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RELATIONS BETWEEN GENERALIZED GROWTH 
CONDITIONS AND SEVERAL CLASSES OF 

CONVEXOID OPERATORS 

TAKAYUKI FURUTA 

1. I n t r o d u c t i o n . In this paper we shall discuss some classes of bounded 
linear operators on a complex Hilbert space. If T is a bounded linear operator 
T acting on the complex Hilbert space H, then the following two inequalities 
always hold: 

(i.i) Ti^vcn)- | | ( r ~" r l | i forallM^cn, 

(1.2) I K r - ^ r 1 ! ! ^J^Wif)) for all M (Z WXT), 

where <r(T) indicates the spectrum of T, W(T) denotes the numerical range of 
T defined by W(T) = {(Tx, x) : | |x| | = 1 and x G H} and WJT) means the 
closure of W(T) respectively. 

As some generalizations of ordinary growth conditions, we shall define 
generalized growth conditions as follows: an operator T is said to satisfy the 
condition (Gi) for (If, N) (in symbols, T £ (Gi) for (M, N)) if 

(1.3) I K r - M ) - 1 ! ! ^J^M) f o r a l l / x g i V 

where M and N are two closed sets satisfying N Z) M D o{T). Similarly an 
operator T is said to satisfy the condiiton (w — Gi) for (M, N) (in symbols, 
Te (w - Gi) for (M, N)) if 

(1.4) w«T - M ) " 1 ) S J(-~M) f ° r a ! 1 i l ( l N 

where M and N are two closed sets satisfying N Z) M Z) (?(T) and w(T) de
notes the numerical radius of T defined by w(T) = sup {|\| : X £ W(T)). 
T G (Gi) for M [22] coincides with T G (Gi) for (Af, I f ) and similarly T £ 
(w — Gi) for M means T Ç (w — Gi) for (Jlf, ilf) respectively. 

An operator T is said to satisfy the condition (Gi) (in symbols, 71 G (Gi)) if 
T £ (Gi) for a ( r ) , t ha t is, 7" Ç (Gj) if 71 satisfies the equali ty in (1.1). 
An operator T is said to be convexoid [11] if W(T) = co <r(T) where co M 
means the convex hull of a set M in the complex plane. I t is well known [17] 
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tha t T is convexoid if and only if T £ (Gi) for co a(T). Moreover, an operator 

T is said to be spectraloid (resp. normnloid) if w(T) — r(T) (resp. | | r | | = 

r(T)) [11], where r(T) denotes the spectral radius of T. 

Luecke [15] introduced a new class of operators such tha t T Ç R if 

(1.5) I K r - M ) " 1 ! ! = ÏQ^JY) for all M € W ) . 

Namely, T £ R \i T satisfies the equali ty in (1.2). Moreover he showed the 
following characterization of this class: 

T H E O R E M A [15]. T £ R if and only if dW(T) C &(T) where dM is the 
boundary of M. 

Luecke's class R consists of the multiples of the identi ty even in the finite 
dimensional Hilbert space and this class does not contain general normal 
operators. 

Fujii [4, II] has defined the hen-spectrum <r(T) of an operator T in order to 
construct a new class of operators which includes both (Gi) and R; t ha t is, 
hen-spectrum <T(T) is defined by â(T) = [[<r(T)c]œ]c where Mc is the comple
ment of M and [M]œ the unbounded component of M and â(T) is a compact 
set containing a(T) in the complex plane. Using this notion of â(T), Fujii 
[4, II] has introduced a new class of operators (Gi) for âf(T) (in symbols, (Hi)) 
which properly contains both (Gi) and R, tha t is, T Ç (Hi) if 

(1.6) IKr-M)"1!! ûj, \,T,< f ora iu^(r ) . 
a(/x, <r(l )) 

Moreover, he has given another interesting characterization of operators be
longing to R as follows: 

T H E O R E M B [4, I I ] . T £ R if and only if W(T) = â(T). 

On the other hand C. R. Pu tnam considered conditions on an operator T 
implying 

(*) R e c r ( r ) - cr(Re T). 

The equation (*) holds for normal and also seminormal operators [19]. More
over, (*) has considerable significance for non-normal operators; namely, 
(*) plays a role in the proof of C. R. Pu tnam [19; 20] which states t ha t a 
seminormal operator whose spectrum has zero area is normal. S. K. Berberian 
has not only given a simple proof of Pu tnam ' s result, but he has also proved 
the following theorems. 

T H E O R E M C [3]. / / T satisfies the growth condition (d) and a(T) is connected, 
then (*) holds. 

T H E O R E M D[3]. If T is an operator such that a(T) is a spectral set for T, then 
(*) holds. 
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Related to Theorem C, Patel [18] has established t ha t the equat ion (*) also 
holds for operators in the class R, defined by Luecke wi thout any restriction 
on the spectrum, as follows: 

T H E O R E M E [18]. If T e R, then (*) holds. 

In this paper we shall give slightly different characterizat ions of convexoid 
operators (Proposition 2.1 in Section 2) . As an application of this result we 
shall introduce a class 5 of convexoid operators (G\) for (<J(T), W(T)) which 
includes (Hi) in connection with generalized growth conditions and we shall 
construct non-trivial examples belonging to S in Section 3. Moreover, we shall 
show the slightly different characterizat ions of operators belonging to the class 
R in Section 4. 

In Section 5, as an extension of an already known unified formulation, we 
shall give a construction of operators satisfying generalized growth conditions. 

In Section 6 we shall introduce a more narrow class P which is properly 
contained in both classes (G\) and R. We shall show a method to construct 
operators belonging to P and we shall discuss relations among (Gi), R, the 
class C of the set of all convexoid operators and the class P. Moreover,we shall 
discuss some related results. 

In Section 7 we shall give some extensions of Theorem C and Theorem E, 
and as an application of this result, we shall show some extensions of Theorem 
D. And we shall give a method of construction of operators satisfying (*) and 
some counter examples. 

In Section 8 we shall show another characterizat ion of operators in R which 
is considered as both a converse of Theorem E and a precise est imation of a 
result of [4, I I , Theorem 12], and we shall show a parallel result to this charac
terization and some related results. 

Finally, in Section 9 we shall make some comments to Lin 's results [14] 
related to generalized convexoid operators. 

