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DISTRIBUTION OF WEIERSTRASS POINTS 
ON RATIONAL CUSPIDAL CURVES 

BY 

JOHN B. LITTLE 

ABSTRACT. We study the set W(L ) of Weierstrass points of all positive 
tensor powers of an invertible sheaf L on an irreducible rational curve 
X with g = 2 ordinary cusps. Using an idea from B. Olsen's study of 
the analogous question on smooth curves, and an explicit formula for the 
"theta function" of a cuspidal rational curve, we show that W{L) is never 
dense on X (in contrast to the case of smooth curves of genus g ^ 2). 

1. Introduction. There has recently been an increase of interest in the problem 
of extending well-known notions from the theory of smooth algebraic curves, such 
as the notion of Weierstrass points for invertible sheaves, to the setting of singular 
curves. In the papers [2], [3], and [4], R. F. Lax and C. Widland have generalized 
the classical définition of the Weierstrass points of the canonical sheaf of a smooth 
curve via the order of vanishing of a certain Wronskian. Using this method, they 
have defined Weierstrass points for any invertible sheaf L with dim H°(L) > 0 on 
an integral, complex projective Gorenstein curve. Recall that a curve X is said to be 
Gorenstein if its dualizing sheaf is locally free. For instance, all curves with only 
planar singularities (e.g. nodes and ordinary cusps) are Gorenstein. 

The basic results of this study of Weierstrass points on a singular curve X are as 
follows. For smooth points P, if s = dim H°(X,L) > 0, then F is a Weierstrass point 
of L if and only if dim H°(X,L(-sP)) > 0. On the other hand, if s > 1, then the 
singular points of X are automatically Weierstrass points of high weight. 

Our major concern in this note will be the distribution of the smooth Weierstrass 
points of such a sheaf L. Given an invertible sheaf L of positive degree on a smooth 
curve of genus g ^ 2, it is known by a result of B. Olsen ([6]) that the set 

W(L) = {P e X\P is a Weierstrass point of L®n for some n^ 1} 

is dense on X in its complex topology. For some singular curves, the picture can be 
quite different. Indeed, in [3], Lax exhibited an example of a 2-nodal rational curve 
X and a particular L on X such that the analogous set W(L) of smooth Weierstrass 
points of all the tensor powers L®n is not dense on X. The present author and K. A. 
Furio showed in [5] that this example is not an isolated phenomenon. In fact, if X is 
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an irreducible g -nodal rational curve with g = 2, and L is any invertible sheaf on X 
with dim H°(X,L) > 0 and dim Hl(X,L) = 0, then W(L) is not dense. The limit 
points of W(L) lie on a real one-dimensional subset of X determined by L and the 
locations of the nodes. 

Lax and Widland have also studied the Weierstrass points of the canonical sheaf on 
cuspidal rational curves in [4], and have noted the following general pattern. Weier­
strass points on cuspidal rational curves tend to be even scarcer than on rational nodal 
curves, because even more of the total Weierstrass weight is accounted for by the 
singular points (see 3 below). In line with this phenomenon, in this note we will 
show that on an irreducible cuspidal rational curve of arithmetic genus g ^ 2, for all 
invertible sheaves L with dim H°(X,L) > 0, and dim Hl(X, L) = 0, W(L) is never 
dense. We will show that W(L) may be partitioned (though of course not in a unique 
way) into at most g sequences, each converging to a point in X. 

Our technique, as in [5], is to use a criterion for Weierstrass points borrowed from 
Olsen's work for smooth X. For this, we will need to begin with some preliminaries 
about the generalized Jacobian of a cuspidal curve, and the theta function associated 
to X. Following this, in 3 we will formulate and prove our main result. 

2. Rational cuspidal curves. Let X be the irreducible cuspidal rational curve 
formed by creating simple cusps (singularities analytically isomorphic to the origin 
on y2 = x3) at g distinct points a, £ P1. We will view the normalization (P1) of X as 
the Riemann sphere, or extended complex plane in what follows, and we assume that 
no aj — oo for simplicity. 

