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On the Smallest and Largest Zeros of
Miintz-Legendre Polynomials

Ulfar E. Stefansson

Abstract. Miintz—Legendre polynomials L, (A; x) associated with a sequence A = {\} are obtained
by orthogonalizing the system (xY,x*,x*,...) in L,[0, 1] with respect to the Legendre weight. If
the A’s are distinct, it is well known that L, (A; x) has exactly n zeros Ly < ly—1n < -+ < hu <lin
on (0, 1).

First we prove the following global bound for the smallest zero,

n
1
exp(—4z 72)\] n 1) < ln‘n-
j=0

An important consequence is that if the associated Miintz space is non-dense in L, [0, 1], then

oo
1
infx,, > ex 745 — | >0,
non = p( = 2)\j+1) '

so the elements L, (A; x) have no zeros close to 0.
Furthermore, we determine the asymptotic behavior of the largest zeros; for k fixed,

lim_|log .| 2":(2%' +1)= <%> 2’
j=0

where ji denotes the k-th zero of the Bessel function Jy.

1 Introduction and Main Results

Miintz polynomials associated with a sequence A = { A} 2, are functions of the form

n
St
k=0
and the corresponding Miintz space is defined by

M(A) := span{x*, x x*, ... }.
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If the Ay’s are real and satisfy

(1.1) I?;t(;{Ak} > 71/2 and Ak 7é )‘jv ] 7é k,
then the celebrated Miintz Theorem [1,12,4]] states that M(A) is dense in L, [0, 1] if
and only if
(1.2) i ! =00
' 2N+ 1 o

If the constant functions are included (i.e., Ay = 0) and infi>; Ay > 0, is also
equivalent to the denseness of M(A) in C[0, 1].

The n-th Miintz-Legendre polynomial L,(A; x) is determined by the orthogonality
conditions

5n,m

m, n,m:0,1,2,...
n

1
/ L,(A;x)L,,,(A;x)dx =
0

and is defined by

1 it N+l X
Ly(Asx) := — — ———dt,
n(45) 27ri FkH:O F— M t— N\,

where the simple contour I' surrounds all the zeros of the denominator of the in-
tegrand. If (L)) is satisfied, then L,(A;x) is indeed an element of the Miintz space
M(A), and the Residue Theorem shows that

[T O+ A+ 1)
[Ti—o — X))
ik

n
Ln(A; X) = Z Ck,nx/\ka Ckn =
k=0

It is well known ([3]) that if the A\;’s are distinct, then L, (A; x) has precisely 7 zeros

on (0, 1), and we denote them by
0< ln,n < ln—l,n <--- < lZ,n < ll,n <1

The zeros of L, and L, strictly interlace, i.e.,
(1-3) ln+1,n+l < ln,n < ln,n+1 < ln—lA,n << ll,n < ll,n+1-

In [2, E.8, §3.4] Borwein and Erdélyi give a global estimate for the zeros. If we let

)\f:i)n := min{ Ao, ..., A} and A" = max{\, ..., \,}, then
2n+1 _J%
(1.4) exp(—Zf) <l,,“n<...<ll,n<exp( o) )7
2)\[2111 +1 ' 2(271 + 1)(2>\n’zax + 1)

where j; is the smallest positive zeros of the Bessel function J, of order 0 (see [6}10]).
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D. S. Lubinsky and E. B. Saff [5] determined the zero distribution of the Miintz
extremal polynomials T), ,(A) that satisfy

n—1
IT0p (M0 = min |[x™ = cjx
€0yeesCn—1
j:O Lp[o-,l]
Namely, if
. A
lim — = a,
n—oo MH

for some v > 0, then the normalized zero counting measure of T, ,(A) converges
weakly to

a ta—l

—

T /ta(l _ ta)
and if & = 0 or 1, the limiting measure is a Dirac delta at 0 or 1 respectively. Let-
ting p = 2 gives the Miintz—Legendre polynomials. The asymptotics of the spacing
between two consecutive zeros Iy, < i, was studied by the author in [9].

In [[7] the author determined the asymptotic behavior of L, (A;x) as n — oo uni-

formly for x € (0, 1). The main tool was the following formula, which holds for all
real sequences A. For x € (0, 1),

i —tl
sin(©,(t) — tlogx) gt

(15) Lirn = —— [
. ' ’x_”\/’z/o VA2 7

where
n—1 * )\*
O,0) =2 arctan — + arctan —%
n(t) ;0 ; .

and A} = A\ +1/2forall k.

In [8]] this formula was revisited and used to compute the endpoint limit asymp-
totics when x — 17. The main result was the following. Suppose that A : —1/2 <
Ao < A < A < -- - satisfies the regularity condition

(1.6) li En
' oo DAyt 1

where

n—1

20, + 1
1. = .