2. C h a r a c t e r i z a t i o n s of convexoid operators . Firs t we show the following 
theorem. 

T H E O R E M 2.1. / / T € (w - Gi) for (M, N), then W(T) C co M. 

For the sake of convenience, we s ta te the following obvious lemma in con
nection with subsequent discussion. 

LEMMA 2.1. If X is any bounded closed set in the complex plane, then 
(i) co X = {the intersection of all the closed half planes which contain the 

setX] 

= n\x:Re\eie è inf Re sei6\ 
e v s^x J 
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(ii) c o l = {the intersection of all the circles which contain the set X) 

= H ) X: |X — M| ^ sup \x — M 

(iii) co X = {//z<? intersection of all the circles with sufficiently large radii which 
contain the set X) 

O ) X: |X — M| = SUP F "" Ml /^ r ^7/ M whose absolute values are 

sufficiently large /. 

Proof of Theorem 2.1. By the hypothesis, we have 

d(n,M)\(x, (T-»)x)\ £ | | ( r - M ) x | | 2 

for all M € N D M and ||*|| = 1, so that 

inf ( | s | 2 - 2 R e s M + |M|2)I(*, (T - M W | M | ) T 
s€Af 

^ | | ( r - M W | M l l l 2 ( l ! r x | | 2 - 2 R e ( r x , . x ) / i + |M|2). 
Taking /* = — |^|e - '* and dividing by \n\ and transfering \n\ to oo, we obtain 

Re (Tx,x)eie è inf Re seie for | |x|| = 1. 

This implies W(7^) C co M by (i) of Lemma 2.1 which is the desired relation 
and so the proof is complete. 

Here we shall sum up several characterizations of convexoid operators for 
the convenience of subsequent discussion. 

PROPOSITION 2.1. Any one of the following conditions is necessary and suffi
cient in order that T is convexoid: 

(i) T — M is spectraloid for all complex JJL; 
(ii) T — M is spectraloid for all complex M whose absolute values are sufficiently 

large; 

(iii) \\{T - M) _ 1 | | è d, CO(rrT\\ for all ix g cocr(r), 

(iv) | | ( r — M)~ 11 — T7 /^w" f°r utt complex M whose absolute values are 
" " ~ ^ ( M , co cr(7 ) ) J 

sufficiently large, 

(v) w((T - M)_ 1) ^ ,/ ^ / r y r for all M 2 coff(r), 

(vi) w((T — M)~ ) ^ ~r? T^TT f^ «^ complex \x whose absolute values are 
d{fjL, co a(l )) 

sufficiently large. 
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Other characterizat ions of convexoid operators were given in [5] and [8]. 

Proof of Proposition 2 .1. (i) was shown in [10] and thereafter (i) was alter
natively obtained in [8] by using (ii) of Lemma 2.1. (iii) was obtained in [17] 
and (v) was shown in [14], so t ha t we have only to show the sufficiency of (ii), 
(iv) and (vi). Tak ing X = W(T) and cr(T) in (iii) of Lemma 2.1 respectively, 
we have the following formulas, since W(T) is convex [11]: 

(2.1) W(T) = H {X: |X — JU| ^ w(T — /x) for all complex M whose absolute 

values are sufficiently large}, 

(2.2) co <T(T) = Pi {X: [X — /x| S r(T — /*) for all complex ii whose absolute 

values are sufficiently large} 

Hence the sufficiency of (ii) follows from (2.1) and (2.2). Take M = co a(T) 
and N the set of all complex numbers whose absolute values are sufficiently 
large in Theorem 2.1, so t ha t W(T) C co a(T). Hence the sufficiency of (vi) 
follows from the fact the opposite inclusion relation automatical ly holds [11]. 
T h e sufficiency of (iv) follows from tha t of (vi) since | | r | | ^ w(T) is always 
valid. This completes the proof. 

By (2.1) we have the following corollary. 

COROLLARY 2.1. 0 £ W(T) if and only if |/x| ^ w(T — /x) for all complex n 
whose absolute values are sufficiently large. 

T h e result t ha t 0 £ W(T) if and only if |/i| ^ w(T — fj.) for all complex /x 
was shown in [8] and [10]. 

3 . C o n s t r u c t i o n of a c lass 5 . In this section we shall introduce a new 
class 5 of convexoid operators which properly includes the class (Hi) con
taining both (Gi) and R in connection with generalized growth conditions as 
an application of characterizat ions of convexoid operators (Proposition 2.1). 
We shall also construct non-trivial examples belonging to S and discuss some 
related results. 

Definition 3.1. An operator T is said to belong to 5 if T satisfies the condition 
(Gi) for (a(T), W(T)), t ha t is, T satisfies the following equali ty: 

Hence we remark tha t T G S if and only if (T — /x) - 1 is normaloid for all 
jLt (}_ W(T). Firs t we shall show the following theorem. 

T H E O R E M 3.1. If T belongs to (Hi), then T also belongs to S. 
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Proof. For all /z (? â(T), we have d(ju, ( r ( r ) ) = d(/x, a(T)) since ^ ^ ( r ) = 

(?(r) r\ [â(T)c] C er(r) , so tha t T € (77i) if and only if T € ( d ) for (a(T), 

â(T)); namely, (7" — /x)_1 is normaloid for all /x g ( î ( r ) . Consequently, if 

r g (HQ, then r G ( & ) for (<r(r), W^T)) since a(T) C (F(r) C co a(T) C 

W ( r ) always holds [4, II] ; tha t is, T Ç 5, so the proof is complete. 

As we stated in the proof of Theorem 3.1, T £ (Hi) if and only if T £ (Gi) 
for (v(T), â(T)). We remark tha t 71 G (iJi) and a(T)c (the complement of 
a(T)) is a connected set if and only if T £ (Gi) for o-(r). Next we show a con
struction of operators belonging to S. 

T H E O R E M 3.2. If A is an operator and B satisfies (Gi) for (a(B), W(B)) 
such that 

(3.1) d(/i, <r(5)) g d(/x, W(A)) for all M (? WfB), 

then T = A © B also satisfies (d) for (a(T), W(T)). 