Let UJ denote the dualizing sheaf of X. Then H°(X, u) is spanned by the differentials 
—dz/(z — ai)2, i = 1 , . . . , g. Since X is homeomorphic to P1, there is no period lattice, 
and the generalized Jacobian of X is J(X) = Cg. Let XQ denote the set of smooth 
points of X. Using XQ = oo G XQ as our base point, we can define the Abel mapping 
(p : X0 —• J(X) by </>(*) = (J^ -dz/(z - axf,..., J^ -dz/(z - ag)

2), which has as 
its image the parametric rational normal curve W\ = (l/(x — # i ) , . . . , \/{x — ag)) in 
C#. By means of the group operation in C^, we extend (p to a mapping on effective 
divisors supported in XQ in the usual way: 

tpiX^-^JiX) 

^2nkxk —• (X)nk/(xk - a\\ ..., J2nk/(*k - ag)). 

Finally, if D = D\ — D2 with £>, effective, we define (f(D) = (f(D\) — ̂ (^2). 
The image of Xjf~l) under <p, which we will denote by Wg-\, is a Zariski-open 

subset of an irreducible (algebraic!) hypersurface 0 C Cg, whose closure in the 
compactification of JiX) plays the role of the theta divisor on a smooth curve. We 
will now derive a defining equation of 0 that plays the role of the theta function in 
the smooth curve case. 
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PROPOSITION 1. Let X, aly g be as above, and let X\,... ,Xg be coordinates on Cg. 
Consider the function 

(1) Ox(Xu...,Xg) = dtt 

tff-% + (g - l)af-2 a\-2Xx +{g- 2)af"3 • • • X, 

\~% + (g - 1M~2 a*~2Xg + (g - 2 W - 3 ' ' ' X, *g ~g 

Then the hyper surface Ox(X\, • • • ,Xg) — 0 /s reduced and irreducible, and contains 
Wg-\ as a Zariski-open subset. 

PROOF. By definition, Wg-\ is the translation hypersurface with parametrization: 

(2) X, = i / ( J f l _ f l l ) + " - + 1 / ( ^ - 1 - a i ) 

Xg = 1/Ui - ag) + • • • + l / ( ^ - i - ^ ) 

obtained by summing g — 1 general points <£>(-*/) £ Wi. We can obtain an equation for 
W^-i by eliminating the x} in the equations (2). 

For each k, 0 ^ /: ^ g — 1, let a* denote the &th elementary symmetric polynomial 
in the x,. By putting all the terms over a common denominator, the /th equation in (2) 
can be rewritten as 

X, 

or 

•\-k M 
U=o 

0 = ^ [ ^ X / + ^ - 1 ](!,_!_,. 
Jt=0 

Since the ag-\-k are not identically zero, this implies that the determinant in equation 
(1), which is the determinant formed from the coefficients of this system of linear 
equations for the og-\-^ must be zero. It is easy to check that 9x(X\,.. .,Xg) — 0 
defines an irreducible, reduced hypersurface. • 

We observe that #x(Xj,... ,Xg) is a polynomial of degree g in Xi , . . . ,Xg of the 
following form: 

(3) 
/ç{i,..,j?} '"e/ 

where £'{i,...,(1>} is the Vandermonde determinant of the <z/. Hence ^{l,...^} ^ 0. The 
constant term of Ox is always zero. 

Our major use of Ox will be in the following criterion for Weierstrass points. (See 
[6], p. 362, and Lemma 2 of [5] for related results.) 
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PROPOSITION 2. Let L be an invertible sheaf on X such that s = dim H°(X,L) > 0 
and dim HX(X,L) — 0. Let P be a smooth Weierstrass point of X. Then if P is a 
Weierstrass point of L, then ip(L) — s(f(P) G 0. 

PROOF. We begin with a comment regarding the notation ip(L) in the statement of 
the Proposition. The generalized Jacobian of X is isomorphic to Pic°(X), the group of 
isomorphism classes of invertible sheaves of degree zero on X. Given any invertible 
sheaf L on X, L = Ox(D) for some (not necessarily effective) divisor D supported 
in XQ. Furthermore, if/) and D' are linearly equivalent divisors supported in XQ, then 
Abel's Theorem on X implies that (f(D) — (f(Df). Thus, we may define (p(L) to be 
the image (f(D) for any divisor D supported in Xo with L = Ox(D). Similarly, if D 
is any Cartier divisor on X, we may take the associated invertible sheaf L = Ox(D) 
and define ip(D) ~ <^{L). 

