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Abstract We consider a class of Jacobi matrices with periodically modulated diagonal in a critical
hyperbolic (‘double root’) situation. For the model with ‘non-smooth’ matrix entries we obtain the
asymptotics of generalized eigenvectors and analyse the spectrum. In addition, we reformulate a very
helpful theorem from a paper by Janas and Moszynski in its full generality in order to serve the needs
of our method.
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1. Introduction

We consider a class of Jacobi matrices with periodically modulated growing diagonal,
giving an example of the ‘double root’ problem. This means a critical situation for
asymptotics of the generalized eigenvectors related to the matrix. Such a situation partic-
ularly arises in the spectral phase transition phenomenon. If the matrix depends on some
parameters, the decomposition of its spectrum into different types (absolutely continuous,
singular continuous, pure point, discrete [1]) may be independent of these parameters.
But if the structure of this decomposition changes under a variation of the parameters, a
spectral phase transition occurs. If this change happens by a jump, such a phenomenon is
called a spectral phase transition of the first type, whereas if this change is smooth with
the change of the parameters when they move across some hypersurface in a space, it is
called a spectral phase transition of the second type. The transition in types of spectrum
is closely related to the change of form of asymptotics of generalized eigenvectors due to
subordinacy theory [6], which was generalized to the case of Jacobi matrices in [12].

During the last decade the spectral analysis of Jacobi matrices attracted the attention
of many specialists in operator theory and mathematical physics.

We consider the Jacobi matrix J with diagonal entries bn:

bn =

{
bnα for odd values of n,

0 for even values of n
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(where α and b are real parameters α ∈ ( 2
3 ; 1) and b �= 0), and off-diagonal entries

(weights)
an = nα.

The model demonstrates the situation of the spectral phase transition of the first order
corresponding to the ‘moment of transition’ exactly. We are interested in asymptotics of
generalized eigenvectors, i.e. solutions of the spectral recurrence relation

an−1un−1 + bnun + anun+1 = λun, n � 2. (1.1)

This model has been studied in [5] and in particular the following result was obtained:
for λ < 0 there are two solutions u+

n and u−
n of (1.1) with the following asymptotics as

n → ∞:

u±
2n ∼ (−1)nn−α/4 exp

(
±

√
bλ

2α

n1−(α/2)

1 − (α/2)

)
,

u±
2n+1 ∼ ±

√
λ

2αb

(
1 − α

2

)
(−1)nn−3α/4 exp

(
±

√
bλ

2α

n1−(α/2)

1 − (α/2)

)
.

The problem of determining the asymptotics for λ > 0 was stated in [5], and we show
here that the answer has the same form. However, this interesting question is not the
main concern of this paper. The principal difficulty in our analysis is that the situation
is ‘critical hyperbolic’, unlike the ‘critical elliptic’ situation in [5], which roughly means
that exponents in the answer grow and decay if λ > 0 and oscillate if λ < 0.

Let us explain the problem of the critical situation in more detail. Whenever one deals
with the three-term recurrence relation (1.1), it is often useful to write it in the vector
form, introducing the sequence

un :=

(
un−1

un

)

and the transfer matrix

Bn :=

⎛
⎝ 0 1

−an−1

an

λ − bn

an

⎞
⎠ .

So (1.1) is equivalent to the discrete linear system in C
2:

un+1 = Bnun, n � 2. (1.2)

The solution for such a system is obtained by taking the chronological product of transfer
matrices, ( n∏

k=2

Bk

)
u2 = Bn · · ·B2u2.

