Sets of Points Self-Conjugate with regard to a Quadric in n Dimensions

By D. M. Y. Sommerville,

Victoria University College, Wellington, New Zealand.

(Received 28th March, 1931. Read 6th November, 1931.)

§1. In space of three dimensions the properties of self-conjugate tetrads, pentads and hexads with regard to a quadric are well known (see Baker's *Principles of Geometry*, vol. iii). The general theorem in space of n dimensions S_n is to establish the existence of a set of n + p + 1 points $A_0, A_1, \ldots, A_{n+p}$ ($0 \le p \le n-1$) such that the pole, with respect to a given quadric, of the (n-1)-flat determined by any set of n of the points lies in the p-flat determined by the remaining p + 1 points.

§2. Consider a space S_{n+p} containing S_n , and n + p + 1 linearly independent points $A'_0, A'_1, \ldots, A'_{n+p}$. Then there is a quadric Q'in S_{n+p} with respect to which the points form a self-polar simplex. If p = 0 this simplex forms the self-conjugate set of n + 1 points whose existence is in question. If p > 0, let S_{p-1} be the polar (p-1)-flat of S_n with respect to Q', and project the figure on to S_n with S_{p-1} as axis of projection. The process is as follows. To project a point A': determine the p-flat through A' and S_{p-1} ; this cuts S_n in the corresponding point A. Generally, to project an r-flat R': determine the (p + r)-flat through R' and $S_{\rho-1}$; this cuts S_n in the corresponding r-flat R. To project the quadric Q': an (n + p - 1)-flat through S_{n-1} and touching the quadric has n-1 degrees of freedom and cuts S_n in an (n-1)-flat which envelopes the corresponding quadric Q in S_n . In the present case, since S_{p-1} is the polar of S_n , Q is actually the section of Q' by S_n . The assemblage of (n + p - 1)flats through S_{p-1} envelopes a hypercone of species p having S_{p-1} as vertex-edge; this is a tangent hypercone to Q', and the points of contact form the quadric Q.

We proceed to show that the n + p + 1 points A_r obtained in this way form a self-conjugate set with respect to the quadric Q, *i.e.* that the pole, with respect to Q, of the (n - 1)-flat a determined by any set of n of the points A_0, \ldots, A_{n-1} lies in the p-flat β determined by the remaining p + 1 points A_n, \ldots, A_{n+p} . Sets of Points Self-Conjugate to a Quadric in n Dimensions 7

The corresponding n points A'_0, \ldots, A'_{n-1} determine an (n-1)-flat a', and this determines with S_{p-1} an (n + p - 1)-flat whose pole with respect to Q' lies in S_n and also in the p-flat $\beta' \equiv (A'_n, \ldots, A'_{n+p})$. P is therefore the point of intersection of S_n with β' . Now the corresponding p-flat $\beta \equiv (A_n, \ldots, A_{n+p})$ is the intersection of S_n with the (2p)-flat determined by S_{p-1} and β' ; hence P lies in β . (It is necessary that 2p < n + p, and therefore p < n). Also since P is conjugate, with respect to Q', to every point in the (n + p - 1)-flat (a', S_{p-1}) , it is conjugate to every point in the section of this by S_n . But this section is a, and the section of Q' by S_n is Q; hence P is the pole of a with respect to Q, and it has been proved also that P lies in β .

It follows further that the polar r-flat $(0 \le r < n-p)$ of the (n-r-1)-flat determined by any set of n-r of the points (A_0, \ldots, A_{n-r-1}) lies in the (p+r)-flat determined by the remaining p+r+1 points $(A_{n-r}, \ldots, A_{n+p})$.

§3. If the simplex A'_0, \ldots, A'_{n+p} is taken as frame of reference, the tangential equation of the quadric Q' is of the form

$$\xi_0^2 + \ldots + \xi_{n+p}^2 = 0.$$

Any linear equation in (ξ_r) represents a point P' in S_{n+p} . The point A'_r is represented by the equation $\xi_r = 0$. S_{p-1} is represented by p linear equations $\Sigma_1 = 0, \ldots, \Sigma_p = 0$ in ξ_0, \ldots, ξ_{n+p} . Any linear equation in (ξ_r) , together with the p equations $\Sigma_p = 0$, represents the assemblage of (n + p - 1)-flats through S_{p-1} and the point P'; these cut S_n in an assemblage of (n-1)-flats all passing through the corresponding point P. The quadratic equation $\Sigma \xi_r^2 = 0$, together with the p equations $\Sigma_p = 0$, represents the assemblage of (n + p - 1)-flats and the point P'; flats through S_{p-1} and touching Q'; these cut S_n in an assemblage of (n - 1)-flats all touching Q.

Hence in S_n the equation

$$\xi_0^2+\ldots+\xi_{n+p}^2=0$$

where ξ_r are connected by p linear equations $\Sigma_p = 0$, represents a quadric Q, and the equation $\xi_r = 0$ represents the point A_r . The self-conjugate set of n + p + 1 points A_r is thus related to the representation of the quadric by a tangential equation in terms of n + p + 1squares.