Now we proceed to the proof of the Proposition. Since P is a smooth Weierstrass 
point of L, there is a nonzero section a G H°(X, L(—sP)). Then D = div(a) — sP is 
an effective Cartier divisor on X. Its degree is deg(£) — s = g — 1 by the Riemann 
Roch Theorem for Gorenstein curves (using the assumption that L is nonspecial). 

Even though D may not be supported entirely in Xo, since it is a Cartier divisor, it 
can be viewed as a "limit" of effective divisors of degree g — 1 supported in Xo, as in 
[1]. The image (f(D) can then be computed by a limiting process as follows. By the 
linearity of the abelian sums, we can reduce to the case in which Q is a cusp of X, 
D is supported at Q, and/ G OX,Q is a local equation for D. For every e G C \ {0} 
sufficiently small in absolute value, the divisor Dt — div(/ — e) will consist of deg(Z)) 
smooth points. As in Theorem 2 of [1], we will have tp(D) = \im€-^o(p(De). 

As a result, (f(D) = ip(L) — stp(P) lies in the closure of <p(XJf~l)), hence in 0.D 

Say (f(L) — (b\,...,bg) G C* = J(X). Then from the explicit form of Ox in 
equation (3), we have the following corollary. 

COROLLARY Let L be as in Proposition 2, and write d — deg(X). If x is a smooth 
Weierstrass point of Lm, then dim H°(X,L®n) - nd + 1 — g, and 

(4) Y, cI-l[[nbl-(nd+\-g)/(x-al)] = 0. 
/ç{l,..,*} iel 

3. The location and distribution of the Weierstrass points. Using the equation 
(4), we will now make two observations about the location and distribution of the 
smooth Weierstrass ponts of L ®n on X as n —> oo. 

Our first observation is that for each n, the equation (4) has at most g roots, and 
that for generic X and L, there will be exactly g roots. This agrees with the results of 
[4], since by Proposition 4 of that paper, if g is a unibranch singular point, then for all 
L, the L -Weierstrass weight of Q is at least 6QS(S — 1) + (s — 1), where s, as always, 
denotes dim H°(X,L). If X has only ordinary cusps (SQ — 1), L has degree d, and 
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all the cusps have the minimum possible L -Weierstrass weight, then the number of 
smooth Weierstrass points (counted with their weights) will be the total Weierstrass 
weight of L, minus the contribution from the cusps, or 

ds + (g - l)s(s - 1) -g[s(s - 1) + (s - 1)], 

which equals g, using the Riemann Roch Theorem. It is in this sense that Weierstrass 
points are scarcer on cuspidal curves than on nodal curves of the same arithmetic 
genus. 

Our main result is the following second observation. 

THEOREM. Let X be an irreducible rational curve of arithmetic genus g = 2 with 
g ordinary cusps as singularities. Let L be an invertible sheaf of degree d on X with 
s = dim H°(X,L) > 0, and dim HX(X,L) = 0. Let <p(L) = (bu...,bg) G J{X). 
Then if W(L) = {P G Xo\P is a Weierstrass point of L®n for some n ^ 1} is 
nonempty, its limit points are contained in the set S = {d/b\ + a\,..., d/bg + ag}. 

PROOF. Rewrite equation (4) as 

0 = 5Z cIn^.l[[bl-(d + (\-g)/n)/(x-ai)]. 
/ç{i,...,*} iei 

since c^^ gy ^ 0, the leading (that is, the fastest growing) term as n —» oo is the 
term with / = { 1 , . . . , g} . Dividing by ng, and letting n go to infinity, we see that the 
equation is approaching 

0 = f[[bl-d/(x-al)]. 
i=\ 

The claim follows. • 

In particular, the set W(L) is not dense on X, and is, in a sense, even less evenly 
distributed than in the case of nodal curves. 

In conclusion, we note that by Olsen's result, it may be seen that if the geometric 
genus of X is 2 or greater, then the set W(L) will be dense in X. In this paper, and in 
[5}, we have considered only rational curves. One natural question is: What happens 
when the geometric genus of X is 1 ? It seems reasonable to conjecture that that case 
will be more like the rational examples here than the case of geometric genus ^ 2. 
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