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On Flag Curvature of Homogeneous
Randers Spaces

Shaoqiang Deng and Zhiguang Hu

Abstract. In this paper we give an explicit formula for the flag curvature of homogeneous Randers

spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an

explicit formula for the flag curvature of an arbitrary left invariant Randers metric on a two-step nilpo-

tent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of

Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler

spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers

space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.

Introduction

The purpose of this paper is to study flag curvature of homogeneous Randers spaces.

Flag curvature is the natural generalization of section curvature in Riemannian ge-

ometry to Finsler geometry and is one of the most important quantities in the field.

However, the nonlinearity of the Finsler metrics makes the computation of flag cur-

vature of an explicit Finsler space extremely complicated. Although there is a for-

mula for this quantity in a standard coordinate system, the computation involved is

formidable and very difficult to handle, even with the help of computer programmes.

Therefore, it is of special merit if we can present an explicit and simple formula for

flag curvature.

Recent research shows that in the homogeneous case, problems will generally be-

come much simpler, and we can get beautiful results. For example, in [DE08] the sec-

ond author obtained a very simple formula for S-curvature of homogeneous Randers

spaces and gave some interesting applications of the formula. Based on this formula

and the previous work of Berger, Wallach, Aloff–Wallach and Bérard-Bergery on ho-

mogeneous Riemannian manifolds of positive sectional curvature, we classified all

the homogeneous Randers spaces with isotropic S-curvature and positive flag curva-

ture in [HD11]. It seems hopeful that we can get a simple formula for flag curvature

of an arbitrary homogeneous Randers spaces. However, even in this case the compu-

tation is rather complicated. Therefore we first consider the special case of Douglas

type. In this case, Shen obtained an explicit formula of the flag curvature under a

coordinate system ([CS05]), and, in the homogeneous case, we can get a satisfactory

formula without using coordinate systems.
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Here is a simple description of each section of this paper. In Section 1 we study the

Levi-Civita connection of homogeneous Riemannian manifolds and compute some

quantities that will be used to deduce the formula of flag curvature. In Section 2, we

present a formula of the flag curvature of homogeneous Randers spaces of Douglas

type, without using the local coordinate systems. In Sections 3, 4, and 5, we apply this

formula to study three problems. We first give an explicit formula of flag curvature of

an arbitrary left invariant Finsler metric on a two-step nilpotent Lie group. Then we

give a complete description of all the homogeneous Randers spaces of Douglas type

with negative flag curvature. This results in, among other things, a lot of examples

of non-Riemannian homogeneous Randers spaces with negative flag curvature. Fi-

nally, we prove a rigidity theorem on Berwald spaces asserting that a homogeneous

Randers space of Berwald type whose flag curvature is everywhere non-zero must be

Riemannian.

1 The Levi-Civita Connection of Homogeneous Spaces

Let (G/H, α) be a homogeneous Riemannian manifold. Then the Lie algebra of G

has a decomposition g = h + m, where h is the Lie algebra of H and Ad(h)(m) ⊂
m, ∀h ∈ H. We identify m with the tangent space To(G/H) of the origin o = H. We

shall use the notation 〈 · , · 〉 to denote the restriction of the Riemannian metric to m.

Note that it is an Ad H-invariant inner product on m. Hence we have

〈[x, u], v〉 + 〈[x, v], u〉 = 0, ∀x ∈ h, ∀u, v ∈ m,

equivalently,

〈[x, u], u〉 = 0, ∀x ∈ h, ∀u ∈ m.

Given v ∈ g, the fundamental vector field v̂ generated by v is ([KN63])

v̂gH =
d

dt
exp(tv)gH|t=0, ∀g ∈ G.

Since the one-parameter transformation group exp tv on G/H consists of isometries,

v̂ is a Killing vector field.

Let X̂, Ŷ , Ẑ be Killing vector fields on G/H and let U ,V be arbitrary smooth vector

fields on G/H. Then we have ([BE87, pp. 40, 182, 183])

[X̂, Ŷ ] = −[X,Y ]̂,

X̂〈U ,V 〉 = 〈[X̂,U ],V 〉 + 〈[X̂,V ],U 〉,

〈∇X̂Ŷ , Ẑ〉 = −
1

2

(
〈[X,Y ]̂, Ẑ〉 + 〈[X,Z]̂, Ŷ 〉 + 〈[Y,Z]̂, X̂〉

)
,

where ∇ is denotes the Levi-Civita connection of the Riemannian metric α.

