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1. Introduction

Systematic ways of constructing general solutions of the vacuum Einstein
equations are provided by Cauchy problems of various flavours. One such
classical problem consists of prescribing initial data on a light-cone. The formal
aspects of this Cauchy problem are well understood by now [5, 9, 11, 19].
However, because of the singularity at the vertex, there arise significant difficulties
when attempting to prove an existence theorem for general initial data, and only
special cases have been established in the literature so far [4, 5]. It is the purpose
of this work to fill this gap and prove an existence theorem for an exhaustive class
of initial data, in the sense that every smooth light-cone in every smooth vacuum
space–time arises from our construction.

Ricci-flat metrics are flat in space–time dimensions n + 1 = 2 and 3, which
renders trivial the associated local Cauchy problem on the light-cone. Therefore
we restrict attention to n > 3.

We will prove existence of a space–time with initial data on a light-cone CO ,
with vertex O , using the wave-map gauge scheme of [5, 11, 19]. For this one
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needs to prove that the initial fields gµν |CO arise from some smooth metric, so
that the Cagnac–Dossa theorem applies [13]. In this scheme the fields gµν |CO

are constructed by solving a set of wave-gauge constraint equations starting
from geometric initial data (g̃, κ) (for notation, see below), which results in a
tensor field gµν |CO on CO with seemingly intractable behaviour at the vertex. The
problem addressed, and solved, in this work is to show that gµν |CO is indeed the
restriction to CO of some smooth metric, which leads to our first main result:

THEOREM 1.1. Let M be an n-dimensional manifold, n > 3, and let O ∈M .
Consider a symmetric tensor g̃ induced by a smooth Lorentzian metric C on its
null cone CO centred at O. Then there exists a smooth metric g defined in a
neighbourhood of O, solution of the vacuum Einstein equations to the future of
O, such that CO is the light-cone of g and g̃ is the restriction of g to T CO .

The proof of Theorem 1.1 is outlined in Section 2.
The neighbourhood, say O , of O constructed in the proof of the theorem is a

priori very small; in particular, it does not necessarily enclose CO . Once O has
been obtained from Theorem 1.1, one can appeal to [18] to obtain a vacuum metric
defined in a (small) neighbourhood of the smooth part of CO .

In Rendall’s approach to the characteristic initial value problem [19] one
requires an affine parameterisation of the geodesic generators of CO : κ ≡ 0. In
coordinates adapted to the light-cone, one prescribes a tensor field

γAB(r, xC) dx A dx B

which determines g̃ after multiplication by a conformal factor. In such a setting
we prove:

THEOREM 1.2. Let γAB(r, xC) dx A dx B be induced by a smooth Lorentzian
metric C on its light-cone centred at O in adapted coordinates, where r is a C-
affine parameter. Then there exists a smooth metric g defined in a neighbourhood
of O, solution of the vacuum Einstein equations to the future of O, such that

gAB |CO = Ω2γAB,

for some positive function Ω which is the restriction to CO of a smooth function
on space–time, where r is a g-affine parameter.

We show in Section 3 how to deduce Theorem 1.2 from Theorem 6.1 below.
There exists yet another scheme for prescribing the initial data on CO , where

the fields gµν |CO are given a priori, and the ‘wave-map gauge constraint functions’
2g yµ|CO are calculated from the data [9]. To establish existence of solutions
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within this scheme, given gµν |CO one needs to prove that a certain vector field
W̊µ arises as the restriction to the light-cone of a smooth vector field. We prove
that this is the case when the fields gµν |CO arise from the restriction to the light-
cone of a smooth metric, leading to the following theorem.

THEOREM 1.3. Given any smooth Lorentzian metric C, there exists a smooth
metric g, defined on a neighbourhood of O and solving the vacuum Einstein
equations to the future of O, such that

gµν |CO = Cµν |CO .

