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SOME EXTREMAL PROPERTIES OF BIPARTITE 
SUBGRAPHS 

C. S. EDWARDS 

1. Gp = (V, X) is a graph on p vertices, with vertex set V and edge set X. 
Occasionally, to avoid ambiguity, V and X will be written V(GP) and X(GP), 
respectively. 

2. H(S + 1) shall denote any bipartite graph with 5 + 1 edges. Consistent 
with a standard notation, see Harary [1, Chapter 2, p. 18], ex(p, H(S + 1)) 
denotes the maximum number of edges in any graph Gv = (F, X), subject 
only to the constraints that \V\ = p and that Gv contains no subgraph iso
morphic to any H(S + 1), i.e. that Gv has no bipartite subgraph with 5 + 1 
edges. 

Evidently, for p sufficiently large, any such graph Gv with a maximum 
number of edges will contain a subgraph isomorphic to some H(S): otherwise 
at least one edge could be added to X without breaking the constraints above. 

3. The principal result of this paper is as follows: for all p, 

(3.1) ex(p, H(S + 1)) S [2(5 + J) - (5 + £)*], for all 5 ^ 0 . 

As usual, [x] denotes the largest integer not exceeding x. Much of the remainder 
of this paper is directed towards establishing the result of (3.1). 

4. The elements of V can be ordered in pi different ways, not all of which 
may be distinguishable within the graph Gp. Let / denote one such ordering 
of the p different vertices of Gp. Any ordering will append each of the integers 
1 to p, inclusive, to precisely one of the vertices of Gp, every such vertex having 
one appended integer: thus v/ is defined as the particular vertex of Gp to 
which is appended the integer r by the ordering 7, 1 ^ r ^ p. 

5. For a particular ordering 7, the sequence (v/, vp-\ , . . . , ̂ iz) will repre
sent the corresponding ordering of the vertices of Gp. Let Gp-\ = Gp — 
vp

T, GP-2
T = Gp^i1 — Vp-i1 = G/ — vp

T — Vp-!1, and in general, 
r - l 

(jp—r == tzp W VP— i t 

for all r, 0 ^ r < p, and all / . Thus Gp-r
I is the induced subgraph of Gp 

generated by the vertex set 

V(GP) — {Vp1, Vp-!1, . . , Vp-r+i1} = {Vp-r1, ^ - r _ l 7 , . . , Vi*} . 

As a natural extension of the above notation, let Gp
z = Gp, for all I. 
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476 C. S. EDWARDS 

Define deg^z;/) to be the degree of the vertex of Gp, denoted as vk
T by the 

ordering 7, within the induced subgraph G / of Gp defined by the vertex set 
{vStVr-!1,..^!1}, 1 S k ^ r ^ p. 

Noting that Gr_iJ is formed from G / by removing v/, and all edges incident 
to v/, from G/ , for all r, 1 < r rg p, then it follows that 

\X(Gr
J)\ = TU degiivS), for all r , J , l g r ^ . 

6. G / , as defined in paragraph 5, is uniquely determined by Gv and the par
ticular set of (p — r) vertices of Gp which are the first (p — r) vertices within 
the ordering 7 = (vp

I
1 . . , vr+iT, v/, . . ,Viz). Evidently, any change of the 

relative order in which the vertices vp
z, vv-\ , . . , zv+i7, are successively 

removed from Gp has no effect on the induced subgraph G / obtained. Further, 
the relative ordering of the last r vertices within the ordering 7, i.e., 
vr

z, z>r_i7, . . , Vi1, is not determined by G / in any respect: thus the ordering 
of the r vertices of G / can be freely chosen, as if G / were a graph in its own 
right: indeed, hereafter, G / will often be treated as a graph, sometimes with 
no reference to any particular Gv from which it may have been derived and 
to the ordering I used to derive G / from Gp. 

It can be seen that any given induced subgraph of Gp can be obtained from 
Gp by some ordering I. For suppose the induced subgraph has r vertices, 
1 ^ r ^ p. We take these r vertices and any ordering I with these r vertices 
as last r vertices in the ordering. G / is then the given induced subgraph. 
Evidently there will be r\(p — r)\ orderings I by which a given induced 
subgraph G / may be obtained from GP. 

