Sets of Points Self-Conjugate with regard to a Quadric in n Dimensions

By D. M. Y. Sommerville,
Victoria University College, Wellington, New Zealand.

(Received 28th March, 1931. Read 6th November, 1931.)
§ 1. In space of three dimensions the properties of self-conjugate tetrads, pentads and hexads with regard to a quadric are well known (see Baker's Principles of Geometry, vol. iii). The general theorem in space of n dimensions S_{n} is to establish the existence of a set of $n+p+1$ points $A_{0}, A_{1}, \ldots, A_{n+p}(0 \leqslant p \leqslant n-1)$ such that the pole, with respect to a given quadric, of the $(n-1)$-flat determined by any set of n of the points lies in the p-flat determined by the remaining $p+1$ points.
§2. Consider a space S_{n+p} containing S_{n}, and $n+p+1$ linearly independent points $A_{0}^{\prime}, A_{1}^{\prime}, \ldots, A_{n+p}^{\prime}$. Then there is a quadric Q^{\prime} in S_{n+p} with respect to which the points form a self-polar simplex. If $p=0$ this simplex forms the self-conjugate set of $n+1$ points whose existence is in question. If $p>0$, let S_{p-1} be the polar ($p-1$) -flat of S_{n} with respect to Q^{\prime}, and project the figure on to S_{n} with S_{p-1} as axis of projection. The process is as follows. To project a point A^{\prime} : determine the p-flat through A^{\prime} and S_{p-1}; this cuts S_{n} in the corresponding point A. Generally, to project an r-flat R^{\prime} : determine the $(p+r)$-flat through R^{\prime} and S_{p-1}; this cuts S_{n} in the corresponding r-flat R. To project the quadric Q^{\prime} : an $(n+p-1)$-flat through S_{p-1} and touching the quadric has $n-1$ degrees of freedom and cuts S_{n} in an ($n-1$)-flat which envelopes the corresponding quadric Q in S_{n}. In the present case, since S_{p-1} is the polar of S_{n}, Q is actually the section of Q^{\prime} by S_{n}. The assemblage of $(n+p-1)$ flats through S_{p-1} envelopes a hypercone of species p having S_{p-1} as vertex-edge; this is a tangent hypercone to Q^{\prime}, and the points of contact form the quadric Q.

We proceed to show that the $n+p+1$ points A_{r} obtained in this way form a self-conjugate set with respect to the quadric Q, i.e. that the pole, with respect to Q, of the ($n-1$)-flat α determined by any set of n of the points A_{0}, \ldots, A_{n-1} lies in the p-flat β determined by the remaining $p+1$ points A_{n}, \ldots, A_{n+p}.

The corresponding n points $A^{\prime}{ }_{0}, \ldots, A^{\prime}{ }_{n-1}$ determine an $(n-1)$-flat α^{\prime}, and this determines with S_{p-1} an $(n+p-1)$-flat whose pole with respect to Q^{\prime} lies in S_{n} and also in the p-flat $\beta^{\prime} \equiv\left(A_{n}^{\prime}, \ldots, A_{n+p}^{\prime}\right) . \quad P$ is therefore the point of intersection of S_{n} with β^{\prime}. Now the corresponding p-flat $\beta \equiv\left(A_{n}, \ldots, A_{n+p}\right)$ is the intersection of S_{n} with the ($2 p$)-flat determined by S_{p-1} and β^{\prime}; hence P lies in β. (It is necessary that $2 p<n+p$, and therefore $p<n$). Also since P is conjugate, with respect to Q^{\prime}, to every point in the $(n+p-1)$-flat $\left(\alpha^{\prime}, S_{p-1}\right)$, it is conjugate to every point in the section of this by S_{n}. But this section is a, and the section of Q^{\prime} by S_{n} is Q; hence P is the pole of a with respect to Q, and it has been proved also that P lies in β.