The proof of Theorem 1.3 is the contents of Section 7.
There is a useful lesson to learn from this work, that an effective way of solving

constrained problems on a light-cone proceeds by constructing Taylor series that
provide approximate solutions of the characteristic constraint equations. Another
key observation, without which this work would not have been completed, is that
a Taylor series solving all the equations is not needed for the argument. Our
approach opens the avenue for proving light-cone existence results, with data
on a light-cone at finite distance or at past infinity, for Yang–Mills equations,
Einstein equations with matter fields, or any other constrained nonlinear sets of
equations. We note that, even for linear constrained systems, such as Maxwell or
Dirac equations [17], the question of existence of smooth solutions of the Cauchy
problem on the light-cone has not been solved so far, and the method here provides
a good candidate for settling the problem. The idea of using Taylor expansions
has meanwhile been implemented in [10, 15] to prove existence of solutions of
the vacuum Einstein equations with scattering data on the future light-cone of past
timelike infinity.

2. Outline of the argument

Throughout, we use the conventions and notations from [5]. In particular,
the coordinates x are linked to the coordinates y, which define Rn+1 as a C∞

manifold, by the relations

y0 = x1 − x0, yi = rΘ i(x A) with
n∑

i=1

Θ i(x A)2 = 1, (2.1)

where the x A are local coordinates on the sphere Sn−1, or angular polar
coordinates. In the adapted coordinates {xµ}, on the light-cone the metric is
written as

g = g00(dx0)2 + 2νA dx0 dx A + 2ν0 dx0 dx1 + 2gAB dx A dx B .
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We underline components of tensors in coordinates y and do not underline those
in coordinates x ; we overline the restrictions to (‘traces on’) CO . Thus gµν denotes
the components of the metric in the x-coordinate system, gµν or g

µν
denotes the

components of the metric in the y-coordinate system, gµν denotes the restriction
to the light-cone of the components of the metric in the x-coordinate system,
and so on. We use the wave-map gauge with a Minkowskian target metric; in the
notation of [5], ĝ ≡ η. We assume that we are given a smooth metric C , for which
we introduce normal coordinates yµ.

As discussed in [9], there are many ways in which C can be used for the
construction of a solution. We give existence proofs for three such schemes
here. Theorem 1.1 is the most elegant geometrically, and the most natural from
our perspective. We prove Theorem 1.2 because this is a setup which is most
widely used in the literature. Theorem 1.3 is natural for many applications, such
as numerical treatment, or possible generalisations to matter fields. The core of
the three proofs is the construction of approximate solutions of the characteristic
constraint equations in Section 5. This has to be complemented by further
arguments, which differ according to which scheme is used, possibly in different
orders. For this reason it seemed simplest to organise this paper by following the
hierarchical nature of the Einstein equations. This does not necessarily coincide
with the order of the arguments within each distinct setup.

In Theorem 1.1 one assumes that the angular part CAB of the Lorentzian metric
Cµν provides the initial data tensor field g̃ := gAB dx A dx B directly,

gAB := C AB .

Then the parallel-transport coefficient κ , defined through the equation

∇∂r ∂r = κ∂r ,

is determined, at least in a neighbourhood of the vertex O , from C AB by
algebraically solving the Raychaudhuri equation:

∂1τ − κτ + τ 2

n − 1
+ |σ |2 = 0. (2.2)

Here τ is the ‘divergence scalar’ of CO (cf. (3.13) below) and σ its ‘shear tensor’
(defined at the beginning of Section 3.1). The remaining metric functions gµν on
the light-cone can then be obtained by solving the wave-map gauge constraint
equations of [5] in adapted coordinates x . A coordinate transformation, which is
singular at the vertex of CO because the adapted coordinates are singular there,
provides the y-coordinate components gµν of the metric. As already pointed out,
the difficulty is to show cone-smoothness of the metric functions gµν near the tip
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of the light-cone. (We say that a function f on CO is cone-smooth if there exists
a smooth function φ on space–time such that f is the restriction of φ to CO .)