(1.7) Spi= ) QM+ 1)+ S

k=0
Then uniformly for bounded y > 0,

2 /45 y?
. —P AT _ 1 B _

9 im L) = fim 11 ) = b
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and the error term is O ( 2, + 1)/2,1) asn — oo.

Using the identity arctan y = m/2 — arctan(1/y), it is easy to see that we can
alternatively write (L.5)) in the form

(=)™ [°° cos (<I>,1(t) + tlogx) 0

)
X Jo /22 4+ g2
n

n—1
t t
D,(t) =2 E arctan 5] + arctan v
j=0 J n

(1.9) Ly (Asx) =

where

This representation will be useful when considering x close to 0.
The main results are presented here. First we get a global bound for the smallest
zero.

Theorem 1.1 Let A = {\}32, be a sequence of real numbers greater than —1/2.

Then
n—1 1 1
—4 -2 Lin.
eXp< j_zoz/\jﬂ 2>\n+1) <

Remark This considerably improves the lower bound in (L4]) as can be seen from
the inequality

n—1

1 1 2n+1
422)\,“ +22/\ +1 = Toam 4 q°
j=0 J n min

An important corollary is that for non-dense Miintz spaces, L,(A; x) has no zeros
close to 0 (compare to [2} E.2, §6.2]).

Corollary 1.2 Let A = {\}2, be a sequence of real numbers greater than —1/2
such that

=1
T := —_
kz:(:) 2 +1 <
Then the smallest zero of L,(A; x) for all n is greater than exp(—4T) > 0.

Next we obtain the asymptotic behavior of the largest zeros.

Theorem 1.3 Let A : —1/2 < Ay < A} < Ay < --- be a sequence of real numbers
that satisfies (LG). Then for fixed k > 1,

N2
: _ (i
nlingo|loglk’n|2n = <2) ,
where ji denotes the k-th positive zero of the Bessel function Jy and ¥, was defined in

([T7). The error term is O( /N, + 1)/2,1) asn — oo.

Remark  Theorem gives I, ~ exp(—ji/4%,) as n — oo, which, in the
asymptotic sense, improves the upper bound in (T.4)). We trivially have

28, < 2n+ 1220, +1).

max
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2 Proofs
Proof of Theorem[I.1] For each n we let A} := X\, + 1/2 and
. n—1 1 .\ 1
TN 2N
k=0

Now choose any R, > T,, and let x, = ¢~ * so that x, € (0,e 2"]. We need to
show that L,,(A; x,,) # 0.
According to (1.9)), we can write

(2.1) Ly(Asx,) = Core /°° 08 Pull) dt,
m 0

(A2 +12)1/2

where p,(t) = 2R,t — ®,(¢). The first two derivatives of p, are p; () = 2R, — @/ (t)
and p)/(t) = —®//(¢), where

n—1 )\z A
’ o n
=2 A2+ g2 N
s n

and

n—1
)\* *
(1) = —Zt(ZZ £ ) .

S +e] e’

Since ®/,(0) = 2T, we therefore have p/(0) = 2(R, — T,,) > 0 and p,/(¢t) > 0 for
t > 0. It follows that p, is a strictly increasing function on [0, co) that maps [0, co)
onto [0, 00) (note that ®,(¢) < 7wn+ 7/2)

We can therefore use the substitution u = p,(t) in integral of (Z.I)), and this gives

 cos pu(t) > cosu
o (AP +12) 0 4n
where g,(u) is determined by

an(1) = N2+ )Y 2pl(0).
Then q,(0) = 2X\%(R, — T,,) and since lim;_, o p;(#) = 2R, we have

. . *2
Jim_gu(u) = Jim (% + )2y (1) = oo,
We show that g,,(1) is strictly increasing. The chain rule gives

N d, .. , tpl(t) + (N2 +12)pl(t)
D) = — (7 + 1) py(0)) = T

and since p, (t), p,/(t) > 0 fort > 0, it follows that g;,(1) > 0 for u > 0.
By a standard argument we can write (Z2) as an alternating series >, (—1)ka,
with ax > ap1 > 0 and ap — 0, and the alternating series test shows that

fo‘x’ ;Oiu“) du # 0. The result follows. "
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Before we prove Theorem[I.3] we need two lemmas. First we define the function

fn(y) — Ln(e*)’z/‘lzr’) .y > 0.

Then according to (L8)), uniformly for bounded y > 0,

20, + 1
(2.3) fu(y) = Jo(y) = O< > ) =o(1), n —> 00.
Foreachnand k = 1,2, ..., n, we can write the zeros of L,(x) in the form
lkn _ efr,i”/élzu

forsome 0 < 11, < 13, < - -+ < 1,,,. These are precisely the zeros of f,, i.e.,
(2.4) fulren) =0, k=1,2...,n.
Below, we let || - [|[0,,) denote the supremum norm over [0, y].