In spite of the multiplicity of orderings I which may be used to derive a 
given induced subgraph G / of Gp, the notation described in paragraph 5 will 
be convenient for the purposes of this paper because of its compactness. 

7. A simple function defined upon the vertices of a graph is now introduced. 
This function will be used extensively during the remainder of this paper, 
together with some of its properties: the next few paragraphs will be devoted 
to deriving the properties required. 

For all r, I, and 1 ^ r S P, define 

(7.1) tW) / I , if 
(0, ot 

degr(z;/) is odd, 
otherwise, 

for any particular graph GP. 
Thus for each ordering 7, the /-function assigns to each vertex of Gp a 

unique value which is either 0 or 1. 
In paragraph 6 it has been pointed out that the ordering, say / , of the 

vertices of G / can be chosen independently of any ordering 7 of the vertices 
of Gp by which G / may have been derived from Gp. Thus, without incon
sistency, we may introduce the following functions of G / and any ordering J 
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BIPARTITE SUBGRAPHS 477 

of its vertices, for all r, 1 ^ r S P, and all / : 

(7.2) TJ(G/) = £ *(»/), T*(G/) = max TJ(G/). 
i=2 J 

Putting r = p, and recalling that Gp
z = Gp, for all / , we have: 

(7.3) TJ(GV) = £ t(vt
J), T*(GP) = max TJ(GP). 

i=2 J 

8. From this point up to the end of paragraph 16 a series of theorems are 
stated and proved, each theorem involving the functions / and T. 

9. THEOREM 1. T*(Gr
z) = 0, if and only if X(Gr

z) = 0, for all subgraphs 
Gr

T, and all r. 

Proof. X(Gr
z) = 0 implies that degr(v/), degr_i(z/r_/), . . , deg2(v2J) are 

all even, for all J, and so t(vr
J) = t(vr-i

J) = . . . = t(v2
J) = 0, implying 

T*(Gr
z) = 0. This completes the proof in this direction. 

Conversely, X(Gr
z) ^ 0 => there exist a pair of distinct vertices of Gr

z, 
which can be named vr

J, vr-i
J, under some ordering / of the vertices of Gr

z, 
such that (v/,vr-i

J) G X{Gr
z). Thus we have the following disjoint alter

natives: 
(i) at least one of degr(vr

J), degr(vr-i
J), is odd; 

(ii) both degr(v/), deg^^-i*7), are even integers ^ 2 . 
Suppose that at least one of degr(vr

J), degr(vr-i
J), is odd: in this case we 

can always choose / such that degr(vr
J) is odd. Then by definition t{v/) = 1. 

Now suppose that both degr(v/), degr(vr-i
J), are even integers ^ 2 . Then 

t(v/) = 0 and degT-i(vr-\
J) is odd; thus t(v/) + t(vr-i

J) = 1. It follows that 
if X{Gr

z) ^ 0 then TJ(GT
Z) ^ 1. Hence T*(Gr

z) ^ 1, which completes the 
proof. 

10. THEOREM 2. T*(G/) ^ t(vr
z) + r*(G r_i7), for all r, 1 < r S P, and all 

Gp, p, I. 

Proof. If the theorem is not true, then there exist r, p, where 1 < r ^ p, a 
graph Gp and an ordering / , such that T*(Gr

z) < t(vr
z) + r*(G r_i7). 

(7.2) =$ there exists an ordering / = (vr-i
J, . . . , v\J) of the (r — 1) 

vertices of Gr-i
z, such that T*(Gr-i

z) = TJ{Gr-\
z). It follows that it is 

possible to construct the ordering K = (vr
z, vr-i

J, vT-2J, • . • , V\J) of the 
vertices of Gr

z. Then 

r*(G/) < t(vS) + r*(G,_x7) = TK(GT
Z), 

which implies that T*(G/) < TK(Gr
z), contrary to the definition (7.2). 

This completes the proof. 

11. THEOREM 3. TZ(GP) = T*(GP) => TZ(GT
Z) = T*(Gr

z), for all r, 
1 ^ r S p. 
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Proof. If the theorem is not true, then (7.2) implies there exists r, 
1 ^ T ^ p — 1, such that T*(Gr

T) > TI(Gr
I). Now there exists an ordering 

J = (v / ,v r _i J , • • , » / ) of the vertices of G / such that r * ( G / ) = TJ(Gr
T). 

