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Abstract. We show, under some natural restrictions, that orbits of polynomials
cannot contain too many elements of small multiplicative order modulo a large prime
p. We also show that for all but finitely many initial points either the multiplicative
order of this point or the length of the orbit it generates (both modulo a large prime p)
is large. The approach is based on the results of Dvornicich and Zannier (Duke Math.
J. 139 (2007), 527–554) and Ostafe (2017) on roots of unity in polynomial orbits over
the algebraic closure of the field of rational numbers.
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1. Introduction.

1.1. Background. Let f (X) ∈ �[X ] be a polynomial of degree d ≥ 2 over a
field �.

We set f (0) = X and then define the nth iterate of f recursively as f (n)(X) =
f

(
f (n−1)(X)

)
, n = 1, 2, . . ..

Given w ∈ �, we define its orbit Orb(w) with respect to the polynomial f as the
set

Orb(w) = {f (n)(w) : n = 0, 1, . . .}. (1)

We call w ∈ � the initial value of Orb(w).
For a prime p and an integer k ≥ 1, let �pk denote the finite field of pk elements.

Clearly, if � = �p is the algebraic closure of �p, then for any w ∈ �p, the sequence
f (n)(w), n = 0, 1, . . ., is eventually periodic and if w ∈ �pk and f (X) ∈ �pk [X ], then
Orb(w) is a finite of cardinality

T(w) = #Orb(w) ≤ pk.

The orbit lengths of the reductions of polynomials have recently being studied
by different methods and from various points of view, see [1, 3–6, 14] and references
therein.

Furthermore, for each u ∈ �
∗
p, we define the multiplicative order τ (u) as the smallest

integer � ≥ 1 with u� = 1 (we also set τ (0) = 0).
Several results about the distribution of multiplicative orders of elements in

orbits Orb(w) have been studied in [13]. In particular, in [13], for a fixed polynomial
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f (X) ∈ �[X ] and w ∈ �p, various lower bounds are given on the size of the smallest
subgroup G ⊆ �∗

p that contains all non-zero values of the sequence f (n)(w), n =
0, . . . , N − 1, for N ≤ T(w).

Here, we consider the interplay between the period length and the multiplicative
order of points w ∈ �p, and obtain several new results in this direction.

Namely, given a positive integer N ≤ T(w)), we define by Mw(t; N) the number of
elements amongst the first N elements of the orbit Orb(w) or multiplicative order at
most t, that is,

Mw(t; N) = #{n ≤ N − 1 : τ (
(

f (n)(w)
)

≤ t}.

Using recent results of Ostafe [10] about roots of unity in polynomial orbits over
algebraic number fields, we obtain a lower bound on Mw(t; N) when the polynomial
f is defined over �, and then reduced modulo p (for a sufficiently large prime p). In
fact, using the results of [10] in full generality, one can extend this to polynomials over
arbitrary algebraic number fields.

We also consider a related question and show that for a natural class of
polynomials f ∈ �[X ], for all but O(1) points w ∈ �p, the dynamical or multiplicative
order is large (where the implied constant in O(1) depends only on f ). This is
based on the result of Dvornicich and Zannier [7, Theorem 2] on the finiteness of
algebraic cyclotomic points w ∈ �, which are preperiodic, that is, for which Orb(w) is
finite.

1.2. Notation, conventions and definitions. We use � to denote the set of all roots
of unity in �.

We also use Td to denote the Chebyshev polynomial of degree d, which is uniquely
determined by the equation Td (X + X−1) = Xd + X−d .

We now define the following class of exceptional polynomials.

DEFINITION 1.1. We call a polynomial f ∈ �[X ] to be exceptional if for some linear
polynomial L(X) = aX + b ∈ �[X ], the composition

L
(
f

(
L−1(X)

)) = af
(
a−1(X − b)

) + b

is either (±X)d or Td (±X).

We recall that the notations U = O(V ), U � V and V 	 U are all equivalent to
the statement that |U| ≤ cV holds with some constant c > 0. Throughout the paper,
any implied constants in the symbols O, � and 	 may depend on the polynomial f
and the real positive parameter ε but are uniform in the prime p and the point w ∈ �p.