For this, the first step is to obtain sharp control of the behaviour at the vertex
of the fields |σ |2, τ , κ , and ν0 ≡ g01. This is carried out in Sections 3.1, 3.2, 3.3
and 4. While the proofs there are easy in retrospect, the simple solutions that we
provide might not be completely obvious.

The already-mentioned next key step, established in Section 5, is the proof of
existence of a smooth space–time metric Čµν , in the wave-map gauge, which
solves all the wave-map gauge constraint equations up to an error term. For
smooth Cµν , the error term decays to infinite order at the origin, with Č AB = gAB ,

and with the corresponding function ν̌0 := Č01 associated with Č differing from
ν0 := g01 by an error term which again decays to infinite order at the origin.
(A function f is said to decay to infinite order near r = 0, we then write
f = O∞(r∞), if for all N ∈ N we have | f | 6 CNr N for small r for some constant
CN ; similarly for all derivatives of f .) For Cµν with finite differentiability, say
C k , the error terms above can be made to decay to order O(| Ew|k−m1), for some
m1 ∈ N independent of the differentiability index k and of the dimension.

The second constraint equation is then rewritten as an equation for

νA − Č0A where νA := g0A,

the solution of which is shown to decay to infinite order at the origin in the smooth
case, or to order O(|Ey|k−m1−m2), for some m2 ∈ N which again does not depend
upon k or n in the C k case. The final constraint is rewritten as an equation for

g00 − Č00,

the solution of which is shown to have similar decay properties at the origin. The
decay properties of the differences of metric functions allow one to show that the
yµ-coordinate components gµν of g can be smoothly extended off the light-cone
in the C∞ case, or C k−m1−m2−m3 -extended in the C k case, for some m3 independent
of k and n. This allows us to use the Cagnac–Dossa theorems [2, 12] to solve the
wave-gauge reduced Einstein equations. When k is large enough one can then
appeal to the results in [5] to obtain Theorem 1.1 or, in fact, its somewhat more
general version, Theorem 6.1 below.

In Theorem 1.2 the metric functions CAB provide a conformal class,

gAB := Ω2C AB,

in which case one needs to solve the Raychaudhuri equation, understood as a
second-order ordinary differential equation (ODE) for the conformal factor Ω .
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The reduction of this problem to that of Theorem 1.1 relies on the analysis
of τ and |σ |2 carried out in Sections 3.1 and 3.2. Using the Raychaudhuri
equation (‘first constraint’), in Section 3.3 we determine the divergence τ and
the conformal factor Ω relating gAB and the initial data γAB ≡ C AB , and analyse
their properties at the vertex. This part of the argument is rather similar to that
in [6] where, however, restrictive hypotheses have been made on the initial data.

In Theorem 1.3 all the metric functions are prescribed directly on CO using the
metric C ,

gµν := Cµν .

As a first, and key, step of the proof we construct a metric Čµν such that

Čµν = Cµν , the Ricci tensor of which, when contracted with a null tangent to
the light-cone, decays to infinite order on CO near the vertex along the light-cone.
The equations Sµν`ν = 0, where S is the Einstein tensor and ` is tangent to the
generators of the light-cone, become now equations for a wave-gauge vector H

µ
.

One then needs to show cone-smoothness of the metric functions H
µ

near the tip
of the light-cone. Comparing a suitably defined gauge vector Hµ, as calculated
for the desired vacuum metric, with the harmonicity vector Ȟµ, as calculated for
the metric Čµν , allows us to show that H

µ
extends smoothly. One completes the

proof by known arguments.

3. From a conformal class γ to g̃

Consider a tensor field γ which is induced on CO by a smooth metric C
in a space–time neighbourhood of CO , i.e., γAB = C AB , where CAB are the
components with indices AB in the coordinates x of a metric C . The smoothness
of C is insured by the hypothesis of smoothness of its components Cαβ in the y-
coordinates. (This property is clearly a necessary condition for the desired vacuum
metric to satisfy the requirements of our theorem.) Then gAB =Ω2γAB will be the
components in the coordinates x of indices AB of the trace of a smooth metric if
and only if the conformal factor Ω is the trace of a smooth positive function.

