Select human milk oligosaccharides directly modulate peripheral blood mononuclear cells isolated from 10-d-old pigs

Sarah S. Comstock1, Mei Wang1, Shelly N. Hester2, Min Li1 and Sharon M. Donovan1,2*

1Department of Food Science and Human Nutrition, University of Illinois, 339 Bevier Hall, 905 S. Goodwin Avenue Urbana, IL 61801, USA
2Division of Nutritional Sciences, University of Illinois, 338 Bevier Hall, 905 S. Goodwin Avenue, Urbana, IL 61801, USA

(Submitted 15 May 2013 – Final revision received 29 August 2013 – Accepted 4 September 2013 – First published online 17 October 2013)

Abstract

Infant formulas lack the complex mixture of oligosaccharides found in human milk. These human milk oligosaccharides (HMO) may be pivotal to the development of the neonatal immune system. Few comprehensive analyses of the effects of HMO on immune cells from neonates have been undertaken. Herein, the direct effects of HMO on immune cells were analysed ex vivo. Peripheral blood mononuclear cells (PBMC) isolated from 10-d-old sow-reared (SR) orcolostrum-deprived formula-fed (FF) pigs were stimulated for 72 h with single HMO, mixtures of single HMO or a complex mixture of HMO isolated from human milk (iHMO). T-cell phenotype, cytokine production and proliferation were measured by flow cytometry, immunoassay and [3H]thymidine incorporation, respectively. Stimulation with iHMO had direct effects on PBMC. For instance, cells stimulated with iHMO produced more IL-10 than unstimulated cells, and cells stimulated with fucosylated HMO tended to proliferate less than unstimulated cells. Additionally, co-stimulation with HMO mixtures or single HMO altered PBMC responses to phytohaemagglutinin (PHA) or lipopolysaccharide (LPS) stimulation. Compared with PBMC stimulated with PHA alone, cells co-stimulated with iHMO and PHA proliferated more and had fewer detectable CD4+CD8+ T cells. Compared with PBMC stimulated by LPS alone, cells co-stimulated with a mixture of sialylated HMO and LPS proliferated more and tended to have fewer detectable CD4+ T cells. Differences in the baseline responses of PBMC isolated from the SR or FF pigs were observed. In summary, HMO directly affected PBMC populations and functions. Additionally, ex vivo measurements of PBMC phenotype, cytokine production and proliferation were influenced by the neonate’s diet.

Key words: Infants: Human milk: Oligosaccharides: Immunity: Pigs

Immune response, as evidenced by the differences in the rates of infection(1–6) and vaccination response(6,7), differs between breast-feed (BF) and formula-fed (FF) human infants. This difference may be due in part to dissimilarities in the composition of infant formulas and human milk. Cow milk-based formulas are devoid of many of the bioactive components that are present in human milk, including human milk oligosaccharides (HMO) (reviewed in Kunz et al.(8)). The complexity and quantity of oligosaccharides are unique to human milk. For example, after lactose and fat, HMO constitute the third most abundant component of human milk (10–15 g/l). Furthermore, up to 200 potential oligosaccharide structures have been identified in human milk, of which typically approximately 70% are fucosylated(8,9). In contrast, cows’ milk contains less than 0·1 g oligosaccharides/l milk(8,9), and much less structural diversity (forty structures) and very few fucosylated oligosaccharides(10).

Accordingly, structurally complicated oligosaccharides are rare in cow milk-based infant formulas and, thus, constitute a major compositional difference in the diets of BF infants compared with FF infants. Oligosaccharides are important with respect to the immune response (reviewed in Rabinovich et al(11)). Based on their structural similarity to selectin ligands, it has been hypothesised that HMO could have immunomodulatory effects(9,12–14). For instance, the P- and E-selectins recognise sialyl-Lewis X (sLeX)(15), a moiety also found on HMO(16). Some immune protein–carbohydrate interactions, such as those mediated by selectins, have been shown to be modulated by HMO(17,18). Oligosaccharides can also affect binding to, the quality of or the length of the association

Abbreviations: 2’-FL, 2’-fucosyllactose; 3’-FL, 3’-fucosyllactose; 5’-SL, 5’-sialyllactose; 6’-SL, 6’-sialyllactose; BF, breast-fed; FF, formula-fed; HMO, human milk oligosaccharides; IFN-γ, interferon-γ; iHMO, isolated human milk oligosaccharides; LPNFPII, lacto-N-fucopentaose II; LNNRT, lacto-N-neotetraose; LPS, lipopolysaccharides; PBMC, peripheral blood mononuclear cells; PHA, phytohaemagglutinin; SA, sialic acid; sLeX, sialyl-Lewis X; SR, sow-reared; TriGal, galactotriose.