Let u1, u2, . . . , un be an orthonormal basis of m with respect to 〈 · , · 〉 and extend

it to a basis u1, u2, . . . , um of g. By [HE78], there exists a local coordinate system on

a neighborhood V of o, which is defined by the mapping

(
exp(x1u1) exp(x2u2) · · · exp(xnun)

)
H → (x1, x2, . . . , xn).
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Suppose gH = (x1, x2, · · · , xn) ∈ U . Then

∂

∂xi

∣

∣

gH
=

d

dt

(

exp(x
1
u1) · · · exp(x

i−1
ui−1) exp

(

(t + x
i
)ui

)

exp(x
i+1

ui+1) · · · exp(x
n
un)H

)

|t=0

=
d

dt

(

exp(x
1
u1) · · · exp(x

i−1
ui−1) exp(tui) exp(−x

i−1
ui−1) · · · exp(−x

1
u1) · gH

)

|t=0

=
d

dt

(

exp te
x1adu1 · · · e

xi−1adui−1 (ui) · gH
)

|t=0.

Denote

(1.1) ex1adu1 · · · exi−1adui−1 (ui) = f a
i ua.

We have
∂

∂xi

∣∣∣∣
gH

= f a
i ûa|gH .

Remark In the sequel, the indices a, b, c, . . . , range from 1 to m, i, j, k, . . . , range

from 1 to n and λ, µ, . . . , range from n + 1 to m.

Let Γl
i j be the Christoffel symbols under the coordinate system, i.e.,

∇ ∂

∂xi

∂

∂x j
= Γ

k
i j

∂

∂xk
.

Then

(1.2) Γ
l
i j

∂

∂xl
= ∇ ∂

∂xi

∂

∂x j
=

∂ f a
j

∂xi
ûa + f b

i f a
j ∇ûb

ûa.

From (1.1), we see that f a
i are functions of x1, . . . , xi−1. Thus for i ≥ j, we have

∂ f a
j

∂xi
= 0.

Therefore (1.2) becomes

Γ
l
i j

∂

∂xl
= f b

i f a
j ∇ûb

ûa, i ≥ j.

Differentiating the above equation with respect to xk, we get (see [DE08])

∂Γl
i j

∂xk

∂

∂xl
+ Γ

s
i jΓ

l
ks

∂

∂xl
=

∂ f b
i f a

j

∂xk
∇ûb

ûa + f b
i f a

j f c
k ∇ûc

∇ûb
ûa, i ≥ j.

Differentiating (1.1) with respect to xk and letting (x1, . . . , xn) → 0, we obtain

∂ f a
i

∂xk
(0) = f (k, i)Ca

ki ,

where C c
ab are the structure constants of g defined by [ua, ub] = C c

abuc and f (k, l) is

defined by

f (k, i) :=

{
1, k < i,

0 k ≥ i.

Considering the value at the origin o, we get the following lemma.
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Lemma 1.1 We have

Γ
l
i j(o) = f (i, j)C l

i j + 〈∇ûi
û j , ûl〉,

∂Γl
i j

∂xk

∣∣∣
o
= −Γ

s
i j(Γ

l
ks + 〈∇ûk

ûl, ûs〉) + f (k, j)Ca
k j〈∇ûi

ûa, ûl〉

+ f (k, i)C s
ki〈∇ûs

û j , ûl〉 + ûk〈∇ûi
û j , ûl〉, i ≥ j.

We will also need the following lemma.

Lemma 1.2 For ui , u j , uk, ul ∈ m, uλ ∈ h, we have

〈∇ûi
û j , ûl〉|o = −

1

2

(
C l

i j + C
j
il + C i

jl

)
,

〈∇ûi
ûλ, û j〉|o =

〈
[u j , uλ]m, ui

〉
= C i

jλ,

ûk〈∇ûi
û j , ûl〉|o =

1

2

(
C l

kaCa
i j + C

j
kaCa

il + C i
kaCa

jl + C s
i jC

t
klδst + C s

ilC
t
k jδst + C s

jlC
t
kiδst

)
,

where [vi , v j]m denotes the projection of [vi , v j] to m.

By the above two lemmas, at the origin o we have

Γ
j
ni − Γ

i
n j = 〈∇ûn

ûi , û j〉 − 〈∇ûn
û j , ûi〉 =Cn

ji .