It follows further that the polar r-flat $(0 \leqslant r<n-p)$ of the ($n-r-1$)-flat determined by any set of $n-r$ of the points $\left(A_{0}, \ldots, A_{n-r-1}\right)$ lies in the $(p+r)$-flat determined by the remaining $p+r+1$ points $\left(A_{n-i}, \ldots, A_{n+p}\right)$.
§3. If the simplex $A_{0}^{\prime}, \ldots, A^{\prime}{ }_{n+j}$ is taken as frame of reference, the tangential equation of the quadric Q^{\prime} is of the form

$$
\xi_{0}^{2}+\cdots+\xi_{n+p}^{2}=0
$$

Any linear equation in $\left(\xi_{r}\right)$ represents a point P^{\prime} in S_{n+j}. The point $A^{\prime}{ }_{r}$ is represented by the equation $\xi_{r}=0 . \quad S_{p-1}$ is represented by p linear equations $\Sigma_{1}=0, \ldots, \Sigma_{p}=0$ in $\xi_{0}, \ldots, \xi_{n+p}$. Any linear equation in $\left(\xi_{r}\right)$, together with the p equations $\Sigma_{p}=0$, represents the assemblage of $(n+p-1)$-flats through S_{p-1} and the point P^{\prime}; these cut S_{n} in an assemblage of ($n-1$)-flats all passing through the corresponding point P. The quadratic equation $\Sigma \xi_{r}^{2}=0$, together with the p equations $\Sigma_{p}=0$, represents the assemblage of ($n+p-1$)flats through S_{p-1} and touching Q^{\prime}; these cut S_{n} in an assemblage of ($n-1$)-flats all touching Q.

Hence in S_{n} the equation

$$
\xi_{0}^{2}+\ldots+\xi_{n+p}^{2}=0
$$

where ξ_{r} are connected by p linear equations $\Sigma_{p}=0$, represents a quadric Q, and the equation $\xi_{r}=0$ represents the point A_{r}. The self-conjugate set of $n+p+1$ points A_{r} is thus related to the representation of the quadric by a tangential equation in terms of $n+p+1$ squares.
§4. The reciprocal relations are at once deduced. When a quadric Q in $S_{i n}$ is represented by a point-equation

$$
x_{0}^{2}+\ldots+x_{n+p}^{2}=\mathbf{0}
$$

in terms of $n+p+1$ squares, the variables x_{r} being connected by p linear equations $S_{p}=0$, the $n+p+1$ primes, or $(n-1)$-flats, $x_{r}=0$ form a self-conjugate set such that the polar prime with respect to Q of the point common to any n of the primes passes through the ($n-p-1$)-flat common to the remaining $p+1$ primes; and so on.
§5. If S and Σ^{\prime} are two quadrics such that a simplex exists which is inscribed in S and self-polar with respect to Σ^{\prime} then an infinity of such simplexes exists, and S is said to be outpolar to Σ^{\prime}.

If the point-equation of S is

$$
\begin{equation*}
S \equiv \sum \Sigma a_{r s} x_{r} x_{s}=0 \tag{1}
\end{equation*}
$$

and the tangential equation of Σ^{\prime} is

$$
\begin{equation*}
\Sigma^{\prime} \equiv \sum \Sigma A_{r s}^{\prime} \xi_{r} \xi_{s}=0 \tag{2}
\end{equation*}
$$

the condition that S should be outpolar to Σ^{\prime} is the vanishing of the bilinear invariant

$$
\begin{equation*}
\Theta^{\prime} \equiv \sum \sum a_{r s} A_{r s}^{\prime}=0 \tag{3}
\end{equation*}
$$

These relations still hold when S is a cone of any species. Let S be a cone in S_{n} whose vertex-edge $S_{p i-1}$ is the ($p-1$)-flat determined by the vertices A_{0}, \ldots, A_{p-1} of the simplex of reference. Its equation is then a homogeneous quadratic containing the variables x_{p}, \ldots, x_{n} alone, i.e., in equation (1), $a_{r s}=0$ if r or $s<p$.