*Corresponding author: Dr S. M. Donovan, fax +1 217 333 9368, email sdonovan@illinois.edu
between cell surface receptors and their ligands, thereby altering the signalling from the surface to nucleus of a cell\(^\text{[19]}\). Many immune receptors recognise the oligosaccharide structures of their glycoprotein ligands\(^\text{[11]}\). Thus, HMO could potentially alter immune responses in the neonate.

In order to directly affect systemic immune cells, HMO must be absorbed into the neonate’s bloodstream. Because of their structural complexity and the high concentrations found in the faeces of BF infants\(^\text{[20]}\), it has been suggested that these complex oligosaccharides may not be absorbed by infants. However, others have estimated that the blood concentration of HMO in human infants may be about 100–200 µg/ml\(^\text{[9,21]}\). Recently, between 1 and 3 mg of single HMO have been shown to be excreted in the urine of infants over the course of a day\(^\text{[22]}\). Urinary excretion of intact HMO indicates that these compounds are not only absorbed, but are also present in the blood in their typical conformation. This confirms that these complex oligosaccharides have the potential to exert systemic effects.

Although acidic HMO have been described to affect cytokine production by cord blood mononuclear cells\(^\text{[25]}\), the direct effects of a large number of individual HMO on cells isolated from neonates have not been measured. In the present study, using the neonatal pig (Sus scrofa) model\(^\text{[24]}\), the direct effects of HMO on the proliferation, phenotype and cytokine production of peripheral blood mononuclear cells (PBMC) isolated from 10-d-old pigs were analysed. Furthermore, the responses between PBMC isolated from piglets fed their own mother’s milk \(v\) those fed a cow milk-based sow milk replacer formula were compared.

Experimental methods

Animals and housing

Vaginally delivered pigs were randomised into two groups at birth: sow-reared (SR, \(n = 5\)) group or colostrum-deprived FF (\(n = 5\)) group. Since the FF pigs received no maternally transferred antibodies, they were oro-gastrically administered with preg-1

Sample collection

On day 10 postpartum, the piglets were sedated with an intramuscular injection of Telazol\(^\text{®}\) (Tiletamine HCl and Zolazepam HCl, 3.5 mg/kg body weight each; Pfizer Animal Health). After sedation, blood was collected by cardiac puncture into heparin-laced vials (BD Biosciences) for the isolation of mononuclear cells. The piglets were then euthanised by an intravenous injection of sodium pentobarbital (72 mg/kg body weight, Fatal Plus; Vortech Pharmaceuticals).

Isolation of mononuclear cells from peripheral blood and immune tissues

PBMC were isolated by density gradient centrifugation. Heparinised blood was diluted in Rosswell Park Memorial Institute (RPMI)-1640 (Gibco; Life Technologies) and layered over Ficoll-Paque PLUS lymphocyte separation medium (GE Healthcare). PBMC were recovered after centrifugation (400 \(g\), 30 min) across the density gradient. Erythrocytes were lysed using ammonium chloride lysis buffer. The cells were washed (Hanks’ balanced salt solution, 2% bovine serum albumin, 10 mM-HEPES, 50 µg gentamicin/ml, 1 IU (0.1 µg) penicillin/ml and 100 µg streptomycin/ml). Isolated PBMC were placed in complete medium (RPMI-1640, 10% fetal calf serum, 2 mM-L-glutamine, 1 IU (0.1 µg) penicillin/ml, 100 µg streptomycin/ml and 50 µg gentamicin/ml; Gibco). The cells were counted using a Countess automated cell counter (Life Technologies). The number of viable cells was assessed by trypan blue (Life Technologies) exclusion. The isolated cells were kept in complete medium at 4°C until use.

Human milk oligosaccharides

Lacto-N-fucopentaose III (LNFPIII) was purchased from Sigma. Lacto-N-neotetraose (LNnT) was provided by Abbott Nutrition. All other HMO, including sLeX, 3′-sialyllactose (3′-SL), 6′-sialyllactose (6′-SL), 2-fucosyllactose (2′-FL) and 3′-fucosyllactose (3′-FL), were purchased from V-Labs. Galacto-triose (TriGal) and sialic acid (SA) were also obtained from V-Labs. TriGal was used as a negative control, and sLeX was used as a positive control for interactions with immune cells\(^\text{[18,25]}\). Isolated human milk oligosaccharides (IHMO) were purified, as described previously\(^\text{[26]}\), from pooled pre-term human milk (mean gestational age 24 (SD 2.3) weeks) provided by Dr Paula Meier (Rush University, Chicago, IL). The IHMO contained 30.9% fucosylated oligosaccharides, 31.6% sialylated oligosaccharides and 12.4% of both fucosylated and sialylated oligosaccharides, as determined by HPLC-chip time-of-flight MS\(^\text{[27]}\).