1.3. Main results. We start with a bound on the largest multiplicative order
amongst the first N iterates.

THEOREM 1.2. Assume that f (X) ∈ �[X ] is not exceptional with deg f = d ≥ 2.
Then, for any fixed ε > 0,

(i) for any prime p and t ≤ (log p)1/2−ε for all initial values w ∈ �p, we have

Mw(t; N) � max{N1/2, N/ log log p};
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(ii) for any sufficiently large P ≥ 1 and t ≤ P1/2−ε for all but o(P/ log P) primes p ≤ P
for all initial values w ∈ �p, we have

Mw(t; N) � max{N1/2, N/ log p}.

We also show that for all but a bounded (only in terms of f ) number of w ∈ �p,
either T(w) or τ (w) is large.

THEOREM 1.3. If f (X) ∈ �[X ] is not exceptional with deg f = d ≥ 2. Then,
(i) for any prime p for all but O(1) initial values w ∈ �p, we have

dT(w)τ (w) 	 log p;

(ii) for any sufficiently large P ≥ 1 and any function ψ(z) → 0 as z → ∞, for all but
o(P/ log P) primes p ≤ P for all initial values w ∈ �p, we have

dT(w)τ (w) 	 Pψ(P).

2. Preliminaries.

2.1. Orbits and roots of unity. We now formulate two very special cases of the
results of Dvornicich and Zannier [7] and Ostafe [10].

First, we recall that by [7, Theorem 2], we have the following.

LEMMA 2.1. If f (X) ∈ �[X ] is not exceptional with deg f = d ≥ 2, then there are
finitely many u ∈ � for which Orb(u) is finite.

Furthermore, by [10] we also have the following.

LEMMA 2.2. If f (X) ∈ �[X ] is not exceptional with deg f = d ≥ 2, then there are
finitely many u ∈ � for which f (n)(u) ∈ � for some integer n ≥ 1.

2.2. Heights of polynomials and their iterates. For a polynomial F ∈ �[X ], we
define its height, denoted by h(F), as the logarithm of the maximum of the absolute
values of its coefficients.

We recall the well-known bound for the height of the composition of polynomials,
see, for instance, [8, Lemma 1.2(1.c)], where it is given in a much larger generality for
multivariate polynomials.

LEMMA 2.3. Let F, G ∈ �[X ]. Then,

h (F(G)) ≤ h(F) + deg F (h(G) + (deg G + 1) log 2) .

Hence, by induction on n, we now immediately derive from Lemma 2.3 the
following bound on the height of iterations of polynomials (see also [6] for a fully
explicit bound in the multivariate case)

LEMMA 2.4. Let f ∈ �[X ]. be of degree d ≥ 2. Then,

h
(

f (n)
)

= O(dn).
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Let �k denote the kth cyclotomic polynomial.
We now recall the following very simplified version of the classical result of

Bateman, Pomerance and Vaughan [2].

LEMMA 2.5. For k → ∞,

h (�k) = ko(1).

Combining Lemmas 2.3 and 2.5 with the trivial upper bound on the Sylvester
determinant formula for the resultant Res(F, G) of two polynomials F, G ∈ �[X ], we
derive.

LEMMA 2.6. For any integers r, s ≥ 1 and F ∈ �[U ], we have

Res (�r,�s(F)) = exp (O (rs (h(F) + deg F))) .

2.3. Combinatorial result. We also need the following combinatorial statement
that in different forms has been used in a number of works, see [6, 9, 12]. In the form
below it is given in [11].

LEMMA 2.7. Let S ⊆ � be an arbitrary subset of a field � and let w ∈ �. If for some
ϑ > 0, we have

#{0 ≤ n ≤ N − 1 : f (n)(w) ∈ S} ≥ ϑN,

then there is a non-negative integer m ≤ 2ϑ−1 such that

#{f (m)(u) = v : u, v ∈ S} ≥ ϑ2N
8

.

3. Proofs of main results.

3.1. Proof of Theorem 1.2. As before we use �k to denote the kth cyclotomic
polynomial. We fix some positive parameter ρ < 1 and consider some w ∈ �p with

Mw(t; N) ≥ ρN. (2)

Then there are at least ρN values of n < N with

��

(
f (n)(w)

)
= 0

for some positive integer � ≤ t. (where the equations are in �p). Hence, by Lemma 2.7,
there is some positive integer m ≤ 2ρ−1 such that for at least ρ2N/8 distinct values
u ∈ �p, we have

�k(u) = ��

(
f (m)(u)

)
= 0 (3)

for some pair (k, �) ∈ [1, t]2. Denote by Rk,�,m the resultant of the polynomials �k(U)
and ��

(
f (m)(U)