Consider a metric C such that C(O)= η, the Minkowski metric. If C is C k with
values η at O then its components in the coordinates y admit at O an expansion,
where the c are numbers, and the error terms ok(|y|k) (see the beginning of
appendix A for the definition of the symbol ok(|y|k)) are C k functions of the y, of
the form

Cαβ = ηαβ +
k∑

p=1

1
p!cαβ,α1···αp yα1 · · · yαp + ok(|y|k)
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(compare Lemma A.1). If ∂αCβγ (O) = 0, the expansion starts at p = 2. This is
satisfied in particular if the y are normal coordinates for C with origin O . In the
coordinates x it holds that

CAB ≡ r 2Ci j
∂Θ i

∂x A

∂Θ j

∂x B
,

where

y0 = r, yi = rΘ i ,

n∑
i=1

(Θ i)2 = 1.

On CO this leads to an expansion of the form, with the c and the d numbers
determined by the Ci j :

γAB ≡ C AB

= r 2

{
sAB + ∂Θ

i

∂x A

∂Θ j

∂x B

k∑
p=1

(ci j,h1...h p yh1 · · · yh p

+ r di j,h1...h p−1 yh1 · · · yh p−1)

}
+ ok(r k+2)

=: r 2

{
sAB + ∂Θ

i

∂x A

∂Θ j

∂x B
(ci j + r di j)

}
.

(3.1)

We note that an exhaustive intrinsic description of such tensors γAB in space–time
dimension four can be found in [7]. (We take this opportunity to point out that the
‘only if’ part of Theorem 1.2 of [7] is not sufficiently justified. However, the ‘if’
part is correctly proved, and this is enough to infer Theorem 1.1 of [7], which is
the main result there.)

3.1. The functions |σ |2 and τ . The function |σ |2 which appears in vacuum as
a source of the Einstein wave-map gauge constraints is defined on CO by

|σ |2 := σA
BσB

A,

where σA
C is the traceless part of 1

2γ
BC∂1γAB . We assume that there exists a

smooth metric C such that
γAB = C AB,

and we start by studying the differentiability properties of possible extensions of
|σ |2 off the light-cone.

More precisely, let yµ denote normal coordinates for C centred at O . Set

L := yµ
∂

∂yµ
, Xµν := 1

2
LLCµν − Cµν . (3.2)
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Let the coordinates xµ be defined as in (2.1):

y0 = x1 − x0, yi = x1Θ i(x A) with
n∑

i=1

(Θ i(x A))2 = 1. (3.3)

We write interchangeably x1 and r . As already mentioned, we underline the
components of the metric associated with the coordinate system yµ; for example,

Cµν := C(∂yµ, ∂yν ), Cµν := C(∂xµ, ∂xν ),

and so on. Recall that in normal coordinates it holds that [20] (see [7,
Appendix B] for a reference which is easier to access)

Cµν yµ = ηµν yµ. (3.4)

One has the identity
L ≡ x0∂x0 + x1∂x1, (3.5)

which implies that on the light-cone we have L = x1∂1 and

LLCµν = x1∂1Cµν + δ0
µC0ν + δ0

νC0µ + δ1
µC1ν + δ1

νC1µ.

In particular,
LLCAB = x1∂1C AB = x1∂1γAB .

It follows from definition (3.3) that (3.4) is equivalent to

C01 = 1, C i1 = 0,

which is further equivalent to

C
01 = 1, C

00 = C
0A = 0, C

AB = γ AB, (3.6)

where C AB are the contravariant components with indices AB in the coordinates
x of the metric C . (The last equation, (3.6), is, of course, a consequence of the
remaining ones.) The tensor X defined in (3.2) obeys the key property

Xµ1 = 0.