2 Flag Curvature of Homogeneous Randers Spaces of Douglas Type

Let

F = α + β =

√
ai j(x)yi y j + bi(x)yi

be a Randers metric of Douglas type on a manifold M, where α =
√

ai j(x)yi y j is a

Riemannian metric and β = bi(x)yi is a closed 1-form. Denote by ∇β = bi; j yidx j

the covariant derivative of β with respect to α. Then the Riemann curvature is given

by (see[CS05])

(2.1) Ri
k = R̄i

k +

(
3
(
Φ

2F

) 2

−
Ψ

2F

){
δi

k −
Fyk

F
yi
}

+ τk yi ,

where

Φ = bi; j yi y j , Ψ = bi; j;k yi y j yk, τk =
1

F
(bi; j;k − bi;k; j)yi y j ,

and R̄i
k is the coefficient of the Riemann curvature tensor of α.

Now we consider the homogeneous case. Let (G/H, α) and m be as above. It is

well known that a Randers metric F = α + β is G-invariant if and only if α and

β are both invariant under G (see [BR04]). Moreover, through α, the 1-form β
corresponds to a vector field W that is invariant under G and satisfies α(W ) < 1.
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This implies that there is a one-to-one correspondence between the invariant Randers

metrics on G/M with the underlying Riemannian metric and the set

V = {u ∈ m|Ad(h)u = u, 〈u, u〉 < 1, ∀h ∈ H}

(see [DH04]). Recall that the corresponding Randers metric is of Douglas type if and

only if 〈u, [m,m]m〉 = 0 (see [DE08]).

Let (G/H, F) be a homogeneous Randers space and (U , (x1, · · · , xn)) be the lo-

cal coordinate system as before. We suppose the vector field W generated by u =

cun(0 ≤ c < 1) corresponds to the invariant 1-form β. Then

[h, un] = 0, Ca
λn = 0,

and

ũ|gH =
d

dt
g exp(tu)H|t=0

=
d

dt

(
exp x1u1 exp x2u2 · · · exp(xn + ct)un

)
H|t=0

= c
∂

∂xn
|gH .

A direct computation shows that

bi = β
( ∂

∂xi

)
=

〈
Ũ ,

∂

∂xi

〉
= c

〈 ∂

∂xn
,
∂

∂xi

〉
= cani ,

∂bi

∂x j
= c

∂ani

∂x j
= c

(
Γ

k
n jaki + Γ

k
jiakn

)
,

bi; j =
∂bi

∂x j
− blΓ

l
i j = cΓk

n jaki ,

bi; j;k|o = c
( ∂Γi

n j

∂xk
+ Γ

s
n jΓ

i
sk − Γ

i
nsΓ

s
jk

)
,

bi; j;k|o − bi;k; j |o = c
( ∂Γi

n j

∂xk
−

∂Γi
nk

∂x j
+ Γ

s
n jΓ

i
sk − Γ

s
nkΓ

i
s j

)
= cR̄i

nk j |o.

By the antisymmetry of R̄ and the fact that ai j(o) = δi j , we obtain

τk =
c

F
R̄i

nk j yi y j
= −

c

F
R̄n

k .

Since β is a closed 1-form, we also have bi; j = b j;i . By [DE08], we obtain

〈
[ui , u j], un

〉
= 0, Cn

i j = 0.

Since the inner product on m is Ad(H)-invariant, we get C
j
λi + C i

λ j = 0.
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Let U : m × m → m be the bilinear symmetric map defined by

2
〈

U (X,Y ),Z
〉
=

〈
[Z,X]m,Y

〉
+
〈

[Z,Y ]m,Z
〉
, ∀Z ∈ m.

Then we have

F = α + β =

√
〈y, y〉 + 〈y, u〉,

Fyk =
〈y, uk〉√
〈y, y〉

+ 〈u, uk〉,

Φ =
〈

[y, u], y
〉
= −

〈
U (y, y), u

〉
,

Ψ = −cC0
0s(C

0
ns + C s

n0) = 2
〈

U
(

y,U (y, y)
)
, u
〉
.

Now we are ready to compute the flag curvature of invariant Randers spaces of

Douglas type. By definition, the flag curvature of a Finsler space (M, F) is defined by

K(P, y) =
gy(Ry(v), v)

gy(v, v)gy(y, y) − gy(v, y)2
,

where P ⊂ TxM is a tangent plane containing y and v ∈ P such that P = span{y, v}
and

(2.2) gy(v1, v2) =
1

2

∂2

∂s∂t

[
F2(y + sv1 + tv2)

]
s=t=0

.

Sometimes we will also denote the above flag curvature as K(y, v, y ∧ v). Note that in

this case the first vector y is the flag pole.