Endotoxin reduction and measurement

Endotoxin (lipopolysaccharides; LPS) content in the oligosaccharide samples was measured by a quantitative limulus amebocyte lysate test (QCL-1000; BioWhittaker). A level of <0.5 endotoxin units/ml of endotoxin was considered to be acceptable. If the level was higher, the endotoxin was removed using polymixin B columns (Pierce Thermo Scientific). The samples were retested to ensure a level of <0.5 endotoxin units/ml.
Cell stimulation

PBMC were plated in ninety-six-well plates (2 × 10^5 cells/well) in a final volume of 200 μl complete medium at 37°C under 5% CO2. Stimulants were added immediately (n 3 wells/sample per stimulant for proliferation or n 2 wells/sample per stimulant for cytokine and T-cell phenotyping). The cells were stimulated for 72h with LPS (2 μg/ml), phytohaemagglutinin (PHA, 2.5 μg/ml) or single HMO at 125 μg/ml including sLeX, TriGal, LNFPIII, LNnT, 3'β-SL, β'-SL, 2'-FL and 3'-FL as well as SA. The iHMO (125 μg/ml) was also used alone and in combination with PHA and LPS. Additionally, the following mixtures were used to stimulate the cells: SL mix (10% 3'-SL, 40% β'-SL and 50% SA) or FL mix (85% 2'-FL and 15% 3'-FL) with a total final concentration in culture of 125 μg/ml. The SL mix mimicked the total SA concentration of human milk (8, 28–31). 6 The cells were then centrifuged at 2000 rpm for 5 min at 4°C and supernatants were removed. The cells were incubated for 15 min in a total of 10 μl anti-CD3 (0.2 μg). The cells were then centrifuged at 2000 rpm for 5 min at 4°C and supernatants were removed. The cells were incubated for 15 min in a total volume of 20 μl anti-CD4 (0.16 μg) and anti-CD8 (0.05 μg). The cells were washed twice with PBS/1% bovine serum albumin/0.1% sodium azide, and then fixed with 2% paraformaldehyde. Staining was assessed using an LSRII flow cytometer (BD Biosciences). The relative size of T-cell subpopulations was determined using FlowJo 7.0 software (FlowJo). CD3+ events were considered to be T cells. CD3+CD4+CD8- events were considered to be T-helper cells. CD3+CD8+CD4- events were considered as cytotoxic T cells. CD3+CD4+CD8+ events were considered as double-positive T cells.

Proliferation assay

[^3H]Thymidine (Perkin Elmer) was added 72h after the initiation of mitogenic stimulation at a concentration of 1 μCi/well, and plates were incubated for an additional 18h. The plates were stored at −80°C until analysis. Cells were harvested (Harvester 96 Mach III M; TomTech) onto a 1.5 mm glass fibre filter paper (Skatron Instruments) and placed in vials containing 7 ml Ultima Gold F scintillation fluid (Perkin Elmer). Samples were counted on a Beckman Coulter (LS 6500 Scintillation System). Data are expressed as counts per minute. The samples were analysed in triplicate. Data analysis was performed on log-transformed counts per minute.

Cytokine production

Cell culture supernatants were collected 72h after the initiation of culture and frozen at −80°C until analysed. Supernatants were analysed for interferon-γ (IFN-γ), IL-12p70, IL-4, IL-10 and TNF-α by Aushon BioSystems using SearchLight, a chemiluminescent technology based on a multiplexing sandwich-ELISA system. Assays were specific for porcine cytokines. When the value for a sample fell below the limit of detection of the assay, the values were set to the limit of detection in pg/ml (IFN-γ, 3-1; IL-12p70, 1-1; II-10, 1-6; TNF-α, 0-9; IL-4, 1-1).