This allows us to rewrite

1
2
γ BC∂1γAB = 1

2
C BC∂1CAB = 1

r
(δC

A + C BC X AB) = 1
r
(δC

A + ZC
A), (3.7)
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where we have introduced the smooth space–time tensor

Z ν
µ := CνλXλµ. (3.8)

Hence σA
B can be constructed from the restriction to the cone of the traceless part

of Z B
A. We can then calculate the norm |σ |2 using Z , as follows. We have

trZ = CµνXµν = γ AB X AB, (3.9)

|Z |2 := trZ 2 = CµαCνβXµνXαβ = γ ABγ C D X AC X B D, (3.10)

which implies that the norm |σ |2 equals (x1)−2 ≡ r−2 times the restriction of a
smooth function in space–time to the light-cone:

|σ |2 ≡ 1
r 2

(
|Z |2 − 1

n − 1
(trZ)2

)
, (3.11)

as desired. Incidentally, this equals (1/r 2)|Z TF|2, where Z TF is the trace-free part
of Z .

Note that Xµν = O(r 2) along CO , which shows that for smooth metrics C in
normal coordinates the function |σ |2 is O(r 2) and has an expansion for any k, up
to a factor r−2:

|σ |2 ≡ 1
r 2

( k∑
p=4

σi1... i p yi1 · · · yi p + rσ ′i1... i p−1
yi1 · · · yi p−1 + ok(r k)

)
. (3.12)

This can also be written as

|σ |2 ≡
k∑

p=4

σpr p−2 + ok(r k−2),

with
σp := σi1... i pΘ

i1 · · ·Θ i p + σ ′i1... i p−1
Θ i1 · · ·Θ i p−1 .

When C is used to prescribe γ , the function τ is obtained by integration of
one of the wave-map gauge characteristic constraint equations; we return to this
in Section 3.3. On the other hand, if C is used to prescribe g̃ := gAB dx A dx B

directly as g̃ = C AB dx A dx B , then the divergence τ of the light-cone,

τ := 1
2 gAB∂r gAB (3.13)

(often denoted by θ in the literature; cf., for example, [16]), is calculated directly
from C AB . In that last case, it follows from (3.7)–(3.9) that

τ ≡ 1
2
γ AB∂1γAB = 1

r
(n − 1+ γ AB X AB) = 1

r
(n − 1+ trZ). (3.14)

https://doi.org/10.1017/fms.2013.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.8


P. T. Chruściel 10

Hence, in such a context the function rτ is the restriction to the light-cone of a
smooth space–time function, with

rτ − (n − 1) = O(r 2). (3.15)

Summarising, we have proved the following.

PROPOSITION 3.1. Suppose that σ and τ arise from the light-cone of a C k

metric with affinely parameterised generators. Then rτ and r 2|σ |2 are C k−1-cone-
smooth. Further, |σ |2 = O(r 2), and (3.15) holds.

3.2. Boundary conditions on κ . As discussed in detail in [5, 9], one of the
important objects appearing in the formulation of the characteristic initial value
problem is the following connection coefficient κ:

∇∂r ∂r = κ∂r . (3.16)

A rather natural gauge-choice is to assume that the generators of the light-cones
are affinely parameterised, which translates to the condition κ = 0. However, it
might be more convenient in some situations not to impose this restriction. The
question then arises, what is a natural class of functions κ for the problem at hand.

To motivate our hypotheses, suppose, momentarily, that the tensor field g̃ =
gAB dx A dx B arises from a smooth vacuum metric g, using a smooth coordinate
system in which the light-cone takes the usual form {y0 = |Ey|}, but the coordinates
yµ are not necessarily normal, and so κ is not necessarily zero. In this case τ still
behaves as (n − 1)/r near and away from r = 0; hence is nowhere vanishing for
r sufficiently small. We can then algebraically solve for κ from (2.2):

κ = 1
τ

(
∂1τ + τ 2

n − 1
+ |σ |2

)
. (3.17)

We rewrite this in the following way:

rκ = 1
(rτ)

(
r∂1(rτ)− (rτ)+ (rτ)2

n − 1
+ r 2|σ |2

)
. (3.18)

