that lithium reduces the risk of readmission among patients taking or not taking antidepressants. Antidepressant use was only significantly associated with reduced risk of readmission among patients not taking lithium. Because few patients were...
taking lithium without antidepressants, the effect of antidepressants among lithium users is uncertain. Continuation ECT was associated with reduced relapse risk. This is in line with data from randomised controlled trials.28,29 Patients that receive continuation ECT are likely to have been selected for this treatment because the physician thought that pharmacotherapy would not be sufficient. We built models to try to account for selection bias, but there is nevertheless risk that the effect of continuation ECT is underestimated. Only 10% of the patients received continuation ECT, thus more patients could potentially benefit.

Antipsychotics and benzodiazepines were associated with increased risk for relapse, in line with earlier studies. Indication bias is likely to have influenced these associations, because antipsychotics and benzodiazepines are used to treat residual symptoms, and incomplete remission were associated with relapse. However, another possibility is that the negative effects on neuroplasticity of benzodiazepines contribute to explain the increased risk for relapse.30,31 Many patients experience side-effects of antipsychotics including weight gain. Considering the sparse effect of this class of prophylactics on unipolar depression antipsychotics should be used cautiously in maintenance treatment of depression.

Patients who were treated for depression with psychotic symptoms were less likely to be readmitted than patients who were treated for depression without psychotic symptoms. This was also seen in an earlier study by our group.9 The outcomes of ECT for patients with psychotic depression is generally very favourable.32,33

Older age, marriage and employment were associated with less readmission in line with earlier findings.8 The suicide rate per year in this study was 0.5%, which is comparable with the 0.7% rate found in an earlier study.34

Limitations and strengths

This was a cohort study of a clinically treated population, thus, observed differences may depend on other, unmeasured factors that correlate both with exposure and outcome. We tried to limit this risk by including many factors that are likely to affect the outcome in the multivariate models. The data on diagnoses were not obtained using the same diagnostic instruments for all study participants, but rather were collected in routine clinical settings. There is a risk that a few patients with bipolar disorder might have been included in the study, although we tried to limit this number by excluding patients with previous in-patient treatment.

Fig. 1 Time to hospital readmission for patients using lithium after electroconvulsive therapy and those not using lithium, stratified by the number of earlier hospital admissions for psychiatric care.

Kaplan-Meier plot of differences in time to hospital readmission between patients collecting lithium and those who did not in total (a); and by the number of earlier hospital admissions for psychiatric disorders: (b) 0 admissions; (c) 1–20 admissions; (d) 21–140 admissions.
Lithium following ECT in unipolar depression

for bipolar disorder. A strength is that the registers used in this study are of high quality and coverage.

In conclusion, lithium can be beneficial in reducing the risk of readmission and suicide for patients treated with ECT for unipolar depression, and there is potential for its increased use.

Ole Brus, MSC, Statistician, Clinical Epidemiology and Biostatistics, Faculty of Medicine and Health, Örebro University, Sweden; Yang Cao PhD, Statistician, Clinical Epidemiology and Biostatistics, Faculty of Medicine and Health, Örebro University, and Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Sweden; Åsa Hammar, PhD, Professor, Department of Biological and Medical Psychology, University of Bergen; and Division of Psychiatry, Haukeland University Hospital, Norway; Mikael Landén, MD, PhD, Professor, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University; and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden; Johan Lundberg, MD, PhD, Physician and Associate Professor, Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet; and Stockholm County Council, Sweden; Pia Nordenskjöld, MD, PhD, Physician, Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University; and Department of Psychiatry, Region Östergötland, Sweden; Åsa Hammar, MSc, Statistician, Clinical Epidemiology and Biostatistics, Faculty of Medicine and Health, Örebro University, Sweden; and Department of Psychiatry, Region Östergötland, Sweden; Pia Nordenskjöld, MD, PhD, Physician, University Health Care Research Centre, Faculty of Health and Medical Sciences, Örebro University, Sweden

Correspondence: Ole Brus, Klinisk epidemiologi och biostatistik, X-huset, Universitetssjukhuset ÖREBRO, 701 85 Örebro, Sweden. Email: ole.brus@regionorebro-lan.se

First received 23 Jan 2019, final revision 9 Apr 2019, accepted 29 Apr 2019

Funding

The study is funded by the authors’ respective employers.

Supplementary material

Supplementary material is available online at https://doi.org/10.1192/bjo.2019.37

References