Phenotypic identification of mononuclear cells

Cells were collected 72h after the initiation of culture and resuspended in flow staining buffer (PBS, 1% bovine serum albumin and 0.1% sodium azide). The phenotypes of T-lymphocyte subpopulations from PBMC were determined by flow cytometry using fluorescently labelled monoclonal antibodies. T lymphocytes were identified by mouse anti-pig CD3 PE-Cy5 (Clone PPT3; Southern Biotech). To further differentiate T-cell populations, cells were stained with mouse anti-pig CD4-PE-Cy5 (Clone 74-12-4; Southern Biotech) and mouse anti-pig CD8-PE (Clone 76-2-11; Southern Biotech) antibodies. All staining procedures took place on ice and care was taken to prevent unnecessary exposure to light. Briefly, 1 million cells/well were blocked with anti-pig CD16 (0.2 μg, G-7; AbD Serotec) for 5 min, followed by incubation with 5% mouse serum (Southern Biotech) for 5 min. Next, the cells were incubated for 15 min in a total of 10 μl anti-CD3 (0.2 μg). The cells were then centrifuged at 2000 rpm for 5 min at 4°C and supernatants were removed. The cells were incubated for 15 min in a total volume of 20 μl anti-CD4 (0.16 μg) and anti-CD8 (0.05 μg). The cells were washed twice with PBS/1% bovine serum albumin/0.1% sodium azide, and then fixed with 2% paraformaldehyde. Staining was assessed using an LSRII flow cytometer (BD Biosciences). The relative size of T-cell subpopulations was determined using FlowJo 7.0 software (FlowJo). CD3+ events were considered to be T cells. CD3+CD4+CD8- events were considered to be T-helper cells. CD3+CD8+CD4- events were considered as double-positive T cells.

Statistical analyses

Statistical analyses were performed using SAS 9.2 (Cary, NC). Data were analysed by two-way ANOVA using the generalised linear model procedure to determine the effects of diet, stimulant and the interaction between diet and stimulant. When a main effect was significant, a post hoc Tukey test was used. If the model containing both diet and stimulant was not significant, but a single factor was significant, a one-way ANOVA was performed on the single factor. Statistical significance was defined as \(P<0.05 \), and \(P\leq0.10 \) accepted as a trend. Data are presented as means and standard deviations.

Results

T-cell proliferation

Both piglet diet and ex vivo stimulation with HMO affected proliferation. PBMC isolated from the FF piglets proliferated more than those isolated from the SR piglets (Fig. 1; Table S1, available online). Fucosylated compounds tended to increase PBMC proliferation in response to LPS stimulation with HMO. Compared with PHA alone, cells co-stimulated with PHA and iHMO proliferated more (Fig. 2(A)). Co-stimulation with SL mix (Fig. 1(A)) or FL mix (Fig. 1(B)) tended to proliferate less than those isolated from the SR piglets (Fig. 2(B)). Neither TriGal nor sLeX stimulation affected cellular proliferation.

T-cell phenotype

T-helper cell (CD3+CD4+CD8-) populations were affected by both piglet diet and ex vivo stimulation with HMO. Compared
with the SR piglets, the T-cell populations in PBMC isolated from the FF piglets consisted of a larger percentage of T-helper cells (expressed as a percentage of total CD3\(^+\) events; Table S2, available online). The co-stimulation of PBMC with iHMO (Fig. 3(A)) or FL mix (Fig. 3(B)) significantly decreased T-helper cell populations in response to LPS stimulation. The treatment with SL mix (Fig. 3(C)) tended to decrease T-helper cell populations in response to LPS stimulation.

Piglet diet, but not \textit{ex vivo} stimulation with HMO, affected cytotoxic T-cell (CD3\(^+\)CD4\(^-\)CD8\(^+\)) populations. Compared with the FF piglets, the SR piglets had a larger percentage of cytotoxic T cells within their CD3\(^+\) PBMC (Table S2, available online). The only stimulant with independent effects on cytotoxic T-cell populations within PBMC was PHA. Stimulation with PHA decreased the percentage of cytotoxic T cells for both the FF and SR piglets.

Consistent with their larger percentage of T-helper cells and smaller percentage of cytotoxic T cells, the ratio of T-helper:cytotoxic T cells was greater within the CD3\(^+\) PBMC of the FF piglets than those of the SR piglets (Table S2, available online). Again, the only stimulant that consistently affected the T-helper:cytotoxic T-cell ratio was PHA. PHA stimulation increased the ratio of T-helper:cytotoxic T cells.