Proof. By the hypothesis we have the inequality d(/z, W(B)) ^ d(n, <r(B)) ^ 
d(n, W(A)) for all /x g F ( g ) , so tha t ÎT(Z) Ç t ^ ( F ) and Î Î ^ T ) = 
co \W(A) \J W(B)} = W(B). Hence for all M g JT(T), 

I K r - ^ r 1 ! ! = max{||(4 -M)-1!! , I I ^ - M ) - 1 ! ! ! 

i i l l 
^ max — < 

1 

dfa, W(A)) ' dfa, a(B))) d(ji, a(B)) = d(ji, a(T)) 

since a(T) = a(A) U a(B), so tha t 7 6 (Gi) for (a(T), W(T)); namely, 

Example 3.1. We shall construct a non-trivial example T such tha t T £ S 
but T # (Hi) by using Theorem 3.2. Pu t A as follows: 

(3.2) A = 

Then we have a(A) = { -3} and JT(yl) = {X: |X + 3| g 1}. Moreover let £ 
be the normal operator with the following spectrum 

*(B) (X: |X| = 4, Re X ^ 0} U {X: |X| = 2, Re X ^ 0}, 

and pu t T = A ® B. Then we have W(B) = {X: |X| g 4, Re X ^ 0}. I t is 
easily verified tha t d(/x, a(B)) S d(ix, W(A)) for all M £ 1T(£), so tha t T = 
A ® B belongs to S by Theorem 3.2. Next we shall show tha t this operator T 
does not belong to (Hi). We put /x0 = —3 + | i; then /x0 G ^(7') = { — 3) W 
cr(B). By a simple calculation wTe have 

1104 — MO)-X | ! = 
2i 8 

L 0 2i. 
> 2. 
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If T £ (Hi), then we have the following contradict ion: 

2<||(^-,„)-1 | |g||(r-,0r1 | |=^3^ )T=2. 

This implies T $_ (Hi). 

T H E O R E M 3.3. The class S properly contains the class (Hi). 

Proof. The proof follows from Theorem 3.1 and Example 3.1. 

Example 3.2. The spectrum <r(B) in Example 3.1 is disconnected. Bu t even 
if a(B) is connected, there exists an example T = A © B which does not 
always belong to (Hi) as follows: let A be the same in (3.2) and B be the 
normal operator with the connected spectrum 

a(B) - {X: X = teie, 3 ^ / g 4, 0 g S g |TT}. 

I t is easily verified tha t A 0 B £ S, bu t A © B (? (Hi) by the method ana

logous to Example 3.1, so tha t we shall omit its calculation. 

As an application of Proposition 2.1 we shall prove the following theorem. 

T H E O R E M 3.4. If T belongs to S} then T is convexoid. 

Proof. If T Ç S, tha t is, T G (d) for (a(T), W(T)), then T £ (Gi) for 
(co a(T), N) where N is an arbi t rary closed set containing W(T), hence T is 
convexoid by (iv) of Proposition 2.1, so the proof is complete. 

Remark 3.1. By Theorem 3.4 we remark tha t T satisfies (Gi) for (cr(T), 
co a(T)) if and only if T belongs to 5 . 

Here we shall show a construction of convexoid operators for the sake of 
convenience. 

T H E O R E M F [4, I ] . If A is an operator and B is convexoid operator such that 
W(B) D W(A), then T = A © B is also convexoid. 

The following example shows t ha t the class S is properly contained in the 
class C, the set of all convexoid operators. 

Example 3.3. P u t A as follows: 

To 2 

(3.3) A - [I 0_ 
Then a (A) = {0} and W(A) = D where D is the unit disk in the complex 
plane. Moreover let 73 = diag { V 2 , - V % V2i, - V2i} and put T = A © B. 
Then we have W(B) Z) W(A), so tha t T = A © B is convexoid by Theorem 
F and W(T) consists of the interior and the boundary of the square whose 
vertices are \/2, — \/2, \/2i and — \/2i respectively. Then we shall show 
tha t this convexoid operator T does not belong to S as follows. Next we put 
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ju0 = 1 + i. Then for ju0 (f_ W(T), we have 

•1 - 2 

1(^4 — Mo)"1! I + * (i + »r 
- i 

o 1 +i 

^Virhf + wh?) > i . 

If T € 5 , then 

i < I I U - M O ) - 1 ! ! ^ IKr-Mor1!! = 

and this contradiction implies T d S. 

1 

d(/*o, <KD) 
< 1, 

A closed set X in the complex plane is said to be a spectral set for an operator 
r if a(T) C X and 

i i / ( n n ^ ii/iu = sup|/ooi 
w h e r e / is a rational function with poles off X [13]. 

Definition 3.2 [4, I-I I] . An operator T is said to be numeroid if W(7") is a 
spectral set for 7\ 

The remainder of this section is devoted to discussing the relation among 5 , 
the class of normaloids and the class of numeroids. I t is known tha t if T is a 
numeroid, then T — /x is normaloid for all complex n; hence a numeroid 
operator is normaloid. 

Example 3.4. We shall construct a numeroid operator T which does not 

belong to 5 as follows. P u t A = 
0 0 

; then D is the spectral set for A and 

W(A) = \ D which consists of the closed disk with center 0 and radius \. 
Let B be diag {2, - 1 + 2i, - 1 - 2i\ and put T = A 0 B. Then D W 
W(A) C WCB), so tha t r = i 0 5 i s a numeroid by [4, I I I , Remark] . Next 
we have a(T) = a (A) U a(B) = {0, 2, - 1 + 2i, - 1 - 2i} and W ( J T ) con
sists of the interior and the boundary of the triangle whose vertices are 2, 
— 1 + 2i and — 1 — 2i respectively. Next we put MO = —2, then for /xo (? 
T^( r ) we have \\(A - MO)"1!! > i If r G 5, then 

1 
i< i iM- / . . ) - i i i^ i ia -M. ) - i n- i U f f ( r ) ) 

l 
2* 

This contradiction implies T d S. 

PROPOSITION 3.1. There exists a numeroid which does not belong to S and 
vice versa. 
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Proof. By Example 3.4 there exists a numeroid which does not belong to S. 
Conversely there exists an operator in (G\) which is not a normaloid [16, 
Theorem 1.3], so tha t (Gi) C (Hi) C 5 by Theorem 3.3 and this implies the 
desired assertion since non-normaloid is certainly non-numeroid, so the proof 
is complete. 

By Proposition 3.1 we remark tha t there exists a normaloid which does not 
belong to S and vice versa. 

4. E q u i v a l e n t r e p r e s e n t a t i o n s of t h e c l a s s R. As another application of 
Proposition 2.1 we shall give the equivalent representat ions of "character
izations in formula" which exactly indicate tha t R forms the subclass of the 
class C, the set of all convexoid operators. 