The analysis becomes much easier if the matrix of the system is in some sense smooth
in n (say, has a limit and asymptotic expansion in inverse powers of n as n → ∞). In
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our case the transfer matrix is not smooth in this sense because the coefficients of the
spectral equation ‘jump’ all the time. This is the first (simple) problem that we face and
it may be solved by taking the product of two consecutive transfer matrices, introducing
the new linear system with the sequence of the coefficient matrices

Mn := B2nB2n−1, (1.3)

which turns out to be smooth in n. It is easy to see that the sequence Mn has a limit
M := limn→∞ Mn with detM = 1. The are three possibilities for the eigenvalues of M :
they can be

• unimodular and complex conjugate (the elliptic situation),

• real and different (the hyperbolic situation; hence one of them is greater than 1
and another is less than 1 in absolute value), or

• coincide and equal 1 or −1 (the critical situation = the double-root case).

In the hyperbolic situation solutions are supposed to grow or decay; in the elliptic sit-
uation they are supposed to oscillate, having similar behaviour of their norms ‖un‖.
The numerous variants of analogues to the Levinson Theorem (also known as the
Benzaid–Lutz Theorem [2]) for differential linear systems [4] can be applied in these
two cases [9,13].

In the critical situation one can also distinguish the ‘critical elliptic’ and the ‘critical
hyperbolic’ cases. This separation depends on the lower-order behaviour of Mn as n → ∞,
namely on the asymptotic sign of the discriminant (discrMn := (trMn)2 − 4 det Mn) of
matrices Mn. In the critical case, the matrix M is similar to the Jordan block, with
powers (

1 1
0 1

)n

=

(
1 n

0 1

)
,

and the difficulty here is not that the powers of the matrix grow with n (as they do in the
hyperbolic situation), but the fact that the large entry is off-diagonal. This mixes upper
and lower components of the solution, which makes the system unstable and sensitive to
small perturbations. The problem of the ‘critical hyperbolic’ situation was considered for
smooth matrix elements in [10]. In the present paper, considering a model of the Jacobi
matrix with ‘oscillating’ diagonal, we intend to greatly simplify the scheme of successive
transformations of the matrix system that was used there by making it more general
and transparent (see § 3). This approach differs from that of [5] for the ‘critical elliptic’
situation, because in our case we have to deal with growing exponents (see step 3 on
p. 247). Moreover, we consider in the appendix a theorem from [9] which is necessary for
the final step of our method. The problem is that the original formulation of this theorem
states asymptotics of only one (principal) solution. Although it is surely the most difficult
part of the problem considered, we want to state the result in its full generality.

The method in this paper works for a much wider class of Jacobi matrices. However,
our goal is to present a simple formulation of the method and to show by means of an
example how it works.
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A similar problem (the critical hyperbolic situation) was considered in [7] for a ‘smooth’
model, where the author used a completely different method related to [11].

2. Preliminaries

As usual, the operator J in the Hilbert space l2(N) is first defined (as J ) on the linear
set of vectors which have only a finite number of non-zero components, lfin(N), by the
rule

(J u)1 = b1u1 + a1u2,

(J u)n = an−1un−1 + bnun + anun+1 for n � 2.

Then its closure J = J̄ is a self-adjoint operator provided that the Carleman condition [3]

∞∑
n=0

1
an

= +∞

is satisfied. In the standard basis {en}∞
n=1 (where en is the vector in which all the com-

ponents are zeros except for the nth) the operator J admits the following matrix repre-
sentation: ⎛

⎜⎜⎜⎜⎝
b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .

We start with the system (
u2n

u2n+1

)
= Mn

(
u2n−2

u2n−1

)
(2.1)

(see (1.2), (1.3)). One can obtain a solution of this system directly, by taking a product
of matrices Mn: (

u2n

u2n+1

)
=

[ n∏
k=2

Mk

] (
u2

u3

)
.

Matrices Mn are given by

Mn = B2nB2n−1 =

(
−1 −b

0 −1

)
+

λ

(2n)α

(
0 1

−1 −b

)
+

α

2n
I + O

(
1

n2α

)
,

having smooth-in-n asymptotics as n → ∞.
The eigenvalues of the limit matrix

M :=

(
−1 −b

0 −1

)
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coincide, so the situation is critical (the double-root case). By an easy calculation, one
can see that the discriminants of matrices

discr Mn =
4bλ

(2n)α
+ O

(
1
n

)
;

hence, λ < 0 indeed corresponds to the elliptic situation and λ > 0 corresponds to the
hyperbolic situation (both are critical).