Changes in the double-positive T-cell population (CD3\(^+\)CD4\(^+\)CD8\(^+\)) depended on specific stimulation conditions. In the unstimulated cultures of PBMC, the double-positive T-cell population was small (1–5\%) and did not differ upon stimulation with HMO compounds or by diet (Table S2, available online). Co-stimulation with either SL mix (Fig. 4(A)) or iHMO (Fig. 4(B)) decreased the percentage of double-positive T cells compared with that produced upon stimulation with PHA alone. Upon stimulation with either PHA or LPS, CD4\(^+\)CD8\(^+\) T-cell populations differed by diet (Fig. 4). Stimulation with PHA resulted in double-positive T-cell populations that were larger in the SR piglets than in the FF piglets (Fig. 4(A) and (B)). Stimulation with LPS resulted in double-positive T-cell populations that were larger in the FF piglets than in the SR piglets (Fig. 4(C)). Only co-stimulation with iHMO (Fig. 4(C)) reduced the size of the double-positive T-cell population produced in response to LPS stimulation. Neither TriGal nor sLeX stimulation affected any T-cell populations.

Cytokine production

IL-10 production was affected by piglet diet as well as by \textit{ex vivo} stimulation with HMO. The PBMC isolated from the FF pigs produced more IL-10 than those isolated from the SR pigs (Table S3, available online). \textit{Ex vivo} stimulation with iHMO increased IL-10 production by PBMC independent of the diet (Fig. 5).

Both piglet diet and \textit{ex vivo} stimulation with HMO affected TNF-\(\alpha\) production. When all the treatments were analysed simultaneously, TNF-\(\alpha\) production was a function of both diet and \textit{ex vivo} stimulation (Table S3, available online). TNF-\(\alpha\) production did not differ by diet or stimulant when the cells were unstimulated or stimulated with HMO alone (data not shown). However, when stimulated with LPS or PHA, the PBMC isolated from the SR pigs produced more TNF-\(\alpha\) than those isolated from the FF pigs (Table S3, available online). Co-stimulation with LNnT increased TNF-\(\alpha\) production in response to PHA stimulation by about 1.5-fold (Fig. 6).

In general, IL-4 production by \textit{ex vivo} cultured PBMC was low; however, it was affected by piglet diet. IL-4 production under all the conditions, except the stimulation with PHA, ranged between the limit of detection and 17.3 pg/ml. Under PHA stimulation, IL-4 production ranged from 57.4 to 1052 pg/ml and averaged 370.5 pg/ml. The PBMC isolated from the SR piglets produced more IL-4 than those isolated from the FF piglets (Table S3, available online).

Neither neonatal diet nor stimulation with HMO affected IFN-\(\gamma\) (Table S3, available online) or IL-12p70 production by...
PBMC (data not shown). IFN-γ production ranged from the limit of detection to 1992 pg/ml. For the cells unstimulated or stimulated only by HMO, the range was from the limit of detection to 155·5 pg/ml with an average production of 22·0 pg/ml. Stimulation with either LPS ($P<0.0001$) or PHA ($P<0.0001$) increased IFN-γ production compared with the production by unstimulated cells (Table S3, available online). For the cells stimulated with LPS with or without HMO co-stimulation, the range was from 4·1 to 272·3 pg/ml with an average IFN-γ production of 73·1 pg/ml. For the cells stimulated with PHA with or without HMO co-stimulation, the range was from 60·5 to 1992 pg/ml with an average production of 431·8 pg/ml. IL-12p70 production by PBMC isolated from 10-d-old piglets incubated under various co-stimulation conditions for 72 h was low. It ranged from the limit of detection to 20·4 pg/ml. PHA stimulation did significantly increase IL-12p70 production ($P=0.001$). However, even under PHA stimulation, the amounts of IL-12p70 produced reached a maximum of 20·4 pg/ml with an average production of 3·9 pg/ml. Neither TriGal nor sLeX stimulation affected cytokine production by PBMC.

Discussion

Human milk contains a complement of HMO that are unique in their quantity and composition relative to other species9,10. Although others have studied the effects of some HMO on immune cells17,18,23, this is the first investigation of the effects of a large variety of single HMO and combinations of HMO on cells isolated from neonates. Rather than using cells isolated from adult human subjects17,18, cell lines34,35 or human cord blood mononuclear cells23, the present study examined the effects on primary PBMC isolated from neonatal pigs fed either their own mother’s milk or formula. Although not identical to HMO, porcine milk oligosaccharides include predominantly sialylated HMO with some fucosylated compounds, sLeX, SL and LNnT36,37. We observed that HMO have the potential to directly affect lymphocytes isolated