Therefore ^ ( G / ) > r 7 ( G / ) . 
Also by above it is possible to construct an ordering 

K = 0 / , v_i7 , . . , Vr+i1, v/, vr-!
J, . . , viJ) 

of the vertices of Gv. Then 

^*(GP) = £ tiv^) + TJ(Gr
T), and T1 (Gp) = f ) / (» / ) + J Z ( G / ) . 

It follows that TK{GP) > r7(Gp) = T*(GP), contrary to definition. This 
completes the proof. 

12. THEOREM 4. If T*(GP) = TT(GP) = K, then there exists a strictly increas
ing positive integer single-valued function r(k), for k = 0, 1, 2, . . , K, where 
r(k) ^ p, such that r*(Gr(A;)

7) = k. 

Proof. By assumption, T*(GP) = r7(Gp) = K. Then by Theorem 3, 
r * ( G / ) = T^GS), for all r such that 1 ^ r ^ £. Thus 

(12.1) T*(G/) = *(»/) + T7(Gr_!7) = *(»/) + r*(Gr_x7), 
=>r*(Gr

J) - r*(Gr_x7) = /(»/), 
=>0 S T*(Gr

J) - T*(Gr_i7) ^ 1, 

for all r such that 1 < r ^ p. 
(12.1) =* T*(Gi7), T*(G2Z), . . , r*(Gp_x7), T*(GP) is a non-decreasing se

quence of non-negative integers in which consecutive terms differ by at most 
unity, and in which T*(Gi7) = 0 and T*(GP) = K. Thus every integer from 0 
to K, inclusive, appears at least once within the sequence. 

Then for given Gv and given k such that 0 rg k ^ K, there exists a smallest 
integer r(k) such that r*(Gr(fc)7) = k. Evidently r(k) is a strictly increasing 
single-valued function of k, for all k such that Q ^ k ^ K. This completes 
the proof. 

13. We define 

M(GP) = maxdegp(vt), vt <E V(GV). 
i 

Thus M(GP) is the maximum vertex degree which occurs in the graph Gv. 

THEOREM 5. T*(GP) ^ [(M(GP) + l)/2] for all Gp, and p. 

Proof. The proof proceeds by induction on T* (Gp). Suppose that the theorem 
is true for all Gv and p, such that T*(GP) ^ K, K ^ 0. 

Let Gp be some graph on p vertices, for some p, such that T* (Gp) = K + 1. 
It may be assumed that Gp exists: otherwise, Theorem 4 => T*(GP) ^ K, for 
all graphs Gp, and all £ (it is trivial to show that there exist p, GPJ such that 
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T*(GP) > K, for all K: for example, consider the graph formed of a single 
Hamiltonian chain on not less than K + 2 vertices). 

Let v' be some vertex of Gp of maximum degree. V(GP) — {vf} either 
contains a vertex of odd degree in Gp', or V(GP) — \v'} only contains vertices 
of even degree in Gp. 

First, suppose that V(GP) — {vf} contains a vertex of odd degree in Gp: 
this implies that it is possible to find an ordering I of the p vertices of Gp such 
that degp(vp

J) is odd, v/ ^ v'. Then t{vp
x) = 1, and by Theorem 2, 

T*(GP') è 1 + T*(GP' - vp
z), and so T*(GP' - vp

T) ^ K. Then 

[(M(GP' - v/) + l ) /2] ^ K. 

However, since v/ ?* v\ it follows that M(GP — vp
T) + U M(GP). Thus 

[M(Gp')/2] S K, which implies 

(13.1) [(M(GP') + l) /2] ^ X + 1 = T*(G/). 

Secondly, suppose V(GP) — v' contains only vertices of even degree in Gp'. 
r * (G/ ) = K+ 1=*X(GP') 9* 0, by Theorem 1. Then there exist in 
V(GP) — {vf}, a pair of vertices adjacent in Gp\ for otherwise all vertices in 
V(GP) — {v'\ have degree, in Gp', at most 1,=> all vertices in V(GP) — {v'\ have 
degree 0 in Gp , =>X(GP') = 0, contrary to the above. Thus we can choose 
an ordering I of the vertices of Gp such that vp

T, vp-i
z 7e vr where 

(v/iVp-i1) 6 X(Gp
f), and such that degp(vp

J), degp(^_i7), are both even 
integers ^ 2 . Then degp(^7) is even and degp_i(^_i7) is odd; hence 
' ( » / ) + /fe_i7) = 1. By Theorem 2, 

T*(GP') ^ / (»/) + r*(G,_i /7) ^ t(vp
T) + t(vp^) + r*(Gp_/7) , for all / . 