Our method is based upon a sequence of transformations which are determined by
some anzatz. A similar consideration for the construction of the anzatz may be also
found in [10].

Remark 2.1. In what follows, we use transformations that are in fact discrete ana-
logues of the variation-of-parameters method. Whenever one deals with the product of
matrices, say An, one can also consider the matrices Cn = T−1

n+1AnTn (with some sequence
Tn). Due to the cancellation of intermediate terms, the product of matrices An equals

n2∏
n=n1

An =
n2∏

n=n1

(Tn+1CnT−1
n ) = Tn2+1

( n2∏
n=n1

Cn

)
T−1

n1
.

So the study of the linear difference system with coefficient matrices An can be completely
reduced to the study of the linear difference system with coefficient matrices Cn.

3. Calculation of the asymptotics in the hyperbolic case

In this section, we proceed through several transformations in order to simplify the
problem and finally obtain the system which can be treated with the Janas–Moszynski
Theorem (which is properly adjusted in the appendix). So we divide this section into four
steps. In fact, we have already made a ‘zero’ step in the first section, which is reduction
to the smooth matrix system by taking the product of two transfer matrices. But we
do not include this step in § 3 because the double-root problem actually arises only at
this stage. Moreover, after grouping the transfer matrices by pairs, one does not need to
perform any inverse transformation in order to obtain the answer.

Step 1 (reduction of the meaningful part of Mn to the transfer matrix form).
We write the spectral equation in matrix form to settle the problem of periodically
modulated coefficients by grouping transfer matrices in pairs. But now it is simpler to
consider a smooth three-term recurrence relation which is equivalent to the system. The
transfer matrix corresponding to the three-term recurrence relation should have entries
0 and 1 in the upper row. In this step, we find the suitable transformation which makes
the coefficient matrix of the system resemble a transfer matrix. This transformation is
generated by the matrix sequence Tn of the form

Tn := (−1)n

⎡
⎢⎢⎣

(
1 −b

1 0

)
+

λ

(2n)α

⎛
⎜⎜⎝

b +
1
2b

0

1
2b

−1
2

⎞
⎟⎟⎠ +

α

2n

(
0 0

−1 b

)⎤
⎥⎥⎦ .
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The transformation
Nn := Tn+1MnT−1

n (3.1)

gives

Nn =

(
0 1

−1 2

)
+

bλ

(2n)α

(
0 0
0 1

)
+

α

n

(
0 0
1 −1

)
+ O

(
1

n2α

)
.

The meaningful part (or the part which we expect to be meaningful: the sum of first few
terms) is now a matrix with the upper row of the form 0, 1. The exact form of matrices
Tn can be determined from this requirement (but the answer is not unique of course).
Indeed, we try to find Tn in the form

Tn = (−1)n

[(
1 −b

1 0

)
+

λ

(2n)α
T (1) +

α

2n
T (2)

]
, (3.2)

with unknown matrices T (1) and T (2) independent of n. Define

T :=

(
1 −b

1 0

)
,

which is chosen in order to satisfy

−T

(
−1 −b

0 −1

)
T−1 =

(
0 1

−1 2

)
=: N.

By substitution of Tn in the form (3.2) into the relation Tn+1Mn = NnTn, looking at the
terms of orders 1/nα and 1/n, one obtains the following linear conditions on the matrices
T (1) and T (2): [

T (1)T−1,

(
0 1

−1 2

)]
= T

(
0 1

−1 −b

)
T−1 +

(
0 0
∗ ∗

)

[
T (2)T−1,

(
0 1

−1 2

)]
= I +

(
0 0
∗ ∗

)
.