Fig. 2. Co-stimulation with human milk oligosaccharides increased peripheral blood mononuclear cell (PBMC) proliferation in response to both phytohaemagglutinin (PHA) stimulation and lipopolysaccharide (LPS) stimulation. (A) Co-stimulation with isolated human milk oligosaccharides (iHMO) increased PBMC proliferation in response to PHA stimulation. Values are means, with standard deviations represented by vertical bars. The full model was not significant ($P=0.18$), but the stimulant had a significant effect in the full model ($P=0.03$). Therefore, a one-way ANOVA was performed with the stimulant being the factor ($P=0.02$). Stimulants with unlike letters were significantly different ($P=0.03$). (B) Co-stimulation of PBMC with sialyllactose (SL) mix and LPS resulted in greater proliferation than stimulation with LPS alone. Values are means, with standard deviations represented by vertical bars. Analysis of effects by PROC GLM: model ($P=0.02$); stimulant ($a,b P=0.02$); diet (*$P=0.01$); stimulant × diet interaction ($P=0.39$). Stimulants with unlike letters were significantly different ($P=0.02$). FF, formula-fed; SR, sow-reared; FL, fucosyllactose; LNnT, lacto-N-neotetraose.

Human milk oligosaccharides and lymphocytes 823

British Journal of Nutrition

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 16 Feb 2019 at 11:41:03, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0007114513003267
from neonatal pigs. Additionally, neonatal diet altered the proliferative capacity, cell populations and cytokine production of PBMC. However, when an effect of ex vivo stimulation with HMO was observed, the effect was independent of the neonatal diet and typically required a mixture of HMO to be applied.

Both neonatal diet and ex vivo stimulation with HMO altered lymphocyte responses to LPS and PHA. Since LPS and PHA bind to PBMC cell surface glycoprotein receptors, HMO may affect ligand–receptor interactions and alter the proliferation, phenotype and cytokine production of PBMC in response to stimulation with these mitogens. Indeed, co-stimulation with HMO changed PBMC responses to LPS and PHA stimulation. In the case of co-stimulation, HMO increased immune system activation as demonstrated by increased proliferation (iHMO and SL mix), decreased T-helper cell population size (iHMO, FL mix and SL mix; \(P = 0.097 \)) and increased TNF-\(\alpha \) production (LN\textsubscript{nt}). Increased proliferation is typically an indication of enhanced immunocompetence. Decreases in T-helper cell populations indicate a shift in the balance of T-cell immune responses towards effector functions. TNF-\(\alpha \) production is important in the innate immune response, and increased cytokine production also indicates enhanced immunocompetence. Together, these responses to co-stimulation with HMO suggest that in conditions of activation, HMO can potentiate an immune response.

HMO may affect PBMC phenotype and function in the absence of PHA or LPS co-stimulation due to their similarity to sequences that bind L-selectins\(^{(14,38–41)}\), a subclass of carbohydrate-binding proteins involved in immune function. Because some HMO have been shown to inhibit epithelial cell proliferation\(^{(54,35,42)}\), we predicted that they would also affect PBMC proliferation. Indeed, both 2’-FL (\(P = 0.07 \)) and the combination of fucosylated HMO (FL mix; \(P = 0.10 \)) tended to inhibit proliferation. Whether HMO affect immune cell proliferation through the regulation of cyclin expression, as has been demonstrated in epithelial cells\(^{(54,42)}\), or through a more novel mechanism, such as fucose modification of Notch receptors or ligands\(^{(43)}\), is unknown and should be tested. In terms of cytokine production, stimulation of PBMC with HMO compounds generated a regulatory or neutral immune response through decreased proliferation (2’-FL and FL mix) and increased IL-10 production (iHMO). In the case of either co-stimulation or independent stimulation, HMO were more effective when tested. In terms of cytokine production, stimulation of PBMC with HMO changed PBMC responses to LPS and PHA. Since LPS and PHA bind to PBMC cell surface glycoprotein receptors, HMO may affect ligand–receptor interactions and alter the proliferation, phenotype and cytokine production of PBMC in response to stimulation with these mitogens. Indeed, co-stimulation with HMO changed PBMC responses to LPS and PHA stimulation. In the case of co-stimulation, HMO increased immune system activation as demonstrated by increased proliferation (iHMO and SL mix), decreased T-helper cell population size (iHMO, FL mix and SL mix; \(P = 0.097 \)) and increased TNF-\(\alpha \) production (LN\textsubscript{nt}). Increased proliferation is typically an indication of enhanced immunocompetence. Decreases in T-helper cell populations indicate a shift in the balance of T-cell immune responses towards effector functions. TNF-\(\alpha \) production is important in the innate immune response, and increased cytokine production also indicates enhanced immunocompetence. Together, these responses to co-stimulation with HMO suggest that in conditions of activation, HMO can potentiate an immune response.