By a simple computation, one gets

gy(W,V ) =
〈

W,
y

α
+ u

〉〈
V,

y

α
+ u

〉
+

F

α
〈W,V 〉 −

F

α3
〈W, y〉〈V, y〉.

gy(W,W ) =
〈

W,
y

α
+ u

〉 2

+
F

α
〈W,W 〉 −

F

α3
〈W, y〉2,

gy(y,W ) = F
〈

W,
y

α
+ u

〉
,

gy(y, y) = F2,

gy(W,W )gy(y, y) − gy(W, y)2
=

F3

α3

(
〈W,W 〉〈y, y〉 − 〈W, y〉2

)
.
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So by (2.1) we have

gy(Ry(W ),V )

=

〈
R̄(W, y)y −

〈
R̄(W, y)y, u

〉
y + Φ̃W −

Φ̃

F

〈
u +

y

α
,W

〉
y,

y

α
+ u

〉〈
V,

y

α
+ u

〉

+
F

α

〈
R̄(W, y)y −

〈
R̄(W, y)y, u

〉
y + Φ̃W −

Φ̃

F

〈
u +

y

α
,W

〉
y,V

〉

−
F

α3

〈
R̄(W, y)y −

〈
R̄(W, y)y, u

〉
y + Φ̃W −

Φ̃

F

〈
u +

y

α
,W

〉
y, y

〉
〈V, y〉

=
F

α

〈
R̄(W, y)y,V

〉
+

F

α3
Φ̃
(
〈W,V 〉〈y, y〉 − 〈W, y〉〈V, y〉

)
,

where

Φ̃ = 3
(
Φ

2F

) 2

−
Ψ

2F
=

1

4F2

(
3
〈

U (y, y), u
〉 2

− 4F ·
〈

U (y,U (y, y)), u
〉)

.

Substituting the above quantities into (2.1) and (2.2), we get the following theo-

rem.

Theorem 2.1 Let (G/H, α) be a homogeneous Riemannian manifold and suppose

that the Lie algebra g of G has a decomposition g = h + m with Ad(h)m ⊂ m. Let F be a

G-invariant Randers metric of Douglas type on G/H with the underlying Riemannian

metric α, then the flag curvature of F is given by

(2.3) K(P, y) =
α2

F2
K̄(P) +

1

4F4

(
3
〈

U (y, y), u
〉 2

− 4F ·
〈

U (y,U (y, y)), u
〉)

,

where u is the vector in m corresponding to the 1-form and K̄ is the sectional curvature

of α.

Remark The sectional curvature K̄ has a very explicit formula. In fact, given an

orthonormal basis v1, v2 of P, we have

K̄(P) = |U (v1, v2)|2 −
〈

U (v1, v1),U (v2, v2)
〉
−

3

4
|[v1, v2]m|

2

−
1

2

〈
[v1, [v1, v2]]m, v2

〉
−

1

2

〈
[v2, [v2, v1]]m, v1

〉
.

See [HE74, BE87].

3 Left Invariant Randers Metrics on Two-step Nilpotent Lie Groups

From now on we will give some applications of formula (2.3). We first consider left

invariant Randers metrics on a two-step nilpotent Lie group. Recall that a Lie algebra

g is called two-step nilpotent if g is non-abelian and [g, [g, g]] = 0. A connected Lie
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group G is called two-step nilpotent if its Lie algebra is two-step nilpotent. Two-step

nilpotent Lie groups are the simplest non-abelian Lie groups, but they admit many

interesting phenomena that do not happen in the abelian case. Studies on left invari-

ant Riemannian metrics on such a type of Lie groups have many important merits

in differential geometry. For example, A. Kaplan studied left invariant Riemannian

metrics on H-type Lie groups (a special kind of two-step nilpotent Lie group) and

obtained many examples of commutative Riemannian manifolds [KA83]. J. Lau-

ret constructed the first example of commutative Riemannian manifold which is not

weakly symmetric [LA98], which is a left invariant Riemannian metric on certain

two-step nilpotent Lie group. See also [BRV98, GO96, WO07, ZI96] for more infor-

mation on the study of such metrics.

Now we will give a formula for the flag curvature of an arbitrary left invariant

Randers metric on a two-step nilpotent Lie group. For this we need an alternative

description of Randers metrics, namely the navigation data. It can be shown that a

Randers metric F = α + β can also be written as

F(x, y) =

√
h(y,W )2 + λh(y, y)

λ
−

h(y,W )

λ
,

where h is a Riemannian metric, W is a vector field on M with h(W,W ) < 1 and

λ = 1 − h(W,W ). The pair (h,W ) is called the navigation data of the Randers met-

ric F. This version of Randers metric was introduced by Z. Shen in [SH03]. If F is

a Randers metric with navigation data (h,W ), then we say that F solves Zermelo’s

navigation problem of the Riemannian metric h under the influence of an external

vector field W . The navigation data is convenient in handling problems concerning

flag curvature and Ricci scalar. For example, using navigation data, Bao and Rob-

les presented a very convenient way to describe Einstein–Randers metrics as well as

Randers spaces of constant flag curvature in [BR04].