We denote by asterisks those matrix entries which are allowed to be non-zero. Therefore,
the problem may be reduced to the following: for the commutator equation[

X,

(
0 1

−1 2

)]
=

(
f1 f2

x1 x2

)
,

prove that, for any given values f1 and f2, there exist unique values x1 and x2 and a 2×2
matrix X (obviously not unique) which satisfy the equation. Multiplying the equality on
the left by the matrix ( 1 0

−1 1 ) and on the right by ( 1 0
1 1 ) (its inverse), we obtain another
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form of the commutator equation:[
Y,

(
1 1
0 1

)]
=

[
Y,

(
0 1
0 0

)]

=

(
−y3 y1 − y4

0 y3

)
=

(
f1 + f2 f2

x1 + x2 − f1 − f2 x2 − f2

)
.

We define

Y :=

(
y1 y2

y3 y4

)
:=

(
1 0

−1 1

)
X

(
1 0
1 1

)
.

It follows now that x2 = −f1 and x1 = 2f1 + f2 are uniquely determined by f1 and f2,
and the matrix Y exists and is unique up to

c1I + c2

(
0 1
0 0

)

with any c1 and c2.
Therefore, one can reduce the original system (2.1) to the new one, where Mn are

replaced by Nn. Note that the exact form of the matrices T (1) and T (2) is not essential
for the result of transformation. We need only to prove the existence of such matrices.

Step 2 (reduction of the main term to the identity matrix). The structure of
the main part of the system allows one to write

Nn =

(
0 1

−F2(n) −F1(n)

)
+ O

(
1

n2α

)
,

where the error term is a 2 × 2 matrix with norm O(n−2α) and the matrix entries F1(n)
and F2(n) are (set B :=

√
bλ/2α)

F1(n) = −2 − B2

nα
+

α

n
, F2(n) = 1 − α

n
.

Our goal is to use the fact that the system(
vn+1

wn+1

)
=

(
0 1

−F2(n) −F1(n)

) (
vn

wn

)

(where the remainder is omitted) is equivalent to the three-term recurrence relation

un+1 + F1(n)un + F2(n)un−1 = 0. (3.3)

The latter has two ‘approximate solutions’ of the form

z±
n = nγ exp{±Anδ},
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with γ = −α/4, δ = 1 − α/2, A = B/δ. This means that

z±
n+1 + F1(n)z±

n + F2(n)z±
n−1 = O(n−2α)z±

n , (3.4)

which can be verified by a direct calculation. The form of these ‘approximate solutions’
can be obtained, for instance, by analogy with the Wentzel–Kramers–Brillouin method
(see [10] for this type of argument). Having this structure of the ‘solution’ one can deter-
mine unknown values of γ, δ and A from the condition of cancellation of all decreasing
terms in (3.4) up to the order O(n−2α). Equation (3.4) implies that(

z±
n

z±
n+1

)
=

((
0 1

−F2(n) −F1(n)

)
+

(
0 0
0 O(n−2α)

)) (
z±
n−1

z±
n

)

= (Nn + O(n−2α))

(
z±
n−1

z±
n

)
. (3.5)

It is useful now to write the last vector equality in a matrix form. Define

Sn =

(
z−
n−1 z+

n−1

z−
n z+

n

)
.

Then, combining (3.5) for both signs, one has

Sn+1 = (Nn + O(n−2α))Sn

and hence

S−1
n+1NnSn = I + S−1

n+1O(n−2α)Sn.

