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OPERATORS OF RANK ONE IN REFLEXIVE ALGEBRAS 

W. E. LONGSTAFF 

1. I n t r o d u c t i o n . If H is a (complex) Hilbert space and ^~ is a collection of 
(closed linear) subspaces of H it is easily shown tha t the set of all (bounded 
linear) operators acting on H which leave every member of J^~ invariant is a 
weakly closed operator algebra containing the identi ty operator. This algebra 
is denoted by Alg &~. In the s tudy of such algebras it may be supposed [4] t ha t 
J^~ is a subspace lattice i.e. t ha t J^~ is closed under the formation of arbi t rary 
intersections and arbi t rary (closed linear) spans and contains both the zero 
subspace (0) and H. The class of such algebras is precisely the class of reflexive 
algebras [3]. In [2] it is shown tha t if ^~ is totally ordered then Alg J ^ is the 
strongly closed algebra generated by the operators of rank one it contains. We 
consider the problem of which subspace lattices have this density proper ty . 
Total ly ordered complete lattices are completely distr ibutive in the sense of 
G. N. Raney [6]. I t is shown tha t a subspace lattice with this density property 
is completely distr ibutive and the converse is established in the case where the 
underlying space is finite dimensional. 

2. N o t a t i o n a n d pre l iminar ie s . Most of the notat ion is taken from [5]. 
An abs t rac t lattice L is called distributive if 

a A (b V c) = (a A b) V (a A c) (a, b, c 6 L) 

and its dual s ta tement hold identically in L. In the following let L be a com
plete lattice. We adopt the conventions tha t V0 = Oand A 0 = 1 where 0 and 
1 are the zero and unit element of L respectively. The following notat ion and 
definition is taken from [6]. If A is a non-empty index set and 0 = {#« : a £ Aj 
is a family of non-empty subsets of L let S(4>) denote the collection of mappings 
5 : A —» L with the property tha t s (a) (E </>«(« £ A). For 5 Ç S(<t>) let s (A) denote 
the image of A under 5. The complete lattice L is called completely distributive 
if for every such family $ both 

A{ V<t>a : « a ) = V{ A 5 (A) : s G S(<j>)} 

and its dual s ta tement are valid. This condition is stronger than distr ibutivi ty. 
If a G L the elements a_ and a^ of L are defined by a_ = V {b Ç L : a ^ b) 
and a^ = A{&_ :b G L and b $ a}. Then a_, a* G L and a ^ a# . I t is 
shown in [5] tha t L is completely distributive if and only if a = a^ for every 
element a of L. 
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If e and / are non-zero vectors of the Hilbert space H denote by e ® f the 
operator of rank one defined by x —> (x\e)f (x £ H). If ïF is a subspace latt ice 
denote by ^ the set of operators of rank one belonging Alg <F. Denote by 21 
the algebra generated by 3& and by 21 the closure of 21 in the strong operator 
topology. Then clearly if 3% = 0 we have 21 = {0} and otherwise % is the set of 
finite sums of operators in &. I t is also clear t ha t 21 Q AlgF. For any sub-
space N of H denote by PN the (orthogonal) projection whose range is N. 

3. A necessary c o n d i t i o n . L e t I F be a subspace lattice on H and let ^ ? , 
21 and 21 be as described above. 

T H E O R E M 3.1. / / 21 = Alg F' then F is completely distributive. 

Proof. Since F is a complete latt ice we need only show t h a t M = M^ for 
every element M of F. We may suppose t ha t dim H ^ 1. Then clearly 3? ^ 0. 
Fix M G F . We first show t h a t (1 — PM)(e ® f)PM* = 0 for every operator 
e ® f d S%. This is equivalent to showing t h a t e ® f maps M% into M. By 
Lemma 3.1 of [5] there is a subspace K Ç F such t h a t / £ i£ and e £ H Q K^. 
H K Q M then (e ® f)M* Q K Q M. U K £ M then M* Q K_ and so 
(e ® f)M* = (0) Ç M. T h u s (1 - PM){e ® f)PAU = 0 for every operator 
e ® f € &. I t follows tha t (1 - PM)APMlf = 0 whenever A € SI. Since the 
mapping T —> XTY (X, Y fixed operators) is strongly continuous it follows 
tha t (1 — P M)AP AU = 0 for every operator A £ 21. Since / £ 21 we have 
0 = (1 — PM)PM* = PM* — PM and s o I = M*. T h e proof of the theorem 
is complete. 