In a local coordinate system, the transformation law between the defining form

and navigation data can be described as follows. If

F = α + β =

√
ai j yi y j + bi yi ,

then the navigation data has the form

hi j = (1 − ‖β‖2)(ai j − bib j), W i
= −

ai jb j

1 − ‖β‖2
α

.(3.1)

Conversely, the defining form can also be expressed by the navigation data using the

formula

ai j =
hi j

λ
+

Wi

λ

W j

λ
, bi =

−Wi

λ
,(3.2)

here Wi = hi jW
j and λ = 1 − W iWi = 1 − h(W,W ). All of these formulas can be

found in [BR04].
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Let G be a two-step nilpotent Lie group with Lie algebra g. Then left invariant Ran-

ders metrics on G are in one-to-one correspondence to the pairs (〈 · , · 〉, u), where

〈 · , · 〉 is an inner product on g and u is an element in g with length less than 1. The

Randers metric generated by 〈 · , · 〉 and u ∈ g can be written as

F(y) =
√

〈y, y〉 + 〈u, y〉.

By (3.1) and (3.2) it is easy to obtain the navigation data (h,W ). The left invariant

Riemannian metric h is generated by the inner product 〈 · , · 〉h on g determined by

〈y, y〉h = λ
(
〈y, y〉 − 〈u, y〉2

)
, y ∈ g,

and the left invariant vector field W is generated by

w = −
1

λ
u ∈ g,

here λ = 1 − 〈u, u〉.
Since g is nilpotent and non-abelian, the center z of g is non-zero and not equal

to g. Furthermore we have [g, g] ⊂ z. Let a be the orthogonal complement of z in g

with respect to the inner product 〈 · , · 〉h, and for x ∈ g we denote by xz and xa the

z-component and a-component of x, respectively.

Theorem 3.1 Let G, g, 〈 · , · 〉, u, 〈 · , · 〉h, w, z, and a be as above and let F be the

left invariant Randers metric on G generated by the pair (〈 · , · 〉, u). Denote u1 =
µ
λua,

where

µ = 1 −
1

λ

(
〈ua, ua〉 − 〈u, ua〉

2
)
.

Define an inner product 〈 · , · 〉1 on g by letting

|y|1 =
1

µ

√
λµ

(
|y|2 − 〈y, u〉2

)
+
(
〈y, ua〉 − 〈u, ua〉〈y, u〉

) 2
,

where | · | and | · |1 denote the length of 〈 · , · 〉 and 〈 · , · 〉1, respectively. Let F1 be the

Randers metrics defined by the pair (〈 · , · 〉1, u1). Then the flag curvature of F can be

expressed as

K(y, v, y ∧ v) =
α2

1( ỹ)

F2
1( ỹ)

K̄1( ỹ ∧ v)

+
1

F4
1( ỹ)

(
3
〈

U1( ỹ, ỹ), u1

〉 2

1
− 4F1( ỹ)

〈
U1( ỹ,U1( ỹ, ỹ)), u1

〉
1

)
,

where K̄1 denote the sectional curvature of the Riemannian metric α1, U1 is a bilinear

symmetric map from g × g defined by

〈
U1(z1, z2), z

〉
1
=

1

2

(〈
[z, z1], z2

〉
1

+
〈

[z, z2], z1

〉
1

)
, z, z1, z2 ∈ g,

and ỹ = y +
F1(y)
λ uz.
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Proof Since (h,W ) is the navigation data of F, and 〈 · , · 〉h and w are the corre-

sponding inner product in g and vector in g, respectively, we have u = −λw, where

λ = 1 − h(w,w) = 1 − |u|2 (note that h(w,w) = 〈u, u〉). It is clear that the Ran-

ders metric F can be obtained through two steps of navigation deformation. The first

step is to deform the Riemannian metric h under the vector field corresponding to

wa = − 1
λua. We denote the resulting Finsler metric by F1; The second step is to de-

form the Finsler metric F1 under the vector field corresponding to wz = − 1
λuz, and

the resulting Finsler metric is exactly F.

By (3.1) and (3.2), one can easily obtain the defining form of F1 as follows

F1(y) = α1(y) + 〈y, u1〉,

where u1 =
µ
λua. By the assumption [g, g] ⊂ z we see that 〈wa, [g, g]〉h = 0. Then

we have

〈u1, [g, g]〉1 =
µ

λ
〈ua, [g, g]〉1

=
µ

λ

( 1

µ

〈
ua, [g, g]

〉
h

+
1

µ2
〈wa, ua〉h ×

〈
wa, [g, g]

〉
h

)

= 0.