This actually follows only from the fact that z±
n are ‘approximate solutions’ of the recur-

rence relation (3.3), i.e. from (3.4).
Substituting the expression for z±

n = nγ exp{±Anδ} into the term

S−1
n+1O(n−2α)Sn =

1
det Sn+1

(
z+
n z−

n O(n−2α) z+2
n O(n−2α)

z−2
n O(n−2α) z+

n z−
n O(n−2α)

)

and using the fact that detSn+1 ∼ 2Aδn−α as n → ∞ (for calculations, see [5]; one can
also find this rate of decay from the constancy of the modified Wronskian), one obtains

S−1
n+1NnSn = I +

1
n3α/2

(
O(1) e2Anδ

O(1)

e−2Anδ

O(1) O(1)

)
=: Kn. (3.6)

These calculations enable us to reduce the original system to the system with the
coefficient matrix Kn, for which the ‘main term’ is the identity matrix. The problem
is that it contains exponentially increasing anti-diagonal terms. In the next step we
show how to overcome this difficulty by the symmetric cancellation of both anti-diagonal
entries.
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Remark 3.1. The above calculations demonstrate a simple ‘geometrical’ approach
based on reduction to the three-term recurrence relation (3.3). Another approach (a sim-
plification of calculations from [10]) may be rather more straightforward: the ‘geometrical
construction’ is replaced by an explicit calculation. Since detSn+1 = z−

n z+
n+1 − z+

n z−
n+1,

the substitution of matrices Sn gives

S−1
n+1

(
0 1

−F2(n) −F1(n)

)
Sn

=
1

z−
n z+

n+1 − z+
n z−

n+1

×
(

z−
n z+

n+1 + z+
n (F1z

−
n + F2z

−
n−1) z+

n (z+
n+1 + F1z

+
n + F2z

+
n−1)

−z−
n (z−

n+1 + F1z
−
n + F2z

−
n−1) −z+

n z−
n+1 − z−

n (F1z
+
n + F2z

+
n−1)

)
.

After adding and subtracting terms z+
n z−

n+1 in the upper-left entry and z−
n z+

n+1 in the
lower-right entry for extracting the determinant, the last expression becomes

I +
1

z−
n z+

n+1 − z+
n z−

n+1

(
z+
n (z−

n+1 + F1z
−
n + F2z

−
n−1) z+

n (z+
n+1 + F1z

+
n + F2z

+
n−1)

−z−
n (z−

n+1 + F1z
−
n + F2z

−
n−1) −z−

n (z−
n+1 + F1z

+
n + F2z

+
n−1)

)
.

It is remarkable that the expressions z±
n+1 + F1z

±
n + F2z

±
n−1 appear in each matrix entry

of the second term. Now substituting (3.4) and taking into consideration the fact that
det Sn+1 ∼ 2Aδn−α, one obtains the same expression as in (3.6):

I +
1

det Sn+1

(
z+
n z−

n O(n−2α) z+2
n O(n−2α)

z−2
n O(n−2α) z+

n z−
n O(n−2α)

)

= I +
1

n3α/2

(
O(1) e2Anδ

O(1)

e−2Anδ

O(1) O(1)

)
.

The problem now is the growing exponent in the upper-right entry of the matrix. This
exponent can be compensated for by the decaying exponent in the lower-left entry, as we
show below.

Step 3 (elimination of exponentially increasing off-diagonal terms). In order
to produce the elimination we perform yet another transformation generated by the
sequence of matrices

Xn =

(
e2Anδ

0

0 1

)
,

which yields

Ln := X−1
n+1KnXn =

(
e2A(nδ−(n+1)δ) 0

0 1

)
+ O

(
1

n3α/2

)

=

⎛
⎝1 − 2Aδ

nα/2 +
(2Aδ)2

2nα
0

0 1

⎞
⎠ + O

(
1

n3α/2

)
. (3.7)
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As a result of all the transformations, the original system is reduced to a new one with
coefficient matrices Ln for which the Janas–Moszynski Theorem [9] (see our Theorem A 2)
is applicable. Take

pn =
2Aδ

nα/2 , Vn ≡ V =

(
−1 0
0 0

)

and let Rn = O(n−3α/2) be the matrix remainder which belongs to l1 for α > 2
3 . The

theorem asserts that the system with coefficient matrices Ln has a basis of solutions of
the form exp{−2Anδ}(e1 + o(1)) and e2 + o(1); we use the notation

e1 =

(
1
0

)
, e2 =

(
1
0

)
.