Let S_{n-p} denote the polar $(n-p)$-flat of S_{p-1} with respect to Σ^{\prime}. We may choose the frame of reference so that S_{n-p} is represented by the equations $x_{0}=0, \ldots, x_{p-1}=0$. Then the point-equation of Σ^{\prime} is

$$
\begin{equation*}
S^{\prime} \equiv \Sigma \Sigma a_{r s}^{\prime} x_{r} x_{\varepsilon}=0 \tag{4}
\end{equation*}
$$

where $a_{r s}^{\prime}=0$ if $r<p$ and $s>p-1$ or vice versa.
Consider the sections C and C^{\prime} of S and S^{\prime} by $S_{n-p} . C$ is represented by

$$
\begin{equation*}
\Sigma \Sigma a_{r s} x_{r} x_{s}=0, \quad x_{0}=0, \ldots, x_{p-1}=0 \tag{5}
\end{equation*}
$$

the first equation being precisely the same as (1).
C^{\prime} is represented by

$$
\begin{equation*}
\Sigma \Sigma a_{r s}^{\prime} x_{r} x_{s}=0, \quad x_{0}=0, \ldots, x_{p-1}=0 \tag{6}
\end{equation*}
$$

and in the first equation we may now assume $\alpha^{\prime}{ }_{r s}=0$ if r or $s<p$. (5) and (8) then represent two quadrics C and C^{\prime} in S_{n-p} in terms of the coordinates x_{p}, \ldots, x_{n}.

The determinant of S^{\prime} is

$$
\left.\Delta^{\prime} \equiv \left\lvert\, \begin{array}{cccccc}
a_{00}^{\prime} & \ldots & a_{0, p-1}^{\prime} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right.\right] . . .
$$

and that of C^{\prime} is

$$
\delta^{\prime} \equiv\left|\begin{array}{c}
a_{p p}^{\prime} \ldots \ldots a_{p n}^{\prime} \\
\ldots \ldots \ldots . \\
a_{n \rho}^{\prime} \ldots \ldots a_{n n}^{\prime}
\end{array}\right| .
$$

$A^{\prime}{ }_{r s}$ is the cofactor of $a^{\prime}{ }_{r s}$ in Δ^{\prime}; let $a^{\prime}{ }_{r s}$ be the cofactor of $a^{\prime}{ }_{r s}$ in δ^{\prime}. Then if

$$
D \equiv\left|\begin{array}{cccc}
a_{00}^{\prime} & \ldots & a_{0, p-1}^{\prime} \\
\ldots & \ldots & \ldots & \cdots
\end{array}\right|
$$

we have

$$
\begin{equation*}
A_{r s}^{\prime}=D a_{r s}^{\prime} \tag{7}
\end{equation*}
$$

when r and s are each greater than $p-1$.
When the cone S is outpolar to the quadric Σ^{\prime}, we have

$$
\Sigma \Sigma a_{r s} A_{r s}^{\prime}=0
$$

the summations extending from p to n. Hence from (7)

$$
\Sigma \Sigma a_{r s} a_{r s}^{\prime}=0
$$

Therefore the quadric C is outpolar to the quadric C^{\prime}.
Hence if S is a cone with vertex-edge S_{p-1}, Σ^{\prime} any quadric, and S_{n-p} the polar of S_{p-1} with respect to Σ^{\prime}, then if S is outpolar to Σ^{\prime} the section of S by S_{n-p} is outpolar to the section of Σ^{\prime}.
§6. Returning now to the simplex $A_{0}^{\prime}, \ldots, A_{n+p}^{\prime}$ in S_{n+p} and its projection A_{0}, \ldots, A_{n+p} on the n-flat S_{n}, and the quadric Q^{\prime} for which $A_{0}^{\prime}, \ldots, A_{n+p}^{\prime}$ is self-polar, S_{p-1} being the polar of S_{n} with respect to Q^{\prime}, let R^{\prime} be a cone with vertex-edge S_{p-1} and passing through the $n+p+1$ points $A^{\prime}{ }_{r} . \quad R^{\prime}$ is thus outpolar to Q^{\prime}. Let R be the section of R^{\prime} by S_{n}, and Q the section of Q^{\prime}. Then R is outpolar to Q and contains the $n+p+1$ points A_{0}, \ldots, A_{n+p} which form a self-conjugate set with respect to Q.

Hence if Σ^{\prime} and S are two quadrics in S_{n} such that there exists a set of $n+p+1$ points ($0 \leqslant p \leqslant n-1$) inscribed in S and selfconjugate with respect to Σ^{\prime}, S is outpolar to Σ^{\prime}. The existence of a simplex inscribed in S and self-polar with respect to Σ^{\prime} thus implies also the existence of a self-conjugate r-ad ($n+1 \leqslant r \leqslant 2 n$) similarly inscribed.