Therefore, u1 is orthogonal to [g, g] with respect to the inner product 〈 · , · 〉1. Hence

F1 is a Douglas metric. Applying Theorem 2.1, the formula of the flag curvature of

F1 is

K1(y, v, y ∧ v) =
α2

1(y)

F2
1(y)

K̄1(y ∧ v)

+
1

F4
1( ỹ)

(
3
〈

U1(y, y), u1

〉 2

1
− 4F1( ỹ)

〈
U1(y,U1(y, y)), u1

〉
1

)
,

where K̄1 denotes the sectional curvature of α1.

Now we consider the second navigation deformation. We first assert that the vec-

tor field generated by wz, denoted by Wz, is a Killing vector field of the Finsler metric

F1. Since both F1 and Wz are left invariant, we only need to prove this at the identity

element e. The one-parameter transformation group of G generated by Wz is

ϕt : g 7−→ g exp twz.

So Wz is a Killing vector field of F1 if and only if ϕt consists of isometries of F1. Now

for v ∈ Te(G) = g, we have

F1(dϕt (v)) = F1

([ d

ds
exp(sv) exp(twz)

]∣∣
s=0

)
.

Since wz lies in the center of g, v,wz are commutative. Therefore we have

exp(sv) exp(twz) = exp(sv + twz).
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This implies that

F1

(
dϕt (v)

)
= F1

([ d

ds
exp(sv + twz)

]
s=0

)
= F1(v).

This proves our assertion. Now by a theorem of Huang–Mo ([HM07]), the flag cur-

vature of F, which is obtained by a navigation deformation of F1 through a Killing

vector field, can be expressed as

K(y, v, y ∧ v) = K1( ỹ, v, ỹ ∧ v),

where ỹ = y − F1(y)wz = y +
F1(y)
λ uz. This completes the proof of the theorem.

4 Negatively Curved Spaces

In this section, we use formula (2.3) to give a complete description of all the homo-

geneous Randers metrics of Douglas type whose flag curvature is negative. We first

prove the following theorem.

Theorem 4.1 Let F = α + β be a G-invariant Randers metric of Douglas type on the

homogeneous manifold G/H. If the flag curvature of F is negative, then the sectional

curvature of α is negative.

Proof We only need to prove the theorem at the origin o. Assume β 6= 0. Let

P be a tangent plane at o. Note that the orthogonal complement (with respect to

the inner product corresponding to α) u⊥ of Ru has dimension dim g − 1. Thus

dim(P ∩ u⊥) ≥ 1. Therefore we can select y0 6= 0 such that y0 ∈ P ∩ u⊥. Then

F(y0) = F(−y0) = α(y0).

On the other hand, by the bi-linearity, we have U (−y0,−y0) = U (y0, y0) and
U (−y0,U (−y0,−y0)) = −U (y0,U (y0, y0)). Applying (2.3) to the flags (P, y0) and
(P,−y0) we get

(4.1) K(P, y0) =
α2(y0)

F2(y0)
K̄P +

1

4F4(y0)

(

3〈U (y0, y0), u〉2 − 4F(y0) · 〈U (y0,U (y0, y0)), u〉
)

,

and

(4.2) K(P,−y0) =
α2(y0)

F2(y0)
K̄P +

1

4F4(y0)

(

3〈U (y0, y0), u〉2
+ 4F(y0) · 〈U (y0,U (y0, y0)), u〉

)

.

Taking the summation of both sides of (4.1) and (4.2) we obtain

K(P, y0) + K(P,−y0) = 2
α2(y0)

F2(y0)
K̄P +

3

2F4(y0)

〈
U (y0, y0), u

〉 2
.

By assumption, the left side of the above equation is negative. Therefore K̄(P) < 0.

This completes the proof of the theorem.
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Now suppose (M, F) is a connected Randers space of Douglas type with negative

flag curvature. Theorem 4.1 asserts that the underlying Riemannian metric α also has

negative sectional curvature. Let G be a connected transitive group of isometries of

F. Then G is a subgroup of the full group of isometries of the Riemannian manifold

(M, α). A Theorem of J. A. Wolf then asserts that G contains a solvable subgroup S

which is also transitive on M (see the proof of [WO64, Corollary 1(c)]). Applying the

argument of E. Heintze in [HE74] and taking into account Theorem 4.1, we get the

following theorem.