As noted earlier a partial converse has been obtained by Erdos [2]. 

4. F i n i t e - d i m e n s i o n a l case . We now prove the converse of Theorem 3.1 
in the case where the underlying space is finite-dimensional. Every finite dis
t r ibut ive latt ice is completely distr ibutive. Every completely dis tr ibut ive 
lattice of finite length is distr ibutive and so, by Theorem 5 of [1, p. 139], is 
finite. U n i s if dim H < oo the class of completely dis tr ibut ive subspace 
lattices on H is precisely the class of finite distr ibutive subspace lattices. An 
element a of an abs t rac t latt ice L is called join-irreducible if a = b V c(b, c £ L) 
implies tha t either a = b or a = c. If L is dis tr ibutive and finite, by Theorem 9 
of [1, p. 142], every non-zero element of L is the join of all the non-zero join-
irreducible elements it contains. Also in this case, if a £ L is non-zero and join-
irreducible then a covers a A (t-, i.e. a A a~ < a and there is no element b of L 
satisfying a A a~ < b < a. T o see this notice t ha t a A a~ = a would imply 
tha t a = V{a A c : c £ L and a $ c) and this contradicts the join-irre-
ducibili ty of a. So a A a~ < a. Now notice tha t b < a, b G L implies b ^ 
a A a— Another e lementary fact we need is t ha t if & is any part ial ly ordered 
set a n d F is any finite subset of SP we can e n u m e r a t e d , say F = \x\Xi . . .x„}, 
in such a way tha t the partial order induced on F is not violated. More 
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precisely, such t ha t xf < Xj implies i < j . This is easily proved by induction on 
the number of elements in 5^. 

The au thor wishes to thank Dr. K. J . Harrison for pointing out some 

impor tan t simplifications to the original proof of the following theorem. 

T H E O R E M 4.1 . If &~ is a completely distributive subspace lattice on a finite-
dimensional Hilbert space H then SI = AlgJ^ where SI is the algebra generated by 
the set of operators of rank one belonging to Alg &~. 

Proof. Clearly we may suppose tha t dim H ^ 1. By our earlier remarks ^ is 
distr ibutive and finite. L e t ^ be the set of non-zero join-irreducible elements 
of J T Then J ^ 0. For every K £ J select a basis 38 (K) for K 0 (K H KJ) 
and let X = U {&(K) : K g J \ . 

First we show tha t X is a linearly independent set of vectors. Enumera te 
the elements of </, say K1K2 . . . Kn in such a way tha t Kt C Kj implies 
i < j . Consider 

[Kj 0 (Kj O Kj_)] O V [Kk 0 (Kk H # * - ) ] for 2 ^ j ^ ». 

Let 1 ^ & ^ j — 1. If Kk and i£., are not comparable then Kk ÇI i£^_. If they 
are comparable then Kk C ^ by the method of enumeration and so again 
we have Kk C Kj_. Thus 

[À:, 0 (A, n ^-)] n v [A* 0 (x* n A*-)] 

Q[K,e (KJnKi_)]DKj-= (0). 
Hence 

[ # , 0 (Kj H X ^ ) ] n V [Kk 0 (Xfc f i # * - ) ] = (0) for 2£j£n. 

I t follows tha t X is a linearly independent set of vectors. 
Next we show tha t X C\ M is a basis for M, for every non-zero element M 

of &~. Notice t ha t this result is true for every a tom. For if K is an atom then 
K e / andK = K Q (Kr\K^) so X C\K = @{K). Suppose that M ^ ^ 
is non-zero and is not an atom. Then M strictly contains an element of f . 
If the result is t rue for every element of ^ strictly contained in M then it is 
t rue for M itself. For either M £ J or M g J . In the former case M C\ M- = 
V {K G J : K C M} a n d l H I contains ^ ( M ) and I H Z for every 

