SOME EXTREMAL PROPERTIES OF BIPARTITE SUBGRAPHS

C. S. EDWARDS

1. $G_p = (V, X)$ is a graph on p vertices, with vertex set V and edge set X. Occasionally, to avoid ambiguity, V and X will be written $V(G_p)$ and $X(G_p)$, respectively.

2. H(S + 1) shall denote any bipartite graph with S + 1 edges. Consistent with a standard notation, see Harary [1, Chapter 2, p. 18], $\exp(p, H(S + 1))$ denotes the maximum number of edges in any graph $G_p = (V, X)$, subject only to the constraints that |V| = p and that G_p contains no subgraph isomorphic to any H(S + 1), i.e. that G_p has no bipartite subgraph with S + 1 edges.

Evidently, for p sufficiently large, any such graph G_p with a maximum number of edges will contain a subgraph isomorphic to some H(S): otherwise at least one edge could be added to X without breaking the constraints above.

3. The principal result of this paper is as follows: for all p,

(3.1)
$$\exp(p, H(S+1)) \leq [2(S+\frac{1}{4}) - (S+\frac{1}{4})^{\frac{1}{2}}], \text{ for all } S \geq 0.$$

As usual, [x] denotes the largest integer not exceeding x. Much of the remainder of this paper is directed towards establishing the result of (3.1).

4. The elements of V can be ordered in p! different ways, not all of which may be distinguishable within the graph G_p . Let I denote one such ordering of the p different vertices of G_p . Any ordering will append each of the integers 1 to p, inclusive, to precisely one of the vertices of G_p , every such vertex having one appended integer: thus v_r^I is defined as the particular vertex of G_p to which is appended the integer r by the ordering I, $1 \leq r \leq p$.

5. For a particular ordering I, the sequence $(v_p^I, v_{p-1}^I, \ldots, v_1^I)$ will represent the corresponding ordering of the vertices of G_p . Let $G_{p-1}^I = G_p - v_p^I$, $G_{p-2}^I = G_{p-1}^I - v_{p-1}^I = G_p^I - v_p^I - v_{p-1}^I$, and in general,

$$G_{p-r}{}^{I} = G_p - \bigcup_{i=0}^{r-1} v_{p-i}{}^{I},$$

for all r, $0 \leq r < p$, and all I. Thus G_{p-r} is the induced subgraph of G_p generated by the vertex set

$$V(G_p) - \{v_p^{I}, v_{p-1}^{I}, \ldots, v_{p-r+1}^{I}\} = \{v_{p-r}^{I}, v_{p-r-1}^{I}, \ldots, v_1^{I}\}.$$

As a natural extension of the above notation, let $G_p^I = G_p$, for all *I*.

Received February 1, 1972.

C. S. EDWARDS

Define deg_r(v_k^I) to be the degree of the vertex of G_p , denoted as v_k^I by the ordering I, within the induced subgraph G_r^I of G_p defined by the vertex set $\{v_r^I, v_{r-1}^I, \ldots, v_1^I\}, 1 \leq k \leq r \leq p$.

Noting that G_{r-1}^{I} is formed from G_{r}^{I} by removing v_{r}^{I} , and all edges incident to v_{r}^{I} , from G_{r}^{I} , for all $r, 1 < r \leq p$, then it follows that

$$|X(G_r^I)| = \sum_{i=2}^r \deg_i(v_i^I), \text{ for all } r, I, 1 \leq r \leq p.$$

6. G_r^I , as defined in paragraph 5, is uniquely determined by G_p and the particular set of (p - r) vertices of G_p which are the first (p - r) vertices within the ordering $I = (v_p^I, \ldots, v_{r+1}^I, v_r^I, \ldots, v_1^I)$. Evidently, any change of the relative order in which the vertices $v_p^I, v_{p-1}^I, \ldots, v_{r+1}^I$, are successively removed from G_p has no effect on the induced subgraph G_r^I obtained. Further, the relative ordering of the last r vertices within the ordering I, i.e., $v_r^I, v_{r-1}^I, \ldots, v_1^I$, is not determined by G_r^I in any respect: thus the ordering of the r vertices of G_r^I can be freely chosen, as if G_r^I were a graph in its own right: indeed, hereafter, G_r^I will often be treated as a graph, sometimes with no reference to any particular G_p from which it may have been derived and to the ordering I used to derive G_r^I from G_p .

It can be seen that any given induced subgraph of G_p can be obtained from G_p by some ordering I. For suppose the induced subgraph has r vertices, $1 \leq r \leq p$. We take these r vertices and any ordering I with these r vertices as last r vertices in the ordering. G_r^I is then the given induced subgraph. Evidently there will be r!(p-r)! orderings I by which a given induced subgraph G_r^I may be obtained from G_p .