Remark 3.2. Note that we need to apply Theorem A 2 only to ignore the O(n−3α/2)
remainder term. Without it, the system generated by the matrix (3.7) obviously has two
exact solutions exp{−2Anδ}e1 and e2. However, this is not entirely obvious, since the
eigenvalues of the limit matrix limn→∞ Ln coincide.

Step 4 (returning to the original system). Returning to the system with coeffi-
cient matrices Mn, we recall steps 1–3. We should take into account the matrices that
stay in front of the product of matrices Ln. Since

Mk = T−1
k+1Sk+1Xk+1LkX−1

k S−1
k Tk,

one has (for every λ we choose a number n0 such that detTn �= 0 for n � n0)(
u2n

u2n+1

)
=

( n∏
k=n0

Mk

) (
un0

un0+1

)

= (T−1
n+1Sn+1Xn+1)

( n∏
k=n0

Lk

)
X−1

n0
S−1

n0
Tn0

(
un0

un0+1

)

= (−1)n+1

⎛
⎝ z+

n (1 + o(1)) z+
n (1 + o(1))

−Aδz+
n

bnα/2 (1 + o(1))
Aδz+

n

bnα/2 (1 + o(1))

⎞
⎠

×
( n∏

k=n0

Lk

)
X−1

n0
S−1

n0
Tn0

(
un0

un0+1

)
.

As one has from the previous step, the vector

( n∏
k=n0

Lk

)
X−1

n0
S−1

n0
Tn0

(
un0

un0+1

)
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is a linear combination of exp{−2Anδ}(e1 + o(1)) and (e2 + o(1)). Therefore, the vector
( u2n

u2n+1 ) is a linear combination of

(−1)n

⎛
⎝ z+

n (1 + o(1))

Aδz+
n

bnα/2 (1 + o(1))

⎞
⎠ .

So the following result holds true.

Theorem 3.3. For any λ > 0 spectral equation (1.1) has a basis of solutions u+
n and

u−
n with asymptotics as n → ∞ of even components

u±
2n ∼ (−1)nn−α/4 exp

(
±

√
bλ

2α

n1−(α/2)

1 − (α/2)

)

and asymptotics of odd components

u±
2n+1 ∼ ±

√
λ

2αb

(
1 − α

2

)
(−1)nn−3α/4 exp

(
±

√
bλ

2α

n1−(α/2)

1 − (α/2)

)
.

Regarding the operator J this means (due to the subordinacy theory of Gilbert and
Pearson [6,12]) that the spectrum of the operator on the positive semi-axis is of pure
point type. Moreover, if λ ∈ σp(J), then the solution u−

n is an eigenvector of J .
Note that the asymptotics of u±

n as n → ∞ for λ > 0 formally coincide with those
obtained in [5] for λ < 0, as mentioned above.
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Appendix A. Janas–Moszynski Theorem revisited

Let us turn our attention to a theorem from [9], which was not formulated in all details
there. By using a complicated technique, the existence of the principal (‘smaller’) solution
for some system was proved. But the existence of the second (‘larger’) solution was not
stated. In what follows we prove this fact.

Remark A 1. For the sequences {an}, in order to avoid any non-essential problems
related to vanishing of elements of the sequence, we assume the notation for

∏N
n=1 an as

the product of all an, 1 � n � N , such that an �= 0. We also use the notation l1 and D1

for matrix sequences, i.e. the sequence of matrices {Mn}∞
n=1 belongs to

• l1 if and only if
∑∞

n=1 ‖Mn‖ < ∞,

• D1 if and only if
∑∞

n=1 ‖Mn+1 − Mn‖ < ∞.
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Consider the linear difference system in C
2:

(
un+1

vn+1

)
= (I + pnVn + Rn)

(
un

vn

)
. (A 1)

Suppose it is non-degenerate, i.e. det(I + pnVn + Rn) �= 0 for every n (this means that
the system has two linearly independent solutions).