e l e m e n t ^ Ç ^ satisfying i£ C M. In the lat ter case I f = \/{K £ J : X C M\ 
and X P\ M contains X C\ K for every element K Ç ^ satisfying K C M. 
Suppose then tha t M Ç J^~ is non-zero and is not an atom and tha t X P\ M is 
not a basis for M. Then there is a non-atomic element i£ (1) G f with i£ (1) C Af 
such tha t i n i£ (1) is not a basis for i£ (1 ) . There is a non-atomic element 
K^ Ç y with i£<2> C i^(1) such tha t X Pi i£ (2) is not a basis for X<2>. This 
process continues indefinitely and this contradicts the finiteness of f . So 
X C\ M is a basis for M for every non-zero element M of J^~. 
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Let X = {/i/2 . . . f m ) . Then X is a basis for H. Let {eie2 . . . em} be the 
corresponding dual basis uniquely defined by the requirement t h a t (fi\ej) = 0,̂ -
(1 ^ i, j S m). Let R Ç Alg ^ be arbi t rary . Then 1? = YTi=^i ® #/<• T o 
complete the proof of the theorem we show t h a t et ® Rft £ Alg J ^ (1 S i ^ m). 
Let M G ̂ ~ be non-zero and let x £ if . If /* G M then P / * Ç M and 
so (ef ® P/<)s = (x\ei)Rfi £ M.lîft<£ M then et £ H Q M since X H Tkfis 
a basis for M. Then (e< ® P / , ) * = 0 G I . T h u s e, ® P / t G Alg ^ (1 g i g 
m) and the proof is complete. 

5. Operators of finite rank o n a t o m i c B o o l e a n a lgebras . T h e following 
theorem, due to J. R. Ringrose, is proved in [2]. 

T H E O R E M 5.1. If&~ is a totally ordered subspace lattice every operator 0} finite 
rank belonging to Alg ^ can be written as a finite sum of operators of rank one, 
each belonging to Alg J r . 

Total ly ordered complete lattices are completely distr ibutive. Can ' total ly 
ordered' be replaced by 'completely dis tr ibut ive ' in the above theorem? If the 
underlying space is finite-dimensional the answer is affirmative by Theorem 4.1 . 
We show tha t ' total ly ordered' can be replaced by 'a tomic Boolean algebra ' . 

T H E O R E M 5.2. If the subspace latticed is an atomic Boolean algebra, every 
operator of finite rank belonging to Alg J^~ can be written as a finite sum of opera
tors of rank one, each belonging to Alg J^~. 

Proof. By Proposition 7.1 and Lemma 3.1 of [5] the operator of rank one 
e ® / belongs to AlgJ^~ if and only if there is an atom K £ J^~ such t h a t / Ç K 
and e Ç H 0 K' where K! denotes the complement of K in &. Let R Ç Alg # " 
have rank n. Then R has the form R = X^=i e% ® ft where {ei}n

i=i and {fi}n
i=i 

are each linearly independent sets of vectors. Since H is the span of all the 
a toms of &, PKe\ 9^ 0 for some atom K. Since 

0 = (1 - PK)RPK = £ (PKet) ® (1 - PK)ft 

we have 

(1 - PK)j\ = Z X,(l - PK)j\ where X,- = - ^ p ' ^ (2 S i é » ) . 

Thus , e, ® / i = d ® / / + TJU (X^i) ® /< w h e r e / / = P ^ / i - TJU X,/<]. 
Hence, P = ^ ® / / + X / U e / ® /< where c / = e< + \ ^ ( 2 ^ i è n). 
N o w / / .6 K and so (1 - PK>)fi ^ 0. Since (1 - PK,)RPK> = 0 we have 

o = PK>R*(i - PK.) = [ ( i - PK>)fi] ® / V * i + E ? U L ( i - PK')fi] ® 
P * ^ / . T h u s 

i V * i = Z , »iPK>e/ where u* = Ti7T ~ ^ ~ v P T T r ' 2 = * = n 
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Hence a ® / / = e/ ® / / + EÎ-2 «/ ® Pf/i' where ex' = (1 - P*OI>i -
El -2 M*/]. Thus R = ei' ® / / + E w */ ® / / where / / = / , + ;z,//(2 g 
i ^ n). N o w / / G -K and e/ G i î G iT and K is an atom. Thus ex' ® / / 6 
Alg Ĵ ~. The proof is completed by a simple induction argument. 
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