Theorem 4.2 Let (M, F) be a homogeneous Randers space of Douglas type with neg-

ative flag curvature. Then F can be viewed as a left invariant Randers metric on a con-

nected simply connected solvable Lie group G. Furthermore, the underlying Riemannian

metric α, which is a left invariant metric on G, also has negative sectional curvature.

Now we give a description of all the homogeneous Randers spaces of Douglas

type with negative flag curvature. By the above theorem, any such a space can be

written as a pair (G, F), where G is a connected solvable Lie group and F is a left

invariant Randers metric on G. Since F has negative curvature, G is necessarily simply

connected ([DH07]). Hence the pair (G, F) is uniquely determined by a Randers

norm on the Lie algebra g of G. In the following we will denote the Randers space

(G, F) as a pair (g, F0), where F0 is the corresponding Minkowski norm on g. Let

〈 · , · 〉 be the corresponding inner product on g and let u be the corresponding vector

in g. By Theorem 4.1, the pair (g, 〈 · , · 〉) also has negative sectional curvature.

Theorem 4.3 Let g be a real solvable Lie algebra. Then the following two conditions

are equivalent:

(i) g admits a Randers norm of Douglas type with negative flag curvature;

(ii) dim g − dim g ′
= 1, where g ′

= [g, g] is the derived subalgebra of g, and there

exists A0 ∈ g such that the eigenvalues of the linear map ad(A0) on g ′ have positive

real part.

Furthermore, on any real solvable Lie algebra satisfying condition (ii), there exists non-

euclidean Randers norms of Douglas type with negative flag curvature.

Proof Theorem 3 of [HE74] asserts that condition (ii) is equivalent to the fact that

there exists an inner product on g with negative sectional curvature. Combining

this with Theorem 4.1, we prove the equivalence of conditions (i) and (ii). Now we

prove that on any real solvable Lie algebra satisfying (ii) there exists a non-euclidean

Randers norm of Douglas type with negative flag curvature. Let 〈 · , · 〉 be an inner

product on g with negative sectional curvature. The set of all tangent planes at the

origin is compact, hence there exists a positive number M such that K̄(P) < −M, for

any tangent plane P at the origin. On the other hand, the map U : g × g is smooth,

hence the set {U (y, y)|〈y, y〉 = 1} must be compact. This then implies that the set

{
U
(

y,U (y, y)
)
|〈y, y〉 = 1

}

is also compact. Now we consider the vector cA0, where c is a constant. Without loss

of generality we can assume A0 has length 1. Further, we can also assume that A0 is
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orthogonal to g ′ (see [HE74, Proposition 2]). Then the Randers norm Fc generated

by the pair (〈 · , · 〉, cA0) is of Douglas type. By the above argument we see from (2.3)

that there is a ε > 0 such that for any c satisfying |c| < ε and any tangent plane P

in g, the flag curvature Kc(P, y) < 0, for any y ∈ P with 〈y, y〉 = 1. This proves the

theorem.

Remark Heintze pointed out in [HE74] that there are many examples of solvable

Lie algebras satisfying Theorem 4.2(ii). This results in a large numbers of examples

of non-Riemannian homogeneous Randers spaces of Douglas type with negative flag

curvature. In [HD11], we proved that a homogeneous Randers space with almost

isotropic S-curvature and negative Ricci scalar must be Riemannian. The above ar-

gument shows that the restriction in S-curvature cannot be dropped.

5 A Rigidity Result on Berwald Spaces

In this section we will prove a rigidity result on homogeneous Randers spaces of

Berwald type. Recall that the Randers metric (G/H, F) in Theorem 3.1 is of Berwald

type if and only if the vector field generated by u is parallel with respect to α. In

[DE08], the second author proved that this is equivalent to the condition that it is of

Douglas type and satisfies the following condition:

(5.1)
〈

[u, v1]m, v2

〉
+
〈

v1, [u, v2]m

〉
= 0, ∀v1, v2 ∈ m.

By the definition of the map U , the above condition is just

〈u,U (v1, v2)〉 = 0, ∀v1, v2 ∈ m.

Therefore, for an invariant Randers metric of Berwald type, the formula of the flag

curvature becomes

(5.2) K(P, y) =
α2(y)

F2(y)
K̄(P).

Now we can prove the following theorem.

Theorem 5.1 Let (M, F) be a homogeneous Randers space of Berwald type. If the

sectional curvature of (M, F) is everywhere non-zero, then F is a Riemannian metric.

Proof Without loss of generality, we can assume that M is simply connected. Since

the flag curvature K(y, v, y∧v) is a continuous function of y and v, the condition that

K is everywhere nonzero means that K is either everywhere positive or everywhere

negative. We now prove the theorem case by case.