In spite of the multiplicity of orderings I which may be used to derive a given induced subgraph G_r^I of G_p , the notation described in paragraph 5 will be convenient for the purposes of this paper because of its compactness.

7. A simple function defined upon the vertices of a graph is now introduced. This function will be used extensively during the remainder of this paper, together with some of its properties: the next few paragraphs will be devoted to deriving the properties required.

For all r, I, and $1 \leq r \leq p$, define

(7.1)
$$t(v_{\tau}^{I}) = \begin{cases} 1, \text{ if } \deg_{\tau}(v_{\tau}^{I}) \text{ is odd,} \\ 0, \text{ otherwise,} \end{cases}$$

for any particular graph G_p .

Thus for each ordering I, the *t*-function assigns to each vertex of G_p a unique value which is either 0 or 1.

In paragraph 6 it has been pointed out that the ordering, say J, of the vertices of G_r^I can be chosen independently of any ordering I of the vertices of G_p by which G_r^I may have been derived from G_p . Thus, without inconsistency, we may introduce the following functions of G_r^I and any ordering J

of its vertices, for all $r, 1 \leq r \leq p$, and all *I*:

(7.2)
$$T^{J}(G_{r}^{I}) = \sum_{i=2}^{r} t(v_{i}^{J}), \qquad T^{*}(G_{r}^{I}) = \max_{J} T^{J}(G_{r}^{I}).$$

Putting r = p, and recalling that $G_p^I = G_p$, for all *I*, we have:

(7.3)
$$T^{J}(G_{p}) = \sum_{i=2}^{p} t(v_{i}^{J}), \qquad T^{*}(G_{p}) = \max_{J} T^{J}(G_{p}).$$

8. From this point up to the end of paragraph 16 a series of theorems are stated and proved, each theorem involving the functions t and T.

9. THEOREM 1. $T^*(G_r^I) = 0$, if and only if $X(G_r^I) = \emptyset$, for all subgraphs G_r^I , and all r.

Proof. $X(G_r^I) = \emptyset$ implies that $\deg_r(v_r^J)$, $\deg_{r-1}(v_{r-1}^J)$, ..., $\deg_2(v_2^J)$ are all even, for all J, and so $t(v_r^J) = t(v_{r-1}^J) = \ldots = t(v_2^J) = 0$, implying $T^*(G_r^I) = 0$. This completes the proof in this direction.

Conversely, $X(G_r^I) \neq \emptyset \Rightarrow$ there exist a pair of distinct vertices of G_r^I , which can be named v_r^J, v_{r-1}^J , under some ordering J of the vertices of G_r^I , such that $(v_r^J, v_{r-1}^J) \in X(G_r^I)$. Thus we have the following disjoint alternatives:

(i) at least one of deg_r(v_r^J), deg_r(v_{r-1}^J), is odd;

(ii) both $\deg_r(v_r^J)$, $\deg_r(v_{r-1}^J)$, are even integers ≥ 2 .

Suppose that at least one of $\deg_r(v_r^J)$, $\deg_r(v_{r-1}^J)$, is odd: in this case we can always choose J such that $\deg_r(v_r^J)$ is odd. Then by definition $t(v_r^J) = 1$.

Now suppose that both $\deg_r(v_r^J)$, $\deg_r(v_{r-1}^J)$, are even integers ≥ 2 . Then $t(v_r^J) = 0$ and $\deg_{r-1}(v_{r-1}^J)$ is odd; thus $t(v_r^J) + t(v_{r-1}^J) = 1$. It follows that if $X(G_r^I) \neq \emptyset$ then $T^J(G_r^I) \geq 1$. Hence $T^*(G_r^I) \geq 1$, which completes the proof.

10. THEOREM 2. $T^*(G_r^I) \ge t(v_r^I) + T^*(G_{r-1}^I)$, for all $r, 1 < r \le p$, and all G_p, p, I .

Proof. If the theorem is not true, then there exist r, p, where $1 < r \leq p$, a graph G_p and an ordering I, such that $T^*(G_r^I) < t(v_r^I) + T^*(G_{r-1}^I)$.