§4. The reciprocal relations are at once deduced. When a quadric Q in S_n is represented by a point-equation

$$x_0^2 + \ldots + x_{n+p}^2 = 0$$

in terms of n + p + 1 squares, the variables x_r being connected by p linear equations $S_p = 0$, the n + p + 1 primes, or (n - 1)-flats, $x_r = 0$ form a self-conjugate set such that the polar prime with respect to Q of the point common to any n of the primes passes through the (n - p - 1)-flat common to the remaining p + 1 primes; and so on.

§5. If S and Σ' are two quadrics such that a simplex exists which is inscribed in S and self-polar with respect to Σ' then an infinity of such simplexes exists, and S is said to be *outpolar* to Σ' .

If the point-equation of S is

$$S \equiv \Sigma \ \Sigma \ a_{rs} \ x_r \ x_s = 0 \tag{1}$$

and the tangential equation of Σ' is

$$\Sigma' \equiv \Sigma \Sigma A'_{rs} \xi_r \xi_s = 0 \tag{2}$$

the condition that S should be outpolar to Σ' is the vanishing of the bilinear invariant

$$\Theta' \equiv \Sigma \Sigma a_{rs} A'_{rs} = 0.$$
⁽³⁾

These relations still hold when S is a cone of any species. Let S be a cone in S_n whose vertex-edge S_{p-1} is the (p-1)-flat determined by the vertices A_0, \ldots, A_{p-1} of the simplex of reference. Its equation is then a homogeneous quadratic containing the variables x_p, \ldots, x_n alone, *i.e.*, in equation (1), $a_{rs} = 0$ if r or s < p.

Let S_{n-p} denote the polar (n-p)-flat of S_{p-1} with respect to Σ' . We may choose the frame of reference so that S_{n-p} is represented by the equations $x_0 = 0, \ldots, x_{p-1} = 0$. Then the point-equation of Σ' is

$$S' \equiv \sum \sum a'_{rs} x_r x_s = 0 \tag{4}$$

where $a'_{rs} = 0$ if r < p and s > p - 1 or vice versa.

Consider the sections C and C' of S and S' by S_{n-p} . C is represented by

$$\Sigma \Sigma a_{rs} x_r x_s = 0, \quad x_0 = 0, \ \ldots, \ x_{p-1} = 0, \tag{5}$$

the first equation being precisely the same as (1).

C' is represented by

$$\Sigma \Sigma a'_{rs} x_r x_s = 0, \quad x_0 = 0, \ \ldots, \ x_{p-1} = 0, \tag{6}$$

and in the first equation we may now assume $a'_{rs} = 0$ if r or s < p. (5) and (8) then represent two quadrics C and C' in S_{n-p} in terms of the coordinates x_p, \ldots, x_n . The determinant of S' is

$$\Delta' \equiv \begin{vmatrix} a'_{00} & \dots & a'_{0,p-1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a'_{p-1,0} & \dots & a'_{p-1,p-1} & 0 & \dots & 0 \\ 0 & \dots & 0 & a'_{pp} \dots & a'_{pn} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a'_{np} \dots & a'_{nn} \\ \delta' \equiv \begin{vmatrix} a'_{pp} & \dots & a'_{pn} \\ \dots & \dots & \dots \\ a'_{np} & \dots & a'_{nn} \end{vmatrix}$$

 A'_{rs} is the cofactor of a'_{rs} in Δ' ; let a'_{rs} be the cofactor of a'_{rs} in δ' . Then if

$$D \equiv \left| \begin{array}{cc} a'_{00} & \dots & a'_{0,p-1} \\ \dots & \dots & \dots \\ a'_{p-1,0} & \dots & a'_{p-1,p-1} \end{array} \right|$$

 $A'_{rs} = Da'_{rs}$

(7)

we have

when r and s are each greater than p = 1.

When the cone S is outpolar to the quadric Σ' , we have

$$\Sigma \Sigma a_{rs} A'_{rs} = 0$$

the summations extending from p to n. Hence from (7)

 $\Sigma \Sigma a_{rs} a'_{rs} = 0.$

Therefore the quadric C is outpolar to the quadric C'.

Hence if S is a cone with vertex-edge S_{p-1} , Σ' any quadric, and S_{n-p} the polar of S_{p-1} with respect to Σ' , then if S is outpolar to Σ' the section of S by S_{n-p} is outpolar to the section of Σ' .

§6. Returning now to the simplex A'_0, \ldots, A'_{n+p} in S_{n+p} and its projection A_0, \ldots, A_{n+p} on the n-flat S_n , and the quadric Q'for which A'_0, \ldots, A'_{n+p} is self-polar, S_{p-1} being the polar of S_n with respect to Q', let R' be a cone with vertex-edge S_{p-1} and passing through the n + p + 1 points A'_r . R' is thus outpolar to Q'. Let Rbe the section of R' by S_n , and Q the section of Q'. Then R is outpolar to Q and contains the n + p + 1 points A_0, \ldots, A_{n+p} which form a self-conjugate set with respect to Q.

Hence if Σ' and S are two quadrics in S_n such that there exists a set of n + p + 1 points $(0 \leq p \leq n - 1)$ inscribed in S and selfconjugate with respect to Σ' , S is outpolar to Σ' . The existence of a simplex inscribed in S and self-polar with respect to Σ' thus implies also the existence of a self-conjugate r-ad $(n+1 \leq r \leq 2n)$ similarly inscribed.