Thus, T*(GP') è 1 + r*(G„_2
/7), and so T*(Gp-2") S K, from which we 

conclude that 

(13.2) [{M(GV^") + l) /2] g X. 

By our choice of ordering, 

(13.3) MiG^'1) + 2 2: M(GP'), =*• M(G/) - 1 g ikf(Gp_2'
7) + 1. 

(13.2), (13.3), imply 

(13.4) [(M(GP') - l ) /2] =g X, => [(M(G/) + l) /2] ^ X + 1 = r*(G,')-

If r*(Gp) = 0, then by Theorem 1 X{GV) = 0, =» M(G,) = 0. Thus the 
induction hypothesis holds for K = 0. Then by (13.1) and (13.4), the induc
tion hypothesis extends to all non-negative integer values of T*{GP) for all 
GP, and all p. This completes the proof of Theorem 5. 

14. THEOREM 6. T*{GV) = R => ^(G,)! g \ 2
+ M-/*"" aU G»< and al1 P-
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Proof. The proof proceeds by induction on T*(GP). Suppose the result holds 
whenever T*(GP) S K, K ^ 0. 

Let Gp , for some p, be a graph such that T*(GP) = K + 1 (there exists 
such a graph by the initial remarks in the proof of Theorem 5). Then by 
Theorem 5, [(M(Gp

f) + l ) /2] ^ K + 1. Thus, if M{GP') is odd, then 
M(GP') ^ 2K + 1, while if Af (G/) is even, then M(GP') ^ 2K + 2. 

G/ either contains a vertex of odd degree, or all vertices of Gp are of even 
degree. 

First assume Gp contains a vertex of odd degree. Then we can find an 
ordering I such that deg^z^1) is odd. By Theorem 2 

T*(GP') ̂  i + r*(cv - V ) , 
and so T* (Gp — vp

T) ^ K. Thus, by the induction hypothesis 

\X(G,'-v,')\£ ( 2 K ^ 1 ) . 

Now, since deg^^ 1 ) is odd and does not exceed M{GP), it follows that 

d e g > / ) ^ 2K + 1, =» |X(G/) | ^ 2Z + 1 + |X(G/ - » / ) | . 

It now follows that 

(14.1) | X < G / ) | S ( 2 K + 1 ) + ( 2 X + 1 ) . ( 2 X + 2 ) , 

^lx (G/)|<(2<K+2
1» + I ) . 

Now we consider the case where GP contains only vertices of even degree. 
By Theorem 1, T*(GP') = K + 1, =» X(GP') j ^ 0. Thus Gp' necessarily con
tains a pair of adjacent vertices of even degree: moreover, we can find an 
ordering I such that Vj,1, v^-i1, are adjacent in Gv' and of even degree: also, 
degj,_i(ttp_i7) is odd, and so by Theorem 2, T*{GV') ^ 1 + T*(Gp-2

r). Then 

T*(Gp-2") :£ K, and by induction \X{GP^")\ ^ (2K£ l \ . Now, degp(vp
I), 

1 + degj,_i(flj,_i7), are both even and neither exceeds M(GP'); thus, 
\X(GV')\ ^ (2K + 2) + (2K + 1) + \X{GP^')\, and so 

(14.2) P f ( ^ ) | ^ ( 2 K
1

+ 2 ) + ( 2 J C l + 1 ) + ( 2 J C 2 + 1 ) ' 

If the given induction hypothesis holds whenever T*(GP) ^ K, then 
(14.1), ( 14.2), imply the induction hypothesis holds whenever r*(GP) ^ K + 1, 
for all Gp, and all >̂. Moreover, Theorem 1 implies the induction hypothesis 
holds for K = 0. It follows that the induction hypothesis extends to all non-
negative integer values of K. This completes the proof of Theorem 6. 
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15. Let H* (G/) be a bipartite graph with edge set of maximum cardinality, 
subject to the constraint that H*(Gr

T) is isomorphic to some subgraph of 
G/. We define 

b(GS) = \X(H*(G/))\, 

where X (H* (G/)) is the edge set of H*(Gr
T). Thus b(Gr

T) is the number of 
edges in a bipartite subgraph of G/ which has most edges. Evidently 
b (Gi1) = 0, for all orderings I. 