 $(7.2) \Rightarrow$ there exists an ordering $J = (v_{r-1}^{J}, \ldots, v_1^{J})$ of the (r-1) vertices of G_{r-1}^{I} , such that $T^*(G_{r-1}^{I}) = T^J(G_{r-1}^{I})$. It follows that it is possible to construct the ordering $K = (v_r^{I}, v_{r-1}^{J}, v_{r-2}^{J}, \ldots, v_1^{J})$ of the vertices of G_r^{I} . Then

$$T^*(G_r^I) < t(v_r^I) + T^*(G_{r-1}^I) = T^K(G_r^I),$$

which implies that $T^*(G_r^I) < T^{\kappa}(G_r^I)$, contrary to the definition (7.2). This completes the proof.

11. THEOREM 3. $T^{I}(G_{p}) = T^{*}(G_{p}) \Rightarrow T^{I}(G_{r}) = T^{*}(G_{r}), \text{ for all } r, 1 \leq r \leq p.$

Proof. If the theorem is not true, then (7.2) implies there exists r, $1 \leq r \leq p-1$, such that $T^*(G_r^I) > T^I(G_r^I)$. Now there exists an ordering $J = (v_r^J, v_{r-1}^J, \ldots, v_1^J)$ of the vertices of G_r^I such that $T^*(G_r^I) = T^J(G_r^I)$. Therefore $T^J(G_r^I) > T^I(G_r^I)$.

Also by above it is possible to construct an ordering

$$K = (v_p^{I}, v_{p-1}^{I}, \ldots, v_{r+1}^{I}, v_r^{J}, v_{r-1}^{J}, \ldots, v_1^{J})$$

of the vertices of G_p . Then

$$T^{\kappa}(G_{p}) = \sum_{i=r+1}^{p} t(v_{i}^{I}) + T^{J}(G_{r}^{I}), \text{ and } T^{I}(G_{p}) = \sum_{i=r+1}^{p} t(v_{i}^{I}) + T^{I}(G_{r}^{I}).$$

It follows that $T^{\kappa}(G_p) > T^{I}(G_p) = T^*(G_p)$, contrary to definition. This completes the proof.

12. THEOREM 4. If $T^*(G_p) = T^I(G_p) = K$, then there exists a strictly increasing positive integer single-valued function r(k), for k = 0, 1, 2, ..., K, where $r(k) \leq p$, such that $T^*(G_{r(k)}) = k$.

Proof. By assumption, $T^*(G_p) = T^I(G_p) = K$. Then by Theorem 3, $T^*(G_r^I) = T^I(G_r^I)$, for all r such that $1 \leq r \leq p$. Thus

(12.1)
$$T^*(G_r^I) = t(v_r^I) + T^I(G_{r-1}^I) = t(v_r^I) + T^*(G_{r-1}^I),$$

$$\Rightarrow T^*(G_r^I) - T^*(G_{r-1}^I) = t(v_r^I),$$

$$\Rightarrow 0 \leq T^*(G_r^I) - T^*(G_{r-1}^I) \leq 1,$$

for all r such that $1 < r \leq p$.

 $(12.1) \Rightarrow T^*(G_1^I), T^*(G_2^I), \ldots, T^*(G_{p-1}^I), T^*(G_p)$ is a non-decreasing sequence of non-negative integers in which consecutive terms differ by at most unity, and in which $T^*(G_1^I) = 0$ and $T^*(G_p) = K$. Thus every integer from 0 to K, inclusive, appears at least once within the sequence.

Then for given G_p and given k such that $0 \leq k \leq K$, there exists a smallest integer r(k) such that $T^*(G_{r(k)}^I) = k$. Evidently r(k) is a strictly increasing single-valued function of k, for all k such that $0 \leq k \leq K$. This completes the proof.

13. We define

$$M(G_p) = \max_i \deg_p(v_i), \quad v_i \in V(G_p).$$

Thus $M(G_p)$ is the maximum vertex degree which occurs in the graph G_p .

THEOREM 5. $T^*(G_p) \ge [(M(G_p) + 1)/2]$ for all G_p , and p.

Proof. The proof proceeds by induction on $T^*(G_p)$. Suppose that the theorem is true for all G_p and p, such that $T^*(G_p) \leq K, K \geq 0$.

Let G_p' be some graph on p vertices, for some p, such that $T^*(G_p') = K + 1$. It may be assumed that G_p' exists: otherwise, Theorem $4 \Rightarrow T^*(G_p) \leq K$, for all graphs G_p , and all p (it is trivial to show that there exist p, G_p , such that $T^*(G_p) > K$, for all K: for example, consider the graph formed of a single Hamiltonian chain on not less than K + 2 vertices).

Let v' be some vertex of G_p' of maximum degree. $V(G_p') - \{v'\}$ either contains a vertex of odd degree in G_p' , or $V(G_p') - \{v'\}$ only contains vertices of even degree in G_p' .