PROPOSITION 4.1. The following six conditions are mutually equivalent: 

0) I K ^ - M ) - 1 ! ! 

(ii) Iicr-M)"1!! 

(iii) i K r - ^ r 1 ! ! 

(iv) w«T - M)"1) 

(v) war - M)-1) 

(VI) w«r - M ) - 1 ) 

Proof. If T satisfies (ii) or (iii), then T is convexoid by Proposition 2.1, thus 
(ii) or (iii) implies (i). Conversely if 7' satisfies (i), then T is convexoid by 
Theorem A or Theorem B, namely, (i) implies (ii) and (iii) too. If T satisfies 
(iv), then T also satisfies (i) since the following inequality holds for any 
operator T: 

w((T- M)"1) g I K r - M ) " 1 ! ! g ^ — ^ ^ y for all M <Z W(T). 

Conversely, if 7̂  satisfies (i), then T belongs to (Hx) by [4, I I ] . Moreover, 
T also belongs to 5 by Theorem 3.1, namely, (T — /x)_1 is normaloid for all 
M ? W(T), thus (i) implies (iv). The proof of the equivalence relation among 
(iv), (v) and (vi) is similar to one among (i), (ii) and (iii), so tha t we shall 
omit its proof. 

T(Jv(T)) forall^W(T), 

1 
d(id, co <r(T)) 

J. 
d(n, co <T(T)) 

1 
:
 <*(M, W(T)) 

1 
d(/j., co a(T)) 

J_ 
d(fJL, CO cr(T)) 

for all n (l: W(T), 

for all fx d co a(T), 

for all M d W(T), 

for all M & W(T), 

for all id 0: co (T(T). 
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Remark 4 .1 . Luecke characterized the operators in R in terms of the boundary 
of the numerical range and the spectrum of the operator (Theorem A) and 
Fujii also characterized the operators in R in terms of the numerical range and 
the hen-spectrum of the operator (Theorem B) . Namely, related to the numeri
cal range and the spectrum, both theorems also indicate the geometrical sig
nifications which imply tha t the operators in R are convexoid. On the other 
hand, it is somewhat interesting to note Proposition 4.1 indicates tha t the 
class R is the subclass of the class C, the set of all convexoid operators; tha t is, 
if T Ç R, then T satisfies exactly the "equal i ty" in the inequality named by the 
growth condition (Gi) for co <r(T) (or equivalently, (Gi) for (co <r(T), W(T)) 
which is valid for general convexoid operators by Proposition 2.1. Conse
quent ly we come to the conclusion tha t both theorems of Theorem A and 
Theorem B can be considered as "geometrical characterizat ions". On the other 
hand, Proposition 4.1 can be considered as uCharacterizations in formula" in 
connection with Proposition 2.1. 

5. C o n s t r u c t i o n of operators sat i s fy ing general ized g r o w t h cond i 
t i o n s . Fujii [4, II] has given the following two theorems as unified formulations 
of already known results. 

T H E O R E M G. If A is an operator, X a closed sel in the plane with W{A) C X 
and B a normal operator with a(B) C X, then T = A © B satisfies (Gi) for X. 

T H E O R E M H. If A does not satisfy (Gi) for X which is a closed set with a (A) C 
X C W(A) and X ^ W(A), then T = A ® B does not satisfy (G}) for X 
whenever B is a normal operator with a(B) C X. 

As an extension of both the above theorems and Theorem 3.2, we shall give 
a method to construct operators satisfying generalized growth conditions as 
follows. 

T H E O R E M 5.1. If A is an operator, X and Y both closed sets in the complex 
plane and B satisfies (Gi) for (a(B), Y) such that for all ju (? Y D X, d(n, X) rg 
min [d{ix, W{A)), d(n, <r(B))\, then T = A ® B satisfies (d) for (X, Y) in the 
generalized growth condition. 

Proof. By the hypothesis, for all ju (? Y Z) X, we have 

| | ( r - ^r1!! = max {||04 - M)-1!!, \\{B - M)-1!!} 

- U ( M , W(A)) }d(^,a(B))) = d{n,X) ' 
so the proof is complete. 

In Theorem 5.1, for all M ? Y Z) X, d(n, X) ^ d(n, W(A)) is essential; we 
can not replace this condition by d(ix, X) fg d(\x, a (A)) for all /JL (f_ Y 3 X 
as follows. 
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PROPOSITION 5.1. If X and Y are both closed sets in the complex plane and A 
does not satisfy (G\) for (X, Y) such that for all n (t Y Z) X, d(/z, X) ^ d(/x, 
a (A)) and there exists a X (? Y such that d(\, X) > d(\, W(A)), then T = 
A ® B does not satisfy (Gi) for (X, Y) whenever B satisfies (Gi) for (a(B), Y) 
such that the following property holds: d(n, X) ^ d(\x, v(B)) for all y, d Y Z) X. 

Proof. The proof is similar to that of Theorem H. By the hypothesis we 
have a MO ^ Y D X such that 

- i , , . 1 \{A - M o r i i > d(na,X) ' 
Then 

IKr-Mo)-1!! = max {||(4 -MO)-1||, IK^-zio)-1!!} 

= m a x { | | ( 4 - M . r 1 | | , j ^ ( 5 ) ) ^ d 0 i 0 | J f ) 

This is the desired relation. 

put A = and moreover let B be the unilateral shift operator and put 

Example 5.1. Related to Proposition 5.1 we shall give an example as follows: 
"0 4" 
.0 0_ 

T = A © B. Then we have <J(B) = D where D is the unit disk and cr(T) = 
a (A) U a(B) = {0} U D = a(B) and WfT) = co {Wfl) U W(B)} = 
W(A) = 2D. Clearly A does not satisfy (GO for (a(T), W(T)) and for all 
H g W(T), we have d(Mf ITW)) < d(jiMB)) < d(n, a(A)). Then r = 4 © 
i$ does not satisfy (Gi) for (<T(T), W(T)) by Proposition 5.1. In fact this 
example is not convexoid, so that this cannot belong to S. 

6. Relations among C, (Gi), R and a class P . In Section 3 we have 
introduced a class 5 containing the class (Hi) which contains both (Gi) and 
R related to generalized growth conditions. In this section we shall introduce 
a new narrow class P which is properly contained in the both classes (Gi) and 
R, we shall show a method to construct operators belonging to this class P and 
we shall discuss relations among C, (Gi), R and this narrow class P. 