HMO may affect PBMC phenotype and function in the absence of PHA or LPS co-stimulation due to their similarity to sequences that bind L-selectins\(^{(14,38–41)}\), a subclass of carbohydrate-binding proteins involved in immune function. Because some HMO have been shown to inhibit epithelial cell proliferation\(^{(54,35,42)}\), we predicted that they would also affect PBMC proliferation. Indeed, both 2’-FL (\(P = 0.07 \)) and the combination of fucosylated HMO (FL mix; \(P = 0.10 \)) tended to inhibit proliferation. Whether HMO affect immune cell proliferation through the regulation of cyclin expression, as has been demonstrated in epithelial cells\(^{(54,42)}\), or through a more novel mechanism, such as fucose modification of Notch receptors or ligands\(^{(43)}\), is unknown and should be tested. In terms of cytokine production, stimulation of PBMC with HMO compounds generated a regulatory or neutral immune response through decreased proliferation (2’-FL and FL mix) and increased IL-10 production (iHMO). In the case of either co-stimulation or independent stimulation, HMO were more effective when present in combination. Notably, only 2’-FL had effects when present alone, and LN\textsubscript{nt} was the only single HMO to change proliferation or TNF-\(\alpha \) production in response to PHA stimulation.

Due to the nature of the analysis, changes in the cell surface expression of CD4 or CD8 in response to stimulation may be indicative of cellular activation rather than a shift in the T-cell population. Future experiments detailing the activation status of stimulated cells are needed to determine the mechanism by which HMO affect cell populations in culture. HMO may activate cells, causing them to down-regulate cell surface markers and stimulate specific cell populations to proliferate,
Human milk oligosaccharides and lymphocytes

Fig. 4. Neonatal diet and ex vivo human milk oligosaccharide co-stimulation affected double-positive T-cell populations under the phytohaemagglutinin (PHA) or lipopolysaccharide (LPS) stimulation conditions. (A) Upon PHA stimulation, double-positive T-cell populations were larger in peripheral blood mononuclear cells (PBMC) from sow-reared (SR) piglets than those from formula-fed (FF) piglets. Co-stimulation with sialyllactose (SL) mix decreased double-positive T-cell populations. Values are means, with standard deviations represented by vertical bars. Analysis of effects by PROC GLM: model (*P=0·03); stimulant (†P=0·03); diet (*P=0·03); diet × diet interaction (P=0·59). (B) Co-stimulation with isolated human milk oligosaccharides (iHMO) decreased double-positive T-cell populations in response to PHA stimulation. Values are means, with standard deviations represented by vertical bars. Analysis of effects by PROC GLM: model (P=0·03); stimulant (†P=0·03); diet (*P=0·03); stimulant × diet interaction (P=0·57). (C) Upon LPS stimulation, double-positive T-cell populations were larger in PBMC isolated from the FF piglets than those from the SR piglets. Co-stimulation with iHMO decreased double-positive T-cell populations. Values are means, with standard deviations represented by vertical bars. Analysis of effects by PROC GLM: model (*P=0·03); stimulant (†P=0·03); diet (*P=0·01); stimulant × diet interaction (P=0·57). Double-positive T cells are CD3+CD4+CD8+. These cells are expressed as a percentage of CD3+ events.

Fig. 5. Stimulation with isolated human milk oligosaccharides (iHMO) increased IL-10 production in peripheral blood mononuclear cells. Values are means, with standard deviations represented by vertical bars. The full model was not significant (P=0·12), but the stimulant had a significant effect in the full model (P=0·02). A one-way ANOVA was performed with the stimulant being the factor. Stimulants were significantly different (†P=0·02). FF, formula-fed; SR, sow-reared; Unstim, unstimulated.
to mitogens (59, 60). Additionally, FF infants have more T-helper cells than BF infants (61), and the CD4:CD8 ratio in PBMC isolated from FF infants is lower than that in FF infants (62, 63). These differences are similar to the results presented herein where PBMC isolated from the FF piglets proliferated more, consisted of more T-helper cells, and had greater T-helper: cytotoxic T-cell ratios than those isolated from the SR piglets. Thus, the differential responses of PBMC isolated from the SR and FF piglets were expected and mimic those of human neonatal PBMC.