First, suppose that $V(G_p') - \{v'\}$ contains a vertex of odd degree in G_p' : this implies that it is possible to find an ordering I of the p vertices of G_p' such that $\deg_p(v_p^I)$ is odd, $v_p^I \neq v'$. Then $t(v_p^I) = 1$, and by Theorem 2, $T^*(G_p') \geq 1 + T^*(G_p' - v_p^I)$, and so $T^*(G_p' - v_p^I) \leq K$. Then

$$[(M(G_{p'} - v_{p'}) + 1)/2] \leq K.$$

However, since $v_p^I \neq v'$, it follows that $M(G_p' - v_p^I) + 1 \ge M(G_p')$. Thus $[M(G_p')/2] \le K$, which implies

(13.1)
$$[(M(G_p') + 1)/2] \leq K + 1 = T^*(G_p').$$

Secondly, suppose $V(G_p') - v'$ contains only vertices of even degree in G_p' . $T^*(G_p') = K + 1 \Rightarrow X(G_p') \neq \emptyset$, by Theorem 1. Then there exist in $V(G_p') - \{v'\}$, a pair of vertices adjacent in G_p' : for otherwise all vertices in $V(G_p') - \{v'\}$ have degree, in G_p' , at most $1, \Rightarrow$ all vertices in $V(G_p') - \{v'\}$ have degree 0 in $G_p', \Rightarrow X(G_p') = \emptyset$, contrary to the above. Thus we can choose an ordering I of the vertices of G_p' such that $v_p^{I}, v_{p-1}^{I} \neq v'$ where $(v_p^{I}, v_{p-1}^{I}) \in X(G_p')$, and such that $\deg_p(v_p^{I})$, $\deg_p(v_{p-1}^{I})$, are both even integers ≥ 2 . Then $\deg_p(v_p^{I})$ is even and $\deg_{p-1}(v_{p-1}^{I})$ is odd; hence $t(v_p^{I}) + t(v_{p-1}^{I}) = 1$. By Theorem 2,

$$T^*(G_p) \ge t(v_p) + T^*(G_{p-1}) \ge t(v_p) + t(v_{p-1}) + T^*(G_{p-2}), \text{ for all } I.$$

Thus, $T^*(G_p) \ge 1 + T^*(G_{p-2})$, and so $T^*(G_{p-2}) \le K$, from which we conclude that

(13.2)
$$[(M(G_{p-2})^{I}) + 1)/2] \leq K.$$

By our choice of ordering,

(13.3)
$$M(G_{p-2}'^{I}) + 2 \ge M(G_{p}'), \Rightarrow M(G_{p}') - 1 \le M(G_{p-2}'^{I}) + 1.$$

(13.2), (13.3), imply

(13.4)
$$[(M(G_p') - 1)/2] \leq K, \Rightarrow [(M(G_p') + 1)/2] \leq K + 1 = T^*(G_p').$$

If $T^*(G_p) = 0$, then by Theorem 1 $X(G_p) = \emptyset$, $\Rightarrow M(G_p) = 0$. Thus the induction hypothesis holds for K = 0. Then by (13.1) and (13.4), the induction hypothesis extends to all non-negative integer values of $T^*(G_p)$ for all G_p , and all p. This completes the proof of Theorem 5.

14. THEOREM 6.
$$T^*(G_p) = R \Longrightarrow |X(G_p)| \le \binom{2R+1}{2}$$
, for all G_p , and all p .

Proof. The proof proceeds by induction on $T^*(G_p)$. Suppose the result holds whenever $T^*(G_p) \leq K, K \geq 0$.

Let G_p' , for some p, be a graph such that $T^*(G_p') = K + 1$ (there exists such a graph by the initial remarks in the proof of Theorem 5). Then by Theorem 5, $[(M(G_p') + 1)/2] \leq K + 1$. Thus, if $M(G_p')$ is odd, then $M(G_p') \leq 2K + 1$, while if $M(G_p')$ is even, then $M(G_p') \leq 2K + 2$.

 G_p' either contains a vertex of odd degree, or all vertices of G_p' are of even degree.