Definition 6.1. An operator T is said to belong to P if T satisfies W(T) = 

An example of an operator belonging to P is the unilateral shift operator. 
Here we shall give a method to construct an operator belonging to a new class P. 

THEOREM 6.1. If A is an operator and B belongs to P such that <J(B) 3 
W(A), then T = A © B also belongs to P. 

Proof. By the hypothesis W(B) = a(B) D W(A) D a (A) and W(T) = 
co \W(A) \J W(B)} = W(B) = a(B) = a(T). This is the desired relation 
since a(T) = a (A) ^ *(£) = *(#) . 
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By replacing a(B) by â(B) and P by R in Theorem 6.1, we have the following 
parallel result to Theorem 6.1 which is implicitly contained in the proof of 
[4, I I , Theorem 4]. 

T H E O R E M 6.2. If A is an operator and B belongs to R such that â(B) D W(A), 
then T = A © B also belongs to R. 

The typical examples in R are both the unilateral shift and bilateral shift 
operators. 

Remark 6.1. In [15] the following proposition is cited: If A is an operator on 
H, then A®N£RonH®K whenever N is a normal operator on K with 
<r(N) 3 dW(A). But it seems to us tha t this s ta tement is insufficient, t ha t is, 

there exists a counter example as follows: pu t A = 1, N = \ \ and define 

T = A © N. Then N is normal and a(N) = {1, 2} D dW(A) = {1}. But 
this normal operator T cannot belong to R since dW{T) (J_ a(T), t ha t is, 
W(T) 9^ <r(T) by Theorem A or Theorem B. 

Next we shall show tha t this narrow class P is properly contained in both 
the classes (Gi) and R. 

T H E O R E M 6.3. P C (Gi) P\ R and this inclusion relation is proper. 

Proof. Since the inequality (1.2) in Section 1 holds for any operator T, 
if T e P, namely, W{T) = *(T), then T G (GQ for a(T) by (1.1). 

On the other hand if T £ P, then W(T) = â(T) since a(T) C â(T) C 
co <T(T) C W{T) holds for any operator T, so tha t T £ R by Theorem B. 
Consequently P C (Gi) C\ R. The strict inclusion relation follows from the 
fact tha t the bilateral shift operator T belongs to both (Gi) and R bu t this 
operator cannot belong to P since W(T) = D and <r(T) is the unit circle. 
This completes the proof. 

In the proof of Theorem 1.2 in [16], Luecke shows a method to construct 
an operator T belonging to (Gi); t ha t is, if A is an operator and B a normal 
operator such tha t a(B) = W(A), then T = A © B belongs to (Gi), bu t this 
operator T exactly belongs to P which is properly included in (Gi) by Theorem 
6.1. Moreover Luecke shows a common concrete example which belongs to 
both (Gi) and R in the proofs of Theorem 1.3 in [16] and Theorem 4 in [15], 
bu t this common example also turns out to belong to P so tha t we have the 
following proposition along the lines of his results. 

PROPOSITION 6.1. There exists an invertible operator belonging to P such that 
(i) T2 g (Gi) and T2 g R, (ii) r(T) < \\T\\ (non-normaloid), (iii) T~l d (Gi) 
and T~l $ R. 

Definition 6.2 [4, I I ] . The class Q is the set of all operators T such tha t 
<r(T) = co (x(T), t ha t is, T Ç Q if dâ(T) is a convex curve. 
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Fujii [4, II] showed tha t R = C C\ Q where C is the set of all convexoids. 
Related to his result we shall introduce the following two new classes associated 
with the class P. 

Definition 6.3. The classes U and V are the sets of all operators satisfying 
a(T) = co a(T) and â(T) = a(T), respectively. 

We shall show a characterization of operators belonging to P related to 
other known classes. 

T H E O R E M 6.4. P = V C\ R = C C\ U = V r\QC\C, where C is the set of 
all convexoid operators. 

Proof. If T G P , then we have T G V and T G R since a(T) C â(T) C 
co a(T) C W(T) holds for any operator T and Theorem B, hence P C V C\ R. 
Conversely, if T G V C\ R, then a(T) = â(T) = W{T) so t ha t VC\RCP. 
Similarly we have P = C C\ U = F H Q H C, so the proof is complete. 

As an extension of Corollary 2 in [14], we have the following result which 
indicates the relation among the classes C, S, (Hi), (Gi) R and P . 

T H E O R E M 6.5. / / T has a convex spectrum, i.e. a(T) = co a(T), then the 
following statements are mutually equivalent: (i) T is convexoid, (ii) T belongs to 
P , (iii) T belongs to R, (iv) T belongs to (Hi), (v) T belongs to S, (vi) (7" — ju) - 1 

is spectraloid for all JU (? W(T), (vii) ( P — /x)_1 ̂  spectraloid for all /i (? à(T). 

Proof. T h e proof follows from Proposition 2.1 and Theorem 6.3. 

Definition 6.4 [4, I -I I] . An operator P is said to be hen-spectroid (resp. 
spectroid) if <r(T) (resp. a(T)) is a spectral set for T. 

T H E O R E M I [4, HI]. T £ R is a hen-spectroid if and only if there is a strong 
normal dilation N of T with W(N) = â(T). 

As a parallel result to Theorem I, we assume a stronger hypothesis and give 
a stronger conclusion as follows. 

PROPOSITION 6.2. T £ P is a spectroid if and only if there is a strong normal 
dilation NofT with WW) = a(T). 

T h e proof of Proposition 6.2 is similar to t ha t of Theorem I which is based 
on Schreiber 's result [24] and we shall omit it. 

7. S o m e e x t e n s i o n s of t h e o r e m s of Berber ian a n d Pate l for operators 
i m p l y i n g Re a(T) = a (Re T). At first wre remark t ha t the class (Hi) properly 
contains both (Gi) and R, and if T G R, then Re a(T) (this equals Re W(T)) 
is a closed interval because P G 7£ if and only if dW(T) C a(T) by Theorem A 
( tha t is, W(T) = â(T) by Theorem B) and W(T) is the convex set containing 
<T(T) [11], so t ha t the following Theorem 7.1 covers Theorem C and Theorem E. 
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T H E O R E M 7.1. / / T satisfies (Hi) and Re a(T) is a closed interval, then (*) 

holds. 