First assume that the flag curvature K is everywhere positive. Then by (5.2), the

underlying Riemannian metric has positive sectional curvature. Connected, simply

connected, homogenous Riemannian manifolds have been classified by N. Wallach

([WA72]) and L. Bérard Bergery ([BB76]). Their results are summarized in the fol-

lowing table:
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Even dimensions isotropy repr.

S2n
= SO(2n + 1)/SO(2n) irred.

CPm
= SU (m + 1)/U (m) irred.

HPk
= Sp(k + 1)/(Sp(k) × Sp(1)) irred.

CaP2
= F4/Spin(9) irred.

F6
= SU (3)/T2 m = m1 ⊕ m2 ⊕ m3

F12
= Sp(3)/(Sp(1) × Sp(1) × Sp(1)) m = m1 ⊕ m2 ⊕ m3

F24
= F4/Spin(8) m = m1 ⊕ m2 ⊕ m3

Odd dimensions isotropy repr.

S2n+1
= SO(2n + 2)/SO(2n + 1) irred.

M7
= SO(5)/SO(3) irred.

M13
= SU (5)/(Sp(2) ×Z2

S1) m = m1 ⊕ m2

N1,1 = SU (3) × SO(3)/U ∗(2) m = m0 ⊕ m1 ⊕ m2

Nk,l = SU (3)/S1
k,l, gcd(k,l)=1,

kl(k + l) 6= 0 m = m0 ⊕ m1 ⊕ m2

Table 5.1: Compact homogeneous Riemannian manifolds with positive curvature

Note that besides the rank one Riemannian symmetric spaces, which can also be

written as the coset of other type of Lie groups, for any other space, when we write

it as the coset space G/H, the Lie group G is semisimple. Now a theorem of An-

Deng ([AD08]) asserts that any invariant Randers metrics of Douglas type on a coset

space G/H, such that the Lie algebra g of G is perfect (that is, [g, g] = g), must be

Riemannian. Since a semisimple Lie algebra must be perfect, any invariant Randers

space of Berwald type on the above homogeneous manifolds must be Riemannian.

It remains to consider the rank one compact symmetric spaces. These spaces in-

clude the spheres Sn, the real projective spaces RPn, the complex projective spaces

CPn, the quarternion projective spaces HPn, and the Cayley projective plane CayP2.

Besides the standard transitive Lie groups actions, there are some other Lie groups

that act transitively on such spaces. These Lie groups have been classified by Mont-

gomery–Samelson [MS43], A. Borel [BO49] and A. L. Oniščik [ON63]. The list of

compact Lie groups that have a transitive and effective action on the spheres can be

found in [BE87, p. 179]. Besides the spheres, the only rank one symmetric spaces that

admit transitive and effective actions of Lie groups other than the standard Lie groups

are CP2n−1, which admits an action of Sp(n) through the identification H
n
= C

2n.

These results imply that if we write a rank one compact symmetric space as a coset

space G/H, then G is semisimple with only two exceptions: S2n−1
= U (n)/U (n − 1)

and S4n−1
= Sp(n)U (1)/Sp(n − 1)U (1). However, U (n) contains the simple Lie

groups SU (n), which is transitive on S2n−1; Sp(n)U (1) contains the simple Lie group

Sp(n), which is also transitive on S4n−1. From this we conclude that any homoge-

neous Randers metric on a rank one compact symmetric space can be viewed as a G-

invariant Randers metric on a coset space G/H, where G is a semisimple Lie group.

Hence by the above argument we conclude that any homogeneous Randers metric

of Douglas type on rank one compact symmetric space must be Riemannian. This
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assertion holds in particular, for Berwald metrics. This completes the proof of the

positive case .

Now we consider the negative case. In this case the underlying Riemannian metric

α has negative sectional curvature. Hence by Theorem 4.3, (M, F) can be written

as a left invariant Randers metric on a solvable Lie algebra g, such that the derived

subalgebra g ′ has dimension dim g − 1. Moreover, the Randers metric is generated

by a pair (〈 · , · 〉, cA0), where A0 is orthogonal to g ′, 〈A0,A0〉 = 1, c is a constant,

and the eigenvalues of ad A0 on g ′ has positive real part. The last condition implies

that cA0 cannot satisfy condition (5.1) unless c = 0, since otherwise ad A0|g ′ must be

a skew-symmetric map with respect to 〈 · , · 〉, hence all its eigenvalues must be either

0 or pure imaginary. This completes the proof of the theorem.
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