First assume G_p' contains a vertex of odd degree. Then we can find an ordering I such that $\deg_p(v_p^I)$ is odd. By Theorem 2

$$T^*(G_p') \ge 1 + T^*(G_p' - v_p^I),$$

and so $T^*(G_p' - v_p^I) \leq K$. Thus, by the induction hypothesis

$$|X(G_p' - v_p^I)| \leq \binom{2K+1}{2}.$$

Now, since $\deg_p(v_p^I)$ is odd and does not exceed $M(G_p')$, it follows that

$$\deg_p(v_p^{I}) \leq 2K + 1, \Rightarrow |X(G_p')| \leq 2K + 1 + |X(G_p' - v_p^{I})|.$$

It now follows that

(14.1)
$$|X(G_p')| \leq \binom{2K+1}{1} + \binom{2K+1}{2} = \binom{2K+2}{2},$$

 $\Rightarrow |X(G_p')| < \binom{2(K+1)+1}{2}.$

Now we consider the case where G_p' contains only vertices of even degree. By Theorem 1, $T^*(G_p') = K + 1$, $\Rightarrow X(G_p') \neq \emptyset$. Thus G_p' necessarily contains a pair of adjacent vertices of even degree: moreover, we can find an ordering I such that v_p^{I}, v_{p-1}^{I} , are adjacent in G_p' and of even degree: also, $\deg_{p-1}(v_{p-1}^{I})$ is odd, and so by Theorem 2, $T^*(G_p') \geq 1 + T^*(G_{p-2}^{I})$. Then $T^*(G_{p-2}'^{I}) \leq K$, and by induction $|X(G_{p-2}'^{I})| \leq \binom{2K+1}{2}$. Now, $\deg_p(v_p^{I})$, $1 + \deg_{p-1}(v_{p-1}^{I})$, are both even and neither exceeds $M(G_p')$; thus, $|X(G_p')| \leq (2K+2) + (2K+1) + |X(G_{p-2}'^{I})|$, and so

(14.2)
$$|X(G_{p'})| \leq {\binom{2K+2}{1}} + {\binom{2K+1}{1}} + {\binom{2K+1}{2}},$$

 $\Rightarrow |X(G_{p'})| \leq {\binom{2(K+1)+1}{2}}.$

If the given induction hypothesis holds whenever $T^*(G_p) \leq K$, then (14.1), (14.2), imply the induction hypothesis holds whenever $T^*(G_p) \leq K + 1$, for all G_p , and all p. Moreover, Theorem 1 implies the induction hypothesis holds for K = 0. It follows that the induction hypothesis extends to all non-negative integer values of K. This completes the proof of Theorem 6.

480

15. Let $H^*(G_r^I)$ be a bipartite graph with edge set of maximum cardinality, subject to the constraint that $H^*(G_r^I)$ is isomorphic to some subgraph of G_r^I . We define

$$b(G_r^{I}) = |X(H^*(G_r^{I}))|,$$

where $X(H^*(G_r^I))$ is the edge set of $H^*(G_r^I)$. Thus $b(G_r^I)$ is the number of edges in a bipartite subgraph of G_r^I which has most edges. Evidently $b(G_1^I) = 0$, for all orderings I.

THEOREM 7. $2b(G_p) - |X(G_p)| \ge T^*(G_p) \ge [(M(G_p) + 1)/2]$ for all G_p , and all p.

Proof. The above paragraph implies there exists a partition of $V(G_{r-1}^{I})$, the vertex set of G_{r-1}^{I} , into V' and V'', such that each edge of the particular $H^*(G_{r-1}^{I})$ is incident to a vertex in V' and to a vertex in V''. Now $v_r^{I} \notin V(G_{r-1}^{I})$ but, by definition, is adjacent to $\deg_r(v_r^{I})$ vertices in G_{r-1}^{I} . Thus v_r^{I} is adjacent to not less than $\frac{1}{2}(\deg_r(v_r^{I}) + t(v_r^{I}))$ vertices in V''. Thus $b(G_r^{I}) \geq b(G_{r-1}^{I}) + \frac{1}{2}(\deg_r(v_r^{I}) + t(v_r^{I}))$, for all $r, 2 \leq r \leq p$, and all G_r^{I} , I (since a bipartite subgraph of G_r^{I} , with v_r^{I} as one vertex, can always be formed to include any bipartite subgraph of G_{r-1}^{I}).

Putting r = p initially, (p - 1) successive applications of the above to $G_p, G_{p-1}^{I}, \ldots, G_2^{I}$, respectively, yields

$$b(G_p) \ge \frac{1}{2} \left(\sum_{i=2}^{p} (\deg_i(v_i^{I}) + t(v_i^{I})) \right),$$

for all I, G_p , and p. Then, by the remark at the end of paragraph 5,

 $2b(G_p) \ge |X(G_p)| + T^I(G_p), \text{ for all } I, \Rightarrow 2b(G_p) - |X(G_p)| \ge T^*(G_p),$

for all G_p , and all p. The result now follows by Theorem 5; this completes the proof.