THEOREM 7. 2b(Gp) - \X(GP)\ ^ T*(GP) ^ [(M(GP) + l ) /2] for all Gp, 
and all p. 

Proof. The above paragraph implies there exists a partition of V(Gr-i
I)i 

the vertex set of Gr-\ , into V and V", such that each edge of the particular 
i7*(Gr_i7) is incident to a vertex in V and to a vertex in V". Now 
vT

z (? ViGr-i1) but, by definition, is adjacent to degr(vr
T) vertices in Gr_i7. 

Thus v/ is adjacent to not less than J(degr(z>/) + t(v/)) vertices in V 
and/or to not less than è(degr(z;/) + t(vr

T)) vertices in V". Thus 
b(GrJ) ^ b{Gr^) + è(degr(»r

J) + / (» / ) ) , for all r, 2 ^ ^ , and all 
G/, I (since a bipartite subgraph of Gr

T, with v/ as one vertex, can always 
be formed to include any bipartite subgraph of G>_i7). 

Putting r = p initially, (p — 1) successive applications of the above to 
Gp, G>_i7, . . , G2

7, respectively, yields 

KG,) ^ | ( £ (deg>/) + ^ / ) ) ) , 

for all / , Gp, and p. Then, by the remark at the end of paragraph 5, 

2b(Gp) è \X(GP)\ + TI(GP)JorMI,=>2b(Gp) - \X(GP)\ ^ T*(GP), 

for all GP1 and all p. The result now follows by Theorem 5; this completes the 
proof. 

16. THEOREM 8. \X(GP)\ g [2(b(Gp) + i ) - (b(Gp) + 1)*], for all Gp, and 
all p. 

Proof. Define 

(16.1) y(GP) = 2b(GP) - \X(GP)\ 

Then by Theorem 7, T*(GP) ^ y{GP), and so by Theorem 6, 

(16.2) \X{GV)\ ± (2yiGj + X) . 

(16.1), (16.2), =*26(GP) - y{Gv) g y(GP)(2y(Gp) + 1), 
=>b(Gp) èy(.GP)(y(Gp) + l), 

^y(GP)^-h+ (6(G,) + 1)*, 
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since ;y(Gp) ^ 0 by Theorem 7. Then (16.1) implies \X(GP)\ ^ 2(b(Gp) + i ) -
(b(Gp) + \y. This completes the proof since \X(GP)\ is an integer. 

17. Let H(S + 1), ex(p, H(S + 1)), be defined as in paragraph 2. 

THEOREM 9. ex(p, H(S + 1)) ^ [2(5 + i ) - (5 + £)*], /or all p, and all 

S è 0. 

Proof. If the theorem is true for all p sufficiently large, then the theorem 
will be true for all p: for, ex(p, H(S + 1)) is a non-decreasing function of p, 
for fixed 5, since we may always choose p vertices from any vertex set with 
not less than p vertices. 

By paragraph 2, for all p sufficiently large, there exists a graph Gp such that 
\X(GP)\ = ex(p, H(S + 1)) and b(Gp) = 5. Then by Theorem 8, 

ex(p,H(S+l)) S [ 2 ( 5 + 1 ) ~ (5 + Ï)*], 

for £ sufficiently large, and all 5 ^ 0 . By our previous remarks, the proof is 
now complete. 

18. COROLLARY. ex(p, H([N2/4] + 1)) ^ I I , /or all p, and all N ^ 0. 

Proof. If 5 = [iV2/4], where iV is some non-negative integer, then by 
Theorem 9, 

(18.1) ex(p,H([Ny±] + 1)) ^ [2([N*/4] + | ) - ([N*/4\ + *)*]. 

If JV is odd, [iV2/4] + | = iV2/4. It follows that 

(18.2) [2([iV2/4] + i ) - ([^V2/4] + i) è] 

= [7V2/2 - JV/2] = [N(N - l ) /2] = JV(iV - l ) / 2 . 