Theorem A 2. (See [9], where the essential part of the theorem was proved.)
Let

• pn → 0 be a positive sequence such that
∑∞

n=1 pn = +∞,

• {Rn} ∈ l1 be a 2 × 2 matrix sequence,

• {Vn} ∈ D1 be a real 2 × 2 matrix sequence with discr(limn→∞ Vn) �= 0 (i.e.
limn→∞ Vn has two different eigenvalues).

Then the system (A 1) has a basis of solutions u
(1)
n and u

(2)
n with the following asymp-

totics as n → ∞:

u(1,2)
n =

( n∏
k=1

[1 + pkµ1,2(k)]
)

(x1,2 + o(1)),

where µ1 and µ2 (Re µ1 � Re µ2) are the eigenvalues of matrix V := limn→∞ Vn, x1 and
x2 are the corresponding eigenvectors, µ1(n) and µ2(n) are the eigenvalues of matrices
Vn (chosen in a way such that µ1(n) → µ1 and µ2(n) → µ2 as n → ∞).

Proof. The elliptic case of discr V < 0 (a relatively straightforward one) is a special
case of the Janas–Moszynski Theorem proved in [9]. In the hyperbolic case of discrV >

0, the existence of the ‘smaller’ solution u
(1)
n is also guaranteed by this theorem. So

we need to prove only the existence of the second (‘larger’) solution u
(2)
n (the solution

corresponding to the eigenvalue µ2 with the largest real part) in the hyperbolic case. We
emphasize that we do not give a new proof of the result from [9], but only add one extra
(and rather simple) assertion to it.

Let us reduce the situation to its simpler subcase, i.e. the system of the special form
(

un+1

vn+1

)
=

(
I −

(
pn 0
0 0

)
+ Rn

) (
un

vn

)
. (A 2)

For such a system,

Vn ≡ V =

(
−1 0
0 0

)
.

Remark A 3. In fact we deal with a system of this type in § 3, step 3.
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The following statement holds.

Lemma A 4. Let

(i) pn → 0 be a positive for sufficiently large n sequence such that
∑∞

n=1 pn = +∞,

(ii) {Rn} ∈ l1 be a 2 × 2 matrix sequence.

Then there exists a solution to the system (A 2) of the form(
un

vn

)
= e2 + o(1), e2 =

(
0
1

)

as n → ∞.

Proof. Without loss of generality one can assume that 0 < pn < 1 for every n. Then,
for any two natural numbers n1 < n2,∥∥∥∥∥

n2∏
n=n1

[
I −

(
pn 0
0 0

)
+ Rn

]∥∥∥∥∥ �
n2∏

n=n1

[∥∥∥∥∥I −
(

pn 0
0 0

)∥∥∥∥∥ + ‖Rn‖
]

�
n2∏

n=n1

[1 + ‖Rn‖] < ∞.

Therefore, every solution of the system (A 2) is bounded and there exists a universal
constant C such that, for any natural numbers n1 < n2 and any solution un,∥∥∥∥∥

(
un2

vn2

)∥∥∥∥∥ < C

∥∥∥∥∥
(

un1

vn1

)∥∥∥∥∥ . (A 3)

Using the variation-of-parameters method one can rewrite the system (A 2) in the fol-
lowing way:(

un+1

vn+1

)
=

(∏n
k=n0

(1 − pk) 0
0 1

) (
un0

vn0

)
+

n∑
k=n0

(∏n
l=k+1(1 − pl) 0

0 1

)
Rk

(
uk

vk

)
. (A 4)

The equivalence of the two systems (A 1) and (A 4) follows from elementary calculations.
Let us take (

un0

vn0

)
=

(
0
1

)
.