16. THEOREM 8. $|X(G_p)| \leq [2(b(G_p) + \frac{1}{4}) - (b(G_p) + \frac{1}{4})^{\frac{1}{2}}]$, for all G_p , and all p.

Proof. Define

(16.1)
$$y(G_p) = 2b(G_p) - |X(G_p)|$$

Then by Theorem 7, $T^*(G_p) \leq y(G_p)$, and so by Theorem 6,

(16.2)
$$|X(G_p)| \leq \binom{2y(G_p)+1}{2}.$$

(16.1), (16.2),
$$\Rightarrow 2b(G_p) - y(G_p) \leq y(G_p)(2y(G_p) + 1),$$

 $\Rightarrow b(G_p) \leq y(G_p)(y(G_p) + 1),$
 $\Rightarrow y(G_p) \geq -\frac{1}{2} + (b(G_p) + \frac{1}{4})^{\frac{1}{2}},$

C. S. EDWARDS

since $y(G_p) \ge 0$ by Theorem 7. Then (16.1) implies $|X(G_p)| \le 2(b(G_p) + \frac{1}{4}) - (b(G_p) + \frac{1}{4})^{\frac{1}{2}}$. This completes the proof since $|X(G_p)|$ is an integer.

17. Let H(S + 1), ex(p, H(S + 1)), be defined as in paragraph 2.

THEOREM 9. $ex(p, H(S+1)) \leq [2(S+\frac{1}{4}) - (S+\frac{1}{4})^{\frac{1}{2}}]$, for all p, and all $S \geq 0$.

Proof. If the theorem is true for all p sufficiently large, then the theorem will be true for all p: for, ex(p, H(S + 1)) is a non-decreasing function of p, for fixed S, since we may always choose p vertices from any vertex set with not less than p vertices.

By paragraph 2, for all p sufficiently large, there exists a graph G_p such that $|X(G_p)| = \exp(p, H(S + 1))$ and $b(G_p) = S$. Then by Theorem 8,

$$\exp(p, H(S+1)) \le [2(S+\frac{1}{4}) - (S+\frac{1}{4})^{\frac{1}{2}}],$$

for p sufficiently large, and all $S \ge 0$. By our previous remarks, the proof is now complete.

18. COROLLARY.
$$ex(p, H([N^2/4] + 1)) \leq \binom{N}{2}$$
, for all p , and all $N \geq 0$.

Proof. If $S = [N^2/4]$, where N is some non-negative integer, then by Theorem 9,

(18.1)
$$\exp(p, H([N^2/4] + 1)) \leq [2([N^2/4] + \frac{1}{4}) - ([N^2/4] + \frac{1}{4})^{\frac{1}{2}}]$$

If N is odd, $[N^2/4] + \frac{1}{4} = N^2/4$. It follows that

(18.2)
$$[2([N^2/4] + \frac{1}{4}) - ([N^2/4] + \frac{1}{4})^{\frac{1}{2}}]$$

= $[N^2/2 - N/2] = [N(N-1)/2] = N(N-1)/2.$

If N is even, then $[N^2/4] = N^2/4$. $N \ge 0$ implies $0 < (N^2/4 + \frac{1}{4})^{\frac{1}{2}} - N/2 \le \frac{1}{2} \Rightarrow N/2 < (N^2/4 + \frac{1}{4})^{\frac{1}{2}} \le \frac{1}{2} + N/2$. Thus, if N is non-negative and even, then

(18.3)
$$[2([N^2/4] + \frac{1}{4}) - ([N^2/4] + \frac{1}{4})^{\frac{1}{2}}] = [N^2/2 + \frac{1}{2} - (N^2/4 + \frac{1}{4})^{\frac{1}{2}}]$$

= $N^2/2 - N/2 = N(N-1)/2.$
(18.1), (18.2), (18.3), $\Rightarrow \exp(p, H([N^2/4] + 1)) \le {N \choose 2}$, for all p , and all $N \ge 0$.

19. K_N , the complete graph on N vertices, has a number of interesting properties in the context of this paper. These properties will be considered now. The Corollary to Theorem 9 will be relevant in this context: in particular it is possible to replace the inequality sign by the equality sign in this corollary to give the following theorem.

THEOREM 10. ex
$$(p, H([N^2/4]+1)) = \binom{R}{2}$$
, where $R = \min(p, N)$, for all N, p .

Proof. Since a bipartite graph contains no triangle, Turan's theorem $[2] \Rightarrow b(K_N) \leq [N^2/4]$, where $b(K_N) =$ number of edges in a bipartite subgraph of K_N with greatest number of edges. (This definition is consistent with paragraph 15.)