Lemma 2.1 Foreachnandy >0, | f/|{0y < %supk | filljo,y1 < 0.

Proof We recall the identity from [3} Corollary 2.6],

n—1
XL (%) = ALa(x) + > (A + 1) Li(x).
k=0
It follows that
(25)  fly) = —see L

2%,

n—1
4 —y? /4%, —2/4%,
— zzn[AnLn(e y )+kz_;(2)\k+1)Lk(e y )}

n—1
y %
T, [A"ﬁ(y)+zko(2Ak+l)ﬁ‘<yv Ek)}

Therefore, since 0 < y+/%i /3, < yforallk=0,1,...,n,

n—1
‘()] < L <z .
1< g8 Mot 00 )] g s < S supl il

Since f; is continuous on [0, y] for each kand f,(t) — Jo(¢) uniformly for t bounded,
it follows from the inequality || fi[[10,,) < [[Jolli0,y1 + || e = Jollio1 = 1+ [ fi = Joll 0,9
that

sup | fillfo,1 < 0.

The result now follows from the trivial inequality £ sup, || fi|ljo.e1 < % supy || fellj0,y1
for each t < y. ]
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Lemma 2.2 Foreachnand y > 0, we have

1 y?
1400 < 5 (145 ) sup lillon < oo

In particular, the family { f,/'} is uniformly bounded on bounded sets [0, y].
Proof Using the identity (Z3) for f,/(y), we obtain

700 =k oo S i (/2]
n—1
- % {Anfn’(y) + ;(m + 1>\/§’:f{<y\/§:>]
=f"/iy) [Af(y>+2<zAk+1>\/7fk( \/7)}

If we let A := 1sup, || fillj0,y)> then since 0 < y/%x/%, < y forall nand k =
0,1,...,n LemmalZTlgives

B y [ Zk
!
Ji (y\/gﬂ = 2\/;Sip||ﬁ‘||[°’y s =4

A+ 572N+ 1) 2
|fn”(y)|§A+%- J; J Ay§(1+%)A.

It follows that

The result now follows from the trivial inequality sup, || fi|| (0. < supy || fell{0,,] = 24
for each t < y. ]

Proof of Theorem[1.3] Let 0 < j; < j, < --- denote the zeros of Jy on the positive
axis. According to the interlacing property (L3), for fixed k, {ri,}, is a decreasing
sequence bounded below by 0, and thus has a limit. Then from (2.3) it is clear that
for each k,

lim 7, = jm

n—00 )
for some integer m = m(k) > 1. By the intermediate value theorem, for n large
enough, f, has a zero close to each ji. Therefore, its smallest zero r; , necessarily has
71 as limit.

We need to show that r, , does not approach j; as well. Suppose to the contrary

that

lim r,, = j;.
n—o0

Then by the mean value theorem, there exists some ¢, € (1}, 12,,) such that

(2.6) filen) =0
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and of course by hypothesis ¢, — j; asn — oo.
Define a point a, = j; + J,, where the error J, is chosen so that

VA + 1)/, = 0(d,) = o(1)

(say 9, = log ((2)\,, + 1)/En)). Then, since f,(y) — Jo(y) uniformly for bounded y
with error O((2\, +1)/%,), and Jo(j;) = 0, we have for some &, between j, and a,,

A
(2.7) fn(an):Jo(an)+fn(an>—fo(“n)215(5")(“"_j1)+o< 22+1>

= Jo(j1)dal1 + o(1)]

as n — oo (it is well known, see Olver [6, §7.6], that the zeros the Bessel functions
are simple, so Jj(§,) — J§(j1) # 0). On the other hand, using (23] again with
IO(jl) =0 ylelds

20, + 1

(2.8) fulan) = L) + £/ (wa)(an — j1) = O( S

) + £, (Vn)On.

for some v, between j; and a,,. Expanding f” about the point ¢, from (2.6) gives

fn/(Vn) = fn/l(nn)(l/n — Cy)

for some 7, between v, and c,, and according to Lemma since ¢, v, — j1 as
n — 00, we have f/(v,) = o(1) as n — oo. Therefore, (Z.8) gives f,(a,) = 0(d,),
which contradicts (2.7). Hence lim,—, o 72,4 # 1.

Since f, has a zero close to j, for n large enough, it follows that r, , — j,. Now we
can repeat the proof for r; , and so on, and we have established that lim,_, o 7% » = Jj&
for each fixed k. The result now follows from —4%, log i , = r,%_n.

As for the error, a linear approximation yields '

Jo(rin) = Jo(rien) — JoGix) = Jo (&) (ren — k)

for some &, between ry , and ji, and thus since the zeros of J; are simple, (2.3)) and

24) yield

2M, + 1

ew = i = O (Jo(rea)) = o( .

), n — 00. |
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