We shall show the following Lemma 7.1 and Lemma 7.2 along Berberian's 

idea [3] to prove Theorem 7.1. 

LEMMA 7.1. / / T satisfies (Hi) and X is a semibare point of hen-spectrum 
â(T), then 

(i) A\(T) = A\*(T*)] X is a normal approximate point spectrum 
(ii) N\(T) = N\*(T*); X is a normal point spectrum, where 

AX(T) = {{xn}; \\xn\\ = 1; \\Txn - \xn\\ -> 0 as n -> oo } 

and N\(T) denotes the kernel of T — X. 

Proof. If T satisfies (Hi), then T — X also satisfies (Hi) since â(T + XI) = 
â(T) + X holds for every complex X, so tha t we can assume X = 0. As X = 0 
is a semibare point of â(T), we can choose a non-zero complex number X0 (? 
â(T) such tha t {X: |X — X0| ^ |X0|} meets <r(T) only a t 0. As seen in the proof 
of Theorem 3.1, d(\0, â(T)) = d(X{), a(T)) = |X0| holds since dâ(T) = â(T) C\ 
[â(T)c] Cc(T) and T satisfies (d) for (a(T), â(T)). We have the following 
equali ty: 

(7.1) iKr-A»)-1! 

Suppose tha t {xn} is a sequence of unit vectors such tha t Txn —> 0. Then 

TXol 

(T — Xo) lxn + — xr 
Ao 

^ l l (r-xo)" xn + (T — Xo) — x ; 
Ao 

= l l (r-xo)-
Xo 

l x» •o, 

so tha t (T — X0)-1x^ + (1/X0)xn —> 0. This convergence implies (T* — X0*)_1xn 

+ (1/X0*)xre —•> 0 by Schreiber's result [23] since (7.1) holds. Whence T*xn —> 0 
by an easy calculation and when we replace T by 7'* and X by X*, the above 
argument is reversible, so we have (i). If we replace xn by a vector x in the 
proof of (i), then we have (ii) so the proof is complete. 

Remark. 7.1. Lemma 7.1 is derived from [22] which is shown by an applica
tion of the contraction and uni tary dilation theorem of Sz.-Nagy [26]. Here 
we have given a simple proof along the idea due to Berberian [3]. 

LEMMA 7.2. / / T satisfies (Hi), then Re a(T) C <x(Re T) holds. 

Proof. Le tao G Re a(T). Then there exists X0 £ dâ(T) such t ha t Re X0 = ao 
and Xo is an approximate point spectrum of T by the definition of hen-spectrum 
â(T). Let Dn = {X: |X — X0| ^ 1/w} for n = 1, 2, . . . . Then Dn contains a 
point iin ([_. â(T) such tha t \idn — X0| < l/2n. If \n d â(T) with d(nni <r(T)) = 
d([xn, a(T)) = |/xw — \n\, then X„ G dâ(T) lies on the circumference of a closed 
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disc centered a t /xn whose interior contains no point of &(T), whence \n is a 
semibare point of â(T). Since T satisfies (Hi), it follows t ha t \n is a normal 
approximate point spectrum of T by Lemma 7 .1 ; t h a t is, there exists a se
quence of uni t vectors {xn} such t ha t Txn — \nxn —> 0 and T*xn — X„*xn —> 
0 as n —» oo. Then we have Txn — X0x„. —> 0 as n —> oo because 

| |7x„ - AoXn|| g | |7xw - \nxn\\ + ||(Xn - X0)tfw|| - » 0 

as n —> co . Similarly T*xn — X0*xw —•» 0 as w —» oo , so t ha t 

11 (Re 7" - ReX0)xw | | ^ | | |7a ; n - X0xn|| + h\\T*xn - \o*xn\\ —> 0 

as n —* oo , whence Re X0 £ c (Re 7") and this is the desired relation. 

Remark 7.2. I t is shown in [1] t ha t by changing Hilbert space, we can sup
pose tha t the approximate point spectrum coincides with the point spectrum 
of an operator. By applying this technique and [2, Lemma 2], S. K. Berberian 
has shown Lemma 7.2 in the case t ha t T satisfies (G\) for <r(T) [3]. Hence we 
have given a simple proof of Lemma 7.2 which is based on (i) of Lemma 7.1, 
wi thout using the changing Hilber t space technique. 

LEMMA 7.3. If T is convexoid, then: 
(i) if Re <r(T) C o-(Re T) and Re <r(T) is connected, then (*) holds; 

(ii) if a (Re 7") C Re <r(T) and a (Re T) is connected, then (*) holds; and 
(iii) if both Re <r(T) and a (Re T) are connected, then (*) holds [3; 8]. 

Proof. I t is known tha t T is convexoid if and only if 

(2-0) Re 2(eieT) = S (Re ei9T) for all 0 g S S 2TT 

where 2(7") denotes co a(T), and ( 2 — 6) is equivalent to co Re a(eieT) = 
co a (Re eieT) for all 0 ^ 0 :g 27r [8]. If T is convexoid, then we have the follow
ing proper ty by ( 2 — 6) 

(7.2) c o R e o - ( r ) = co(r (Re T). 

On the other hand, by hypothesis of (i) we have 

(7.3) co Re a(T) = Re a(T) C ^ (Re T) C co a (Re T) 

hence we have (*) by (7.2) and (7.3). Similarly we have (ii). By (7.2) and 
hypothesis of (iii), we have (iii). 

Remark 7.3. As an immediate consequence of ( 2 — 6) in [8], we have given 
(iii) of Lemma 7.3 in order to give an elementary and direct proof of Berberian 's 
Lemma which implies t ha t if T is a Toepli tz operator, then (*) holds. We shall 
use only (i) of Lemma 7.3 in order to prove Theorem 7.1, bu t here we s ta te (ii) 
and (iii) for the sake of convenience and some related results. 

Proof of Theorem 7.1. If T satisfies (Hi), then Re <J(T) C cr(Re T) holds by 
Lemma 7.2 and T is convexoid [4, I I ] , so t ha t we have (*) by hypothesis and 
(i) of Lemma 7.3. This completes the proof. 
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I t is known tha t the class of spectroid operators is properly contained in the 
class of hen-spectroids and the latter is properly contained in the class of 
numeroids [,4 I-111]. T h u s the following Theorem 7.2 covers Theorem B. 