If JV is even, then [iV2/4] = iV2/4. N è 0 implies 0 < (iV2/4 + i ) è -
N/2 g | , => JV/2 < (iV2/4 + i )* g J + JV/2. Thus, if N is non-negative 
and even, then 

(18.3) [2([JV2/4] + Î) - ([^V2/4] + 1)*] = [iV2/2 + \ - (7V2/4 + J)*] 

= iV2/2 - 7V/2 = N(N - l ) / 2 . 

<(?) • ' (18.1), (18.2), (18.3),=*eK(fi,H([N*/4\ + l)) ^ I 2 I , for all£, and all iV è 0. 

19. i£^, the complete graph on iV vertices, has a number of interesting 
properties in the context of this paper. These properties will be considered 
now. The Corollary to Theorem 9 will be relevant in this context: in particular 
it is possible to replace the inequality sign by the equality sign in this corollary 
to give the following theorem. 

THEOREM 10. ex (p,H([N2/4:] +1)) = l^YwhereR = mm(p,N),forallN,p. 
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Proof. Since a bipartite graph contains no triangle, Turan's theorem [2] => 
b{KN) g [iV2/4], where b{KN) = number of edges in a bipartite subgraph 
of KN with greatest number of edges. (This definition is consistent with 
paragraph 15.) 

The vertex set of KN may be partitioned into two sets, one set containing 
[N/2] vertices and the other set containing [(N + l ) /2] vertices. It follows 
that KN has a bipartite subgraph with [N/2][(N + l ) /2] = [iV2/4] edges. 
Thus, it follows that 

(19.1) b(KN) = [iV2/4]. 

Then (19.1) and the corollary to Theorem 9 imply ex(p, #([iV2/4] + 1)) = 
(N\ (N\ 
I I , for all p ^ N, since KN has I I edges. Evidently, if p ^ TV, then 

ex(£, #([iV2/4] + 1)) = (PA . This completes the proof. 

20. It is possible to prove Theorem 10 directly without recourse to Theorem 8, 
or to Theorem 9 or its corollary. The proof uses the properties b (KN) = [iV2/4], 

(N\ 
\X(KN)\ = 1 1 , and is as follows: 

Suppose there exists a graph Gp = (V, X) such that b(Gv) = [iV2/4], 

|X| > \Z\ . Then by Theorem 7, 

(20.1) 2[iV2/4] - \X\ ^ T*(GP), =* 2[iV2/4] - (^ > T*{GV). 

However, 2[iV2/4] - m = [N/2], for all N ^ 0. Thus by (20.1), 

T*(GP) < [N/2],=*T*(GP) S [(N - 2)/2]. By Theorem 6, it now follows 
that 

m ^ 2 [ ( i V - 2 ) / 2 ] + lj = ^ i V / 2 ] - l ^ 

which implies \X\ ^ I _ I , contrary to our assumption. Thus we must 

have |Z | ^ \Tj if b(G,) = [^2/4], for all G„ and all p. Now KN is a graph 

such that b{KN) = [iV/4], | X ( i ^ ) | = u ) , for all N > 0. So 

ex(£, tf([iVy4] + 1)) = (*£\ , for all p ^ N > 0. 

Evidently, p ^ N =ï ex(p, H{[W/Q + 1)) = K J . This completes the proof. 

Note. Theorem 10 was first conjectured by A. J. Maal who passed the con-
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jecture to the author in personal communication and whom the author 
wishes to thank for stimulating his interest in this area. 

21. In this paragraph it is seen how certain further properties of KN 

illustrate earlier results within this paper. 

(i) The symmetry of KN =* T*(KN) = TZ(KN), for all / , and all N > 0. 
(ii) For KN, by paragraph 5, t(v2k

I) = 1, for all fe, where 1 :§ k S [N/2], 
and also /(z%+i7) = 0, for k, 3 g 2k + 1 g N, for all I, and N > 0. 

(iii) (i) and (ii) =* 7* (2^) = TX{KN) = [JV/2], for all 7, and all TV > 0. 
Evidently, M(KN) = N - 1, for N > 0. 