Then (
un+1

vn+1

)
=

(
0
1

)
+

n∑
k=n0

(∏n
l=k+1(1 − pl) 0

0 1

)
Rk

(
uk

vk

)
.

Note that
∏n

l=k+1(1 − pl) → 0 as n → ∞ for every k due to properties of the sequence
{pn}. Then, since ∥∥∥∥∥

(
un

vn

)∥∥∥∥∥ < C for n � n0
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and {Rn} ∈ l1, by the Weierstrass Theorem one has

n∑
k=n0

(∏n
l=k+1(1 − pl) 0

0 1

)
Rk

(
uk

vk

)
→

∞∑
k=n0

(
0 0
0 1

)
Rk

(
uk

vk

)
.

Hence, (
un

vn

)
→

(
0
1

)
+

∞∑
k=n0

(
0 0
0 1

)
Rk

(
uk

vk

)

as n → ∞. The second component of the limit vector in the last expression is non-
zero provided that n0 is sufficiently large (due to (A 3) and the second condition of
Lemma A 4). �

Reduction of system (A 1) to the special case of system (A 2) can be done following the
standard strategy [4,9] by using the fact of D1-diagonalizability of every D1 sequence
of matrices with invertible limit [8] (see also [9, Lemma 1.3]; this is a discrete version of
the result from [4]).

Proposition A 5 (Janas and Moszynski [8]). Let {Vn} be a complex 2×2 matrix
sequence such that {Vn} ∈ D1 and discr(limn→∞ Vn) �= 0. Then the sequence {Vn} is
D1-diagonalizable, i.e. there exists such a matrix sequence {Tn} ∈ D1 with invertible
limit such that, for sufficiently large values of n,

Vn = Tn

(
µ1(n) 0

0 µ2(n)

)
T−1

n .

Let us return to the proof of Theorem A 2. By Proposition A 5, for n sufficiently large
the corresponding matrices Tn diagonalize Vn. To avoid tedious notation, without loss of
generality, all the calculations start with n = 1. An explicit calculation shows that

T−1
n+1(I + pnVn + Rn)Tn = (T−1

n+1Tn)

(
I + pn

(
µ1(n) 0

0 µ2(n)

))
+ T−1

n+1RnTn

= I + pn

(
µ1(n) 0

0 µ2(n)

)
+ Qn,

where

Qn := T−1
n+1(Tn − Tn+1)

[
I + pn

(
µ1(n) 0

0 µ2(n)

)]
+ T−1

n+1RnTn.

Further,

n∏
k=1

(I + pkVk + Rk) = Tn+1

(
n∏

k=1

[
I + pk

(
µ1(k) 0

0 µ2(k)

)
+ Qk

])
T−1

1

=
( n∏

k=1

(1 + pkµ2(k))
)

Tn+1

(
n∏

k=1

[
I −

(
p̃k 0
0 0

)
+ R̃k

])
T1,
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where

p̃n := pn
µ2(n) − µ1(n)
1 + pnµ2(n)

,

R̃n :=
1

1 + pnµ2(n)
Qn.

The properties of the sequence {Tn} guarantee that {Qn} ∈ l1, as well as {R̃n} ∈ l1.
Obviously, p̃n > 0 for large values of n, so the system(

un+1

vn+1

)
=

(
I −

(
p̃n 0
0 0

)
+ R̃n

) (
un

vn

)

satisfies all the conditions of Lemma A 4. Therefore, it has a solution(
un

vn

)
= e2 + o(1).

Let T := limn→∞ Tn. One has that Te2 = x2 is an eigenvector of the matrix V corre-
sponding to the eigenvalue µ2. Then the system (A 1) has a solution equal to

( n∏
k=1

[1 + pkµ2(k)]
)

(x2 + o(1)) =: u(2)
n ,

which completes the proof. �
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