Now we have seen that, in normal coordinates, rτ and r 2|σ |2 are restrictions to the
light-cone of smooth functions, with rτ →r→0 n − 1. Since τ and σ are intrinsic
objects on CO , it is natural to suppose that these properties will remain true in
the new coordinates. But then the right-hand side of (3.18) is cone-smooth. This
motivates the condition that rκ is the restriction to the light-cone of a smooth
function on space–time; equivalently,

rκ is cone-smooth. (3.19)
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We also find that

κ = O(r), (3.20)

whenever |σ |2 = O(r 2) together with (3.15) holds.
In any case, the fact that (3.19)–(3.20) are adequate assumptions on κ in the

setup of Theorem 1.1 is provided by the following proposition.

PROPOSITION 3.2. Suppose that τ and σ arise from an affinely parameterised
light-cone of a C k metric C. Then

κ is O(r) and rκ is C k−2-cone-smooth.

Note that κ here refers to the acceleration parameter of the vacuum metric
g with the same fields τ and σ , and not that of C (for which the acceleration
parameter κ is zero by hypothesis).

Proof. In normal coordinates yµ for C we have

∂1τ + τ 2

n − 1
+ |σ |2 + T 11 = 0, (3.21)

where rτ and r 2σ 2 arise by restriction of smooth functions on space–time, and
where

T11 = T00 + 2T0i
yi

|Ey| + Ti j
yi

|Ey|
y j

|Ey| .

If we use g̃ := C AB dx A dx B as initial data for a vacuum gravitational field,
comparing (3.21) with the Raychaudhuri equation (2.2) we will have

κτ = −T00 + 2T0i
yi

|Ey| + Ti j
yi

|Ey|
y j

|Ey| .

Equivalently,

rκ = − 1
rτ
(T00r 2 + 2T0i yi t + Ti j yi y j),

which shows that the resulting function κ satisfies (3.19)–(3.20).

From now on, consistently with the above, we will assume that the parallel
transport coefficient κ satisfies (3.19)–(3.20).
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3.3. Integration of τ and of the conformal factor. As already mentioned in
the introduction, in the approach of Rendall [19] the tensor field g̃ = gAB dx A dx B

is taken of the form

gAB = Ω2γAB,

where the tensor field γAB is a priori given. Using (3.28) below, (2.2) becomes
then an equation for the conformal factor Ω . Our objective is to show that the
function Ω so obtained is cone-smooth when γAB arises from a smooth metric C :
γAB = C AB .

Indeed, in the remainder of this section we will show that there exists a smooth
positive function on space–time, say χ , so that Ω is the restriction to the light-
cone of χ . Setting Č AB = χ 2CAB , we then obtain gAB = Č AB , where Č is a
smooth tensor field on space–time. This reduces the study of Rendall’s approach
to our treatment in Sections 4–6 below.

To prove existence of χ we follow the approach in [4], with some
simplifications, and making more precise the results there, as possible in the
current context.

To carry out the analysis it is convenient to introduce

y := n − 1
τ

,

where τ is the divergence of CO given by (3.13). In terms of y, the vacuum
Raychaudhuri equation (2.2) reads

y′ = 1+ κy + 1
n − 1

|σ |2 y2. (3.22)

We assume that |σ |2 is of the form (3.12); this will be true when the metric C
inducing γ is C k+1, and thus for any k when C is smooth. We further assume that
κ satisfies (3.19)–(3.20), with rκ being the restriction to CO of a function of C k

differentiability class. Lemma A.1, appendix A, shows that κ has an expansion

κ = 1
r

k∑
p=2

κp−1r p + ok(r k), (3.23)

with

κp−1 ≡ κi1... i pΘ
i1 · · ·Θ i p + κ ′i1... i p−1Θ

i1 · · ·Θ i p−1, (3.24)

for some collection of numbers κi1... i p and κ ′i1... i p−1
.
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Using known arguments (compare [1, 8] and [14, Lemma 8.2]), it follows from
(3.22) that there exist functions yi ∈ C∞(Sn−1) such that

y =
k+2∑
i=1

yir i + ok(r k+2)