The vertex set of K_N may be partitioned into two sets, one set containing [N/2] vertices and the other set containing [(N + 1)/2] vertices. It follows that K_N has a bipartite subgraph with $[N/2][(N + 1)/2] = [N^2/4]$ edges. Thus, it follows that

(19.1)
$$b(K_N) = [N^2/4].$$

Then (19.1) and the corollary to Theorem 9 imply $\exp(p, H([N^2/4] + 1)) = \binom{N}{2}$, for all $p \ge N$, since K_N has $\binom{N}{2}$ edges. Evidently, if $p \le N$, then $\exp(p, H([N^2/4] + 1)) = \binom{p}{2}$. This completes the proof.

20. It is possible to prove Theorem 10 directly without recourse to Theorem 8, or to Theorem 9 or its corollary. The proof uses the properties $b(K_N) = [N^2/4]$, $|X(K_N)| = \binom{N}{2}$, and is as follows:

Suppose there exists a graph $G_p = (V, X)$ such that $b(G_p) = [N^2/4]$, $|X| > \binom{N}{2}$. Then by Theorem 7,

(20.1)
$$2[N^2/4] - |X| \ge T^*(G_p), \Rightarrow 2[N^2/4] - \binom{N}{2} > T^*(G_p).$$

However, $2[N^2/4] - \binom{N}{2} = [N/2]$, for all $N \ge 0$. Thus by (20.1), $T^*(G_p) < [N/2], \Rightarrow T^*(G_p) \le [(N-2)/2]$. By Theorem 6, it now follows that

$$|X| \leq \binom{2[(N-2)/2]+1}{2} = \binom{2[N/2]-1}{2},$$

which implies $|X| \leq \binom{N-1}{2}$, contrary to our assumption. Thus we must have $|X| \leq \binom{N}{2}$ if $b(G_p) = [N^2/4]$, for all G_p , and all p. Now K_N is a graph such that $b(K_N) = [N^2/4]$, $|X(K_N)| = \binom{N}{2}$, for all N > 0. So

$$\exp(p, H([N^2/4] + 1)) = \binom{N}{2}$$
, for all $p \ge N > 0$.

Evidently, $p \leq N \Rightarrow \exp(p, H([N^2/4] + 1)) = {p \choose 2}$. This completes the proof.

Note. Theorem 10 was first conjectured by A. J. Maal who passed the con-

jecture to the author in personal communication and whom the author wishes to thank for stimulating his interest in this area.

21. In this paragraph it is seen how certain further properties of K_N illustrate earlier results within this paper.

(i) The symmetry of $K_N \Rightarrow T^*(K_N) = T^I(K_N)$, for all I, and all N > 0.

(ii) For K_N , by paragraph 5, $t(v_{2k}^{I}) = 1$, for all k, where $1 \leq k \leq \lfloor N/2 \rfloor$, and also $t(v_{2k+1}^{I}) = 0$, for $k, 3 \leq 2k + 1 \leq N$, for all I, and N > 0.

(iii) (i) and (ii) $\Rightarrow T^*(K_N) = T^I(K_N) = [N/2]$, for all I, and all N > 0. Evidently, $M(K_N) = N - 1$, for N > 0.

(iv) (iii) \Rightarrow Theorem 5 is satisfied for K_N , for N > 0.

(v)
$$|X(K_N)| = \binom{N}{2}$$
, $\Rightarrow |X(K_N)| \le \binom{2[N/2] + 1}{2}$, for $N > 0$.

(vi) (iii) and (v) \Rightarrow Theorem 6 is satisfied for K_N , for N > 0.

(vii) From paragraph 20, $2[N^2/4] - {N \choose 2} = [N/2]$, for $N \ge 0$; also $b(K_N) = [N^2/4]$.

(viii) From (iii) and (vii) it follows that Theorem 7 is satisfied for K_N , for all N > 0.

(ix) By paragraph 18 it follows that

$$\left[2\left(\left[N^2/4\right] + \frac{1}{4}\right) - \left(\left[N^2/4\right] + \frac{1}{4}\right)^{\frac{1}{2}}\right] = \binom{N}{2},$$

for all N > 0: since $|X(K_N)| = \binom{N}{2}$, it follows that Theorem 8 is satisfied for K_N .

From the above it is easily seen that, for all $T^*(G_p)$, or $M(G_p)$, and all p sufficiently large, there exists a graph G_p , e.g. with unique component K_N where N is appropriately chosen, such that the inequalities in Theorems 5, 6 and 7 become equalities: in this sense the results of Theorems 5, 6 and 7 are best-possible. Further, we have seen that, if we choose G_p to have unique component K_N , then equality holds between the two sides in the result of Theorem 8, for all $N \leq p$.