T H E O R E M 7.2. If Tis hen-spectroid, then (*) holds. 

Proof. If T is hen-spectroid, then T satisfies (Hi) [4, I I I , Proposition 3] and 
T turns out to be convexoid [4, I I ] . As in the proof of Lemma 4 in [3] (when 
we replace a(T) by â(T), as easily seen, the corresponding orthogonal decom
position of Williams [27, Theorem 4] also holds), we have a-(Re T) C Re a(T) 
and the reverse inequality is already obtained by Lemma 7.2, whence (*)holds 
and the proof is complete. 

The remainder of this section is devoted to showing a construction of 
operators satisfying (*) and to discuss some related results. In [3] there is 
given an example which shows tha t a convexoid operator need not satisfy (*) 
and related to this result there is also given a non-convexoid operator satisfying 
(*) in [8]. I t is already known in Section 3 tha t the class S is properly contained 
in the class C, the set of all convexoid operators, and this class S properly 
contains the class (Hi). 

Example 7.1. We shall give an example belonging to 5 which does not satisfy 

(*) as follows. P u t 4 = o Q Î then a (A) = {0} and W\T) = D the closed 

unit disk. Let B be the normal operator with the spectrum 

a(B) = {Aeie: - T T / 3 ^ 6 S TT/3 and 2TT/3 g S = 4TT/3}, 

and pu t T = A © B. I t is easily verified tha t d(n, a(B)) ^ d(^, W(A)) for 
all pt (? W(B). Then T belongs to 5 by Theorem 3.2. Next we have 

a(Re T) = a (Re A) U a(Re B) - { - 1 , 1} \J Re a(B) 

= ( - U ) U K -2 ] W[2,4], 

where [a, b] means the closed interval {x: a ^ x ^ b}. On the other hand 
Re a(T) = {0} U Re a(B) = {0} U [ - 4 , - 2 ] U [2, 4] ; tha t is, T does not 
satisfy (*). Hence we can verify tha t the class 5 does not contain the class of 
operators satisfying (*) and vice versa. Incidentally, it also turns out t ha t this 
operator T in Example 7.1 is numeroid since 2D \J W(A) C W(B) by [4, III, 
Remark] so tha t this implies tha t Theorem 7.2 cannot be generalized for 
numeroid operator. We find tha t Example 3.4 in Section 3 is another counter 
example for numeroid in Theorem 7.2. 

PROPOSITION 7.1 (Construct ion) . If A is an operator and B satisfies (*) 
such that 

(7.4) Re W(A) C Re a(B), 

then T = A © B also satisfies (*). 
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As stated in Section 1, the typical examples satisfying (*) are normal and 
seminormal operators. 

Proof of Proposition 7.1. Since the closure of a numerical range contains its 
spectrum of an operator and hypothesis (7.4) holds, we have 

(7.5) Re a (A) C Re WfA) C Re <J(B) 

(7.6) a(ReA) C W(ReA) = Re Wfl) C Re a(B) 

so tha t we obtain the following by (7.5), (7.6) and hypothesis: 

^ (Re T) = a (Re A) U a(Re B) = a (Re A) KJ Re a(B) = Re a(B) 
and 

Re a(T) = Re a (A) U Re a(B) = Re a(B). 

Hence T satisfies (*), and the proof is complete. 

We remark tha t both the operators belonging to (H^) constructed by Fujii 
[4, Theorem 4] and the operators belonging to (G\) for <r(T) by Luecke 
[16, Theorem 1.2] satisfy (*) since both W(A) C a(I3) and WfA) C <r(B) 
also satisfy (7.4) in Proposition 7.1. 

8. A n o t h e r c h a r a c t e r i z a t i o n of operators in R. In this section we shall 
characterize operators in R (Theorem 8.1). This Theorem 8.1 can be considered 
as a converse of Theorem E and a precise est imation of [4, I I , Theorem 12]. 
We shall also show a parallel result of Theorem 8.1. Finally we shall show some 
related results of operators belonging to R. 

T H E O R E M 8.1. An operator T belongs to R if and only if dâ(T) is a convex 
curve and 

(a-8) a(Re eieT) = Re a(ei6T) (in symbols, T Ç (ex - 6)) 

holds for allO ^ 6 ̂  2TT, that is, R = (a - 6) H Q holds. 

Proof. I t T belongs to R, then ei6T also belongs to R and dâ(T) is a convex 
curve since W(T) = â(T) holds, so t ha t (a — 6) holds by Theorem E. 

Conversely, if (a — 6) holds, then co a (Re eieT) = co Re a(eieT) for all 
0 S G S 27T, t ha t is, (S — 6) holds. T h u s T is convexoid. In addit ion, if 
da(T) is a convex curve, then T belongs to R by [4, I I , Theorem 12], and this 
completes the proof. 

Remark 8.1. We remark tha t Theorem 8.1 is a precise est imation of R = 
C P\ Q [4, I I , Theorem 12], where C is the set of all convexoids, because the 
class (a — 6) is properly contained in the class C. 

PROPOSITION 8.1. A operator T belongs to P if and only if T has convex spectrum 
and (a — 6) holds. 

T h e proof of this is similar to t ha t of Theorem 8.1 so we shall omit it. 
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If 5, 7' g C, then 5 © T £ C without any restriction and we shall show the 
corresponding relation for operators in R with some moderate restriction as 
follows. 

PROPOSITION 8.2. If 5, T Ç R, then S ® T 6 R if and only if S ® T £ Q. 

Proof. The proof of necessity follows from the relation 

W(S 0 T) = co {W(S) V WXT)} = co \â(S) yj â(T)} 
= co (?(5 © T) = co d(5 © r ) = *{S © r ) . 

The proof of sufficiency is reversible, so the proof is complete. 

PROPOSITION 8.3. If S ® T £ R, then W(S ® T) = cô" {W(S) • W(f)} and 
S ® T e Q. 

Proof. This proof easily follows from [21] and [4, II], but here we state this 
for the sake of completeness. For arbitrary operators 5 and T, we have 

W(S ® f) 3 œ ( f ( J ) • W(T)} 2 co {co a(S) • co a(T)\ 
= co {(7(5) • a(T)} = co a(5 ® D 3 <F(S ® r ) , 

so that the hypothesis IT (5 ® 7') = â(S ® T) completes the proof. 