(iv) (iii) =>• Theorem 5 is satisfied for KN, for N > 0. 

(v) |XCM = (^) . =* 1^(^)1 â (2[N/22 +1)jorN> 0. 

(vi) (iii) and (v) => Theorem 6 is satisfied for -K ,̂ for N > 0. 

(vii) From paragraph 20, 2[iV2/4] - ( ^ ) = [N/2], for iV ^ 0; also 

b{KN) = [iVV4]. 
(viii) From (iii) and (vii) it follows that Theorem 7 is satisfied for KN, 

for all iV > 0. 
(ix) By paragraph 18 it follows that 

[2([iVy4] + I ) - ([2W4] + 1)*] = ( f ) , 

for all TV > 0: since ^ ( iT^ ) ! = I 9 I , it follows that Theorem 8 is satisfied 

for KN. 

From the above it is easily seen that, for all T*(GP), or M(GP), and all p 
sufficiently large, there exists a graph Gpy e.g. with unique component KN 

where N is appropriately chosen, such that the inequalities in Theorems 5, 6 
and 7 become equalities: in this sense the results of Theorems 5, 6 and 7 are 
best-possible. Further, we have seen that, if we choose Gv to have unique 
component KNj then equality holds between the two sides in the result of 
Theorem 8, for all N ^ p. 

22. Theorem 7 provides two lower bounds for b(Gp), namely 

\H\X(G,)\ + tt(M(G,) + l)])} and [h (\X (G,)\ + T* (G,))}, 

where {x} denotes the smallest integer ^x. 
For any given graph GP, the determination of b(Gp) is not necessarily trivial: 

in this context it may be useful to have lower bounds for b{Gp) such as those 
above. However, in general, T*(GP) is not explicitly known even though 
(7.2), (7.3), Theorem 2, Theorem 3, imply that an algorithm of dynamic 
programming type can be established to find T*(GP) for any particular Gp. 
Further, it may not be considered appropriate to bound the unknown value 
of b(Gv) in terms of the solution T*(GP) of a more or less complex individually 
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applied algorithm. Evidently, any lower bound to T*(GP) can be substituted 
for T*(GP) in the above lower bound to give an alternative lower bound for 
b(Gp). In the next theorem a lower bound for T*(GP), often distinct from 
[?(M(GP) + 1)], is established: in the context of this paper this result has 
some intrinsic interest. 

THEOREM 11. T*(GP) ^ {|((8|Z(GP)| + 1)* - l)},for all Gp, and all p. 

Proof. We define x and T by x = |X(GP)|, T = T*(GP). Then by Theorem 6 
0 g x ^ T(2T + 1), for all Gp, and all p. Thus, 0 < 2x + J ^ (2F + | ) 2 . 
It follows that 

(22.1) (2T + i + (2x + \f){2T + \ - (2x + 1)*) è 0. 

If 2T + i < (2* + 1)*, then (22.1) =» 2 7 + ^ ^ - (2* + Î)* =* T g - J , 
contrary to (7.3). Thus 2T + J ^ (2* + i)% from which it follows that 
T ^ {!((&£ + 1)* — 1)}, for all Gp, and all p. This completes the proof. 

23. THEOREM 12. 6(GP) è {i(l*(G,)l + {J((8|X(G,)| + 1)* - 1)})}. 

Proof. This follows directly from Theorem 11, and the initial remarks in 
paragraph 22. 

24. It is possible to derive another bound for b(Gp) from Theorem 8: this 
bound is: 

b(GP) > \H\X(G,)\ + i((8 |*(G„) | + 1)* - 1))} 

for all Gp, and all p. It is evident that this bound is never superior to that 
given by Theorem 12, since 

{i((8|Z(G,) | + 1)* - 1) | ^ l«8\X(G,)\ + 1)* - 1). 

It is now possible to formulate the last result of this paper: this gives a 
lower bound for b(GP) in terms of |X(Gj,)| and M(GP), both known or observ
able numbers for any given graph Gp: 

THEOREM 13. 

b(Gp) è {H\X(GP)\ + max({U(S\X(GP)\ + 1)* - 1)}, [i(M(Gp) + l)]))},for 
all Gp, and all p. 

Proof. This follows directly from Theorem 12 and, once again, the initial 
remarks of paragraph 22. 
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