22. Theorem 7 provides two lower bounds for $b(G_p)$, namely

$$\{\frac{1}{2}(|X(G_p)| + [\frac{1}{2}(M(G_p) + 1)])\}$$
 and $\{\frac{1}{2}(|X(G_p)| + T^*(G_p))\},\$

where $\{x\}$ denotes the smallest integer $\geq x$.

For any given graph G_p , the determination of $b(G_p)$ is not necessarily trivial: in this context it may be useful to have lower bounds for $b(G_p)$ such as those above. However, in general, $T^*(G_p)$ is not explicitly known even though (7.2), (7.3), Theorem 2, Theorem 3, imply that an algorithm of dynamic programming type can be established to find $T^*(G_p)$ for any particular G_p . Further, it may not be considered appropriate to bound the unknown value of $b(G_p)$ in terms of the solution $T^*(G_p)$ of a more or less complex individually applied algorithm. Evidently, any lower bound to $T^*(G_p)$ can be substituted for $T^*(G_p)$ in the above lower bound to give an alternative lower bound for $b(G_p)$. In the next theorem a lower bound for $T^*(G_p)$, often distinct from $[\frac{1}{2}(M(G_p) + 1)]$, is established: in the context of this paper this result has some intrinsic interest.

THEOREM 11. $T^*(G_p) \ge \{\frac{1}{4}((8|X(G_p)|+1)^{\frac{1}{2}}-1)\}, \text{ for all } G_p, \text{ and all } p.$

Proof. We define x and T by $x = |X(G_p)|$, $T = T^*(G_p)$. Then by Theorem 6 $0 \le x \le T(2T + 1)$, for all G_p , and all p. Thus, $0 < 2x + \frac{1}{4} \le (2T + \frac{1}{2})^2$. It follows that

(22.1)
$$(2T + \frac{1}{2} + (2x + \frac{1}{4})^{\frac{1}{2}})(2T + \frac{1}{2} - (2x + \frac{1}{4})^{\frac{1}{2}}) \ge 0.$$

If $2T + \frac{1}{2} < (2x + \frac{1}{4})^{\frac{1}{2}}$, then $(22.1) \Rightarrow 2T + \frac{1}{2} \leq -(2x + \frac{1}{4})^{\frac{1}{2}} \Rightarrow T \leq -\frac{1}{2}$, contrary to (7.3). Thus $2T + \frac{1}{2} \geq (2x + \frac{1}{4})^{\frac{1}{2}}$, from which it follows that $T \geq \{\frac{1}{4}((8x + 1)^{\frac{1}{2}} - 1)\}$, for all G_p , and all p. This completes the proof.

23. THEOREM 12. $b(G_p) \ge \{\frac{1}{2}(|X(G_p)| + \{\frac{1}{4}((8|X(G_p)| + 1)^{\frac{1}{2}} - 1)\})\}.$

Proof. This follows directly from Theorem 11, and the initial remarks in paragraph 22.

24. It is possible to derive another bound for $b(G_p)$ from Theorem 8: this bound is:

$$b(G_p) \ge \left\{ \frac{1}{2} \left(|X(G_p)| + \frac{1}{4} \left((8|X(G_p)| + 1)^{\frac{1}{2}} - 1 \right) \right) \right\}$$

for all G_p , and all p. It is evident that this bound is never superior to that given by Theorem 12, since

 $\{\frac{1}{4}((8|X(G_p)|+1)^{\frac{1}{2}}-1)\} \ge \frac{1}{4}((8|X(G_p)|+1)^{\frac{1}{2}}-1).$

It is now possible to formulate the last result of this paper: this gives a lower bound for $b(G_p)$ in terms of $|X(G_p)|$ and $M(G_p)$, both known or observable numbers for any given graph G_p :

THEOREM 13.

 $b(G_p) \ge \{\frac{1}{2}(|X(G_p)| + \max(\{\frac{1}{4}((8|X(G_p)| + 1)^{\frac{1}{2}} - 1)\}, [\frac{1}{2}(M(G_p) + 1)]))\}, for all G_p, and all p.$

Proof. This follows directly from Theorem 12 and, once again, the initial remarks of paragraph 22.

References

F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).
 P. Turan, Eine Extremalaufgabe aus der Graphentheorie, Mat. Lapok 48 (1941), 436–452.

University of Birmingham, Birmingham, England