Unexpectedly, sLeX stimulation did not affect proliferation, T-cell populations or cytokine production in PBMC isolated from 10-d-old pigs. The cells were similarly unresponsive to TriGal stimulation, which was the expected outcome. Much of the work with sLeX and selectin binding has been conducted using cells isolated from adults or in cell culture systems. Cells from young piglets may not yet express the cell surface molecules necessary to mediate interactions with sLeX or similar oligosaccharide moieties. Additionally, it is most well known that sLeX mediates the adhesion, healing and extravasation of lymphocytes (13, 17). The role of sLeX in proliferation, cell populations and cytokine production is less well characterised. Although sLeX was expected to affect these functions, few reports have been published on these outcomes using PBMC from such young mammals.

Some limitations of the results exist. Because PBMC isolated from neonatal pigs were used in these experiments, it is possible that different results would be obtained when cells from human neonates are used. Porcine and human lymphocytes demonstrate similar proliferative responses to some stimulants (64); however, this has neither been tested with neonatal cells nor have cytokine production or T-cell phenotype changes been directly compared between the species. The present findings show that in many respects, piglet immune cells respond to HMO similarly to human cells. Further advantages of neonatal piglets include the ease with which they can be reared independently of their mothers, the capacity to test defined dietary regimens and the ability to collect sufficient sample for multiple assays. It would be unethical and impractical to collect sufficient volumes of blood from human infants to conduct these experiments in a short time frame, under highly uniform conditions. In addition, pigs closely resemble humans for >80% of the immune parameters analysed (v. <10% when humans and mice are compared) (24). The lymphoid cell populations in the pig are consistent with those of other vertebrates, especially humans (65), but pigs express greater proportions of CD4+CD8+ T lymphocytes (66–69). Dietary administration of HMO was not evaluated. Rather, these compounds were screened for potential effects using ex vivo techniques and at a single dose. This dose probably reflects the local and, potentially, the systemic concentrations in vivo that PBMC may encounter. It is probable that similar effects will be seen with dietary administration, since similar quantities of non-metabolised HMO have been detected in the circulation and urine of human infants (22). Because total PBMC were stimulated, the specific cells mediating the response have not been identified. The results from the stimulation of PBMC differ from those resulting from the stimulation of lymphocytes isolated from other tissues. Finally, since the present study included multiple comparisons, the differences that were detected will need to be validated in future studies. In light of these limitations, the present study represents a demonstration of potential outcomes that may result from dietary administration of HMO or ex vivo HMO stimulation of human cells. Future investigations should determine the effects of dietary administration of HMO, identify the specific cell types affected, define the mechanisms through which these compounds act and measure the effects of these compounds under immune stimulatory conditions such as vaccination or infection.

Approximately 75% of infants in the USA (70, 71) and between 60 and 90% worldwide (72) consume infant formula at some time in their first year of life. Optimally, cow milk-based formulas should be formulated to mimic, as closely as possible, the biological functions of breast milk on immune system development. However, cow milk-based formulas are currently devoid of complex oligosaccharide structures similar to those found in human milk. Herein, HMO were shown to have direct effects on neonatal PBMC phenotype and function. Therefore, inclusion of HMO in bovine milk-based formulas should be considered.

Supplementary material
To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S0007114513003267

Acknowledgements
The authors thank Abbott Nutrition (Columbus, OH) for the donation of LNnT and Dr Paula Meier (Rush University, Chicago, IL) for providing the preterm human milk. The authors also thank Carlito Lebrilla and Shuai Wu of the Department of Chemistry at the University of California, Davis, for performing
the HMO compositional analysis. They also thank Barbara Pilas and Ben Monteze in the Roy J. Carver Biotechnology Center Flow Cytometry Core at the University of Illinois for their guidance.

The present study was supported by Abbott Nutrition. Dr Joseph Schaller (Abbott Nutrition) contributed to the study design. Abbott Nutrition had no role in the conduct of the study, the data analysis, the interpretation of the findings or the preparation of the manuscript.

S. S. C., M. D. and M. W. designed the study. S. S. C., M. W. and S. N. H. performed the experiments. M. L. purified the complex mixture of HMO (HMO) used in the experiments and with M. W. removed endotoxins. S. S. C. and M. W. analysed the data and completed the statistics. S. S. C. interpreted the data and wrote the manuscript. All authors commented on and contributed to the final manuscript.

S. N. H. worked as an intern for Abbott Nutrition. S. M. D. consulted for Abbott Nutrition. The rest of the authors have no conflicts of interest.

References