PROPOSITION 8.4. 7 /5 , 7' G C, I k w 5 ® T £ R if and only if both W(S ® T) 
= cô {W(S) • IT(r)} and S ® T G" Ç/w/d. 

Proof. By the preceding proposition, we have only to show the proof of 
necessity. By hypothesis we have 

W(S ® f) = œ{W(S) • W{T)} = co {co a(S) • co a(T)} 

= co {(7(5) • a(T)} = co (7(5 ® T) = â(S ® T), 

so the proof is complete. 

Proposition 8.4 is similar to the following: If 5, 7 G C, then 5 ® T £ C if 
and only if W(S ® T) = œ {IT(5) • W ^ j } [9, Corollary 3]. 

9. Generalized convexoid operators. In [25] Sz.-Nagy and Foias intro
duced, for each p > 0, the class Cp of operators T on a given complex Hilbert 
space 77 for which there exists a Hilbert space K containing 77as a subspace and 
a unitary operator U on K satisfying the following relation: Tn = pPUn 

(n = 1 ,2 , . . .) where P is the orthogonal projection of K onto 77. This unitary 
operator U is called a unitary p-dilation of T. In [12] Holbrook introduced the 
operator radii as follows: wp(T) = inf {w : u > 0, T/M Ç Cpj. In particular, 
W l ( r ) = ||71|, w2(T) = w(T), wJT) = r(T) and Cp = {T; w p (D g 1}. 
In [14] Lin defined a generalized numerical range of an operator T as follows: 

(9.1) WP(T) = H {X: |X — /x| ^ w p ( r - M ) } , l ^ p ^ œ . 

It is known [14] that WP(T) turns out to be a compact convex subset containing 
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co <T(T) and WP(T) (1 rg p ^ 2) coincides with the closure of the usual numeri
cal range of T. I t is also known [14] t ha t WP(T) can be expressed by means of 
the following formula: 

(9.2) WP(T) = n \ \ : \ \ - » \ û w p \ T - „ ) } 

where wp°(T) is defined by wp
Q(T) = sup {|X|: X G WP(T)}, 1 g p ^ oo. 

Moreover, wp°(T) satisfies the following properties [14]: r(T) g wp°(T) ^ 
wp(T), wœ°(T) = f ( T ) , wp°(cT) = \c\wp°(T) for all complex c and w2(T) = 
wp°(T), 1 ^ p ^ 2. 

Definition 9.1 [14]. An operator T is said to be p-convexoid if WP(T) = 
co a(T) (2 ^ p < co) and an operator T is said to be p-normaloid if wp(T) = 
r(T) (1 ^ p < oo ) respectively. 1-normaloid and 2-normaloid turn out to be 
normaloid and spectraloid respectively. 

At first we remark tha t this p-normaloid was considered somewhat earlier 
in [6] and [7] by the name p-oid and it is known [6] t h a t for each p ^ 1, p-
normaloid if and only if "power equal i ty" wp(T

k) = (wp(T))k (& = 1, 2, . . .) 
holds in the "power inequal i ty" [12] wp(T

k) ^ (wp(T))* (fe = 1, 2, . . .) which 
is always valid for any operator T. I t is also known tha t for each 0 < p < 1, 
there exists no non-zero p-normaloid operator which is included in the class of 
normaloids [6] and an idempotent p-normaloid is a projection. Moreover, 
periodic (Tk = T, k ^ 2) p-normaloid is normal and part ial isometric, t ha t is 
to say, the direct sum of zero and a uni ta ry operator [7]. Next we remark tha t 
the relation Wœ(T) = co a(T) was shown in Theorem 2 of [14], bu t this result 
had been already obtained in (3) in [10] or (2) in [8] by using (ii) of Lemma 2.1 
in Section 2. I t is also known [14] t ha t a convexoid is p-convexoid. 

Here, by using (iii) of Lemma 2.1 in Section 2 we shall show the following 
formula in the same way as in the proof of Proposition 2.1 : 

(9.3) WP(T) = H {X: |X — /x| ^ wp (T — /x) for all complex^ whose absolute 

values are sufficiently large}, 1 ^ p ^ oo. 

By (9.2) and (9.3) we have the following result as an extension of Corollary 2.1. 

COROLLARY 9.1. The following conditions are mutually equivalent: 
(i) 0 <E WP(T), 

(ii) |M| = w p ° ( r — n) for all complex JU, and 
(iii) |ju| S wP°(T — n) for all complex /x whose absolute values are sufficiently 

large. 

By using (2.2), (9.3) and the same techniques as in Section 2 and moreover 
scrutinizing Lin's paper [14], we can remark tha t the following propositions 
are some extensions of Proposit ion 2 .1 . 

PROPOSITION 9.1. The following conditions are mutually equivalent: 
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(i) T is p-convexoid, 
(ii) wp°(T — jLt) = r(T — /*) for all complex p, 

(iii) wp°(T — p) = r(T — p) for all complex p whose absolute values are 
sufficiently large. 

PROPOSITION 9.2. Any one of the following conditions is sufficient in order that 
T is p-convexoid: 

(i) T — ix is p-normaloid for all complex p, 2 ^ p < oo , 
(ii) 7" — /x w p-normaloid for all complex p whose absolute values are suffi

ciently large, 2 ^ p < oo , 

(iii) wp\(T - p)'1) S Tr~^~Z~Tr\\ for al1 » $• C0(J(T)> d{p, co a {I )) 

(iv) wp ((T — p)~ ) ^ —, T^T-T for a// complex p. whose absolute values 
a(p, co a(l )) 

are sufficiently large. 

Remark 9.1. T h e equivalence between (i) and (ii) of Proposition 9.1 and 
(i) and (iii) of Proposition 9.2 were shown in [14]. Moreover, some results in 
[14] can be improved in this direction, tha t is, ufor all /x" in sufficient conditions 
of some results in [14] can be readily replaced by "for all complex /x whose 
absolute values are sufficiently large" in the same way as Proposition 9.1 and 
Proposition 9.2, so tha t we shall omit describing them. On the other hand (iv) 
of Proposition 9.2 can be considered as "p-generalized growth condit ions". 
Strictly speaking, (wp° — G\) for (co v(T), N) as some generalizations of both 
(Gi) for (co a(T), N) and (w — G\) for (co <T(T), TV); namely, both (iv) and 

(vi) of Proposition 2.1 in Section 2. 
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