)
(considered over �, so we have Rk,�,m ∈ �).
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By Lemma 2.2, we see that there are only finitely many values of m for which
Rk,�,m = 0 is possible for some k and �. Thus, there are at most c1 values of u ∈ �p

which are solutions to (3), which correspond to such triples, where the constant c1

depends only on f . Thus, if ρ2N/8 > c1, then there is a triple (k, �, m) with Rk,�,m �= 0
and such that (3) has a solution and therefore

p | Rk,�,m. (4)

Hence, we now assume that

ρ >
√

8c1/N (5)

and thus (4) holds. Using that by Lemmas 2.4 and 2.6 if Rk,�,m �= 0, then

log |Rk,�,m| � k�dm � t2d2ρ−1
.

We note that Rk,�,m depends only on k, �, m and f but does not depend on p.
We now see that (4) implies

log p � t2d2ρ−1
.

Thus, using the condition t ≤ (log p)1/2−ε, we derive

d2ρ−1 	 t−2 log p ≥ (log p)2ε

or

ρ ≤ c2(log log p)−1. (6)

Hence, taking

ρ = max{3
√

c1/N, 2c2(log log p)−1}
for some constant c2 that depends only on f satisfies (5) but contradicts this
condition (6). This means that the inequality (2) fails for the above value of ρ, which
concludes the proof of Part (i).

For Part (ii), we see that if Rk,�,m �= 0, then the number of primes with (4) is at
most

ω (Rk,�,m) ≤ 2 log |Rk,�,m| � t2d2ρ−1 ≤ P1−2εd2ρ−1
,

where, as usual, we use ω(r) to denote the number of distinct prime divisors of an
integer s �= 0. Hence, if

ρ ≥ 1
ε log d log P

then ω (Rk,�,m) = o(P/ log P), which implies the bound of Part (ii).

3.2. Proof of Theorem 1.3. Fix some parameter t ≥ 1 and assume that for w ∈ �p,
we have

dT(w)τ (w) ≤ t.
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Then, we see that for some integers k, �, m with

T(w) = k > � ≥ 0 and m = τ (w), (7)

we have

f (k)(w) = f (�)(w) and �m(w) = 0. (8)

Denote by Qk,�,m the resultant of the polynomials f (k)(U) − f (�)(U) and �m(U)
(considered over �, so we have Qk,�,n ∈ �). We now conclude from (8) that

p | Qk,�,m

and if

|Qk,�,m| < p (9)

then Qk,�,m = 0 and thus the system of equations (8) has a root over �. This implies
that there are only O(1) triples (k, �, m) that satisfy this condition and so, there are
only O(1) values of w ∈ �p that satisfy (8) for some integers k, �, m as in (7) (where the
implied constants depend only on f ).

We now use Lemma 2.6 with r = m, s = 1 and F(U) = f (k)(U) − f (�)(U) + 1.
Recalling the bound dkm = dT(w)τ (w) ≤ t, we derive

|Qk,�,m| = exp
(
O

(
dkm

)) = exp (O (t)) . (10)

Hence, taking t = c0 log p for an appropriate constant c0 > 0 that depends only on f ,
we see that we have (9), which concludes the proof of Part (i).

For Part (ii), we note that if Qk,�,m �= 0, then Qk,�,m has at most

ω (Qk,�,m) � log |Qk,�,m|
log log (|Qk,�,m| + 2)

prime divisors (which follows from the trivial inequality ω(s)! ≤ s, that holds for
any integer s ≥ 1, and the Stirling formula). Using (10) and also the bound dkm =
dT(w)τ (w) ≤ t, we derive

ω (Qk,�,m) � t/ log t.

Taking t = Pψ(P), we conclude the proof of Part (ii).

4. Comments. We note that by using the results of Dvornicich and Zannier [7]
and Ostafe [10] in full generality one can easily extend our estimates to polynomials f
over algebraic number fields.

On the other hand, as long as multivariate analogues of [7] and [10] are not available
we do not see any approaches to extending our results to multivariate polynomials.
In fact, the lack of such extensions of [7] and [10] is the only essential obstacle for
generalisations to multivariate polynomials as the results of [6] provide an adequate
substitute to our resultant-based argument. Finding an alternative approach is also
very desirable as it may lead to stronger bounds.
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Probably the most challenging question is to obtain versions of our results that
are uniform in the polynomial f in (1). In particular, it is important to allow f to be
defined over �p, or even �p rather than over �.
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