= r + κ1

2
r 2 +

k+2∑
i=3

yir i + ok(r k+2)

(3.25)

(with the first nonzero term in the sum being equal to σ4r 5/5 when κ = 0), where
the yp−1 take the form

yp−1 ≡ yi1... i pΘ
i1 · · ·Θ i p + y′i1... i p−1

Θ i1 · · ·Θ i p−1, (3.26)

for some collection of numbers yi1... i p and y′i1... i p−1
. Lemma A.1 shows that, for

all k ∈ N ∪ {∞}, the function y/r is the restriction to CO of a C k function on
space–time equal to one at the origin.

Let δy be defined as
y = r(1+ δy);

thus δy is the restriction to CO of a C k function on space–time vanishing at the
origin. Hence

τ = n − 1
y
= n − 1

r(1+ δy)
= n − 1

r

(
1− δy

1+ δy

)
,

which shows that rτ is the restriction to CO of a C k function on space–time equal
to n − 1 at the origin.

Let us write
gAB = eωγAB . (3.27)

We then have
τ = ∂1 log

√
det γ + n − 1

2
∂1ω, (3.28)

with ω|r=0 = 0. Integrating this equation for ω, Lemma B.1 allows us to assert
the following.

PROPOSITION 3.3. Let k ∈ N ∪ {∞}. Suppose that the metric γAB arises by
restriction to CO of a C k+1 metric in normal coordinates, and that we are given a
function rκ which is the restriction to CO of a C k function vanishing at the origin
to order two. Then the conformal factor Ω2, relating gAB and γAB , obtained by
solving the vacuum Raychaudhuri equation,

∂1τ − κτ + τ 2

n − 1
+ |σ |2 = 0, (3.29)

is the restriction to CO of a C k function which equals one at the vertex.
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4. Integration of ν0

From [5], in vacuum and in wave-map gauge the following equation has to
hold:

∂1ν
0 = −

(
τ

2
+ κ

)
ν0 + 1

2
gABrsAB . (4.1)

We want to show that the function ν0, solution of (4.1), is the restriction to the
light-cone of a smooth function on space–time. For this we rewrite (4.1) as

r∂1ν
0 = −

(
rτ
2
+ rκ

)
ν0 + 1

2
gABr 2sAB . (4.2)

Let the conformal factor Ω be defined by

gAB = Ω2γAB, (4.3)

with Ω = 1+ O(r 2), and let ϕ be defined as

ϕ :=
(

det g̃
det sn−1

)1/(2n−2)

= Ω
(

det γ
det sn−1

)1/(2n−2)

, (4.4)

with ϕ = r + O(r 3); recall that

τ = (n − 1) ∂1 logϕ equivalently ∂1ϕ = τ

n − 1
ϕ. (4.5)

We assume first that κ = 0. Using ϕ we can rewrite (4.1) in the form

∂1(ν
0ϕ(n−1)/2) = ϕ(n−1)/2

2
gABrsAB, (4.6)

and hence, since ν0ϕ(n−1)/2 →r→0 0,

ν0(r, x A) = ϕ−(n−1)/2(r, x A)

2

∫ r

0
(ϕ(n−1)/2gABrsAB)(s, x A) ds. (4.7)

From (3.6) one has
Cµνηµν = γ ABr 2sAB + 2. (4.8)

Using (4.8) one is led to

ν0(r, x A) = ϕ−(n−1)/2(r, x A)

2

∫ r

0
(ϕ(n−1)/2Ω−2(Cµνηµν − 2))(s, x A) s−1 ds. (4.9)

It now follows from Lemma B.1, appendix B, that ν0 is the restriction to the
light-cone of a smooth function on space–time. One also finds that ν0 → 1 as r
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approaches zero. A closer inspection of the series expansion [4] of the integrand
shows cancellations which lead to

ν0 = 1+ O(r 4). (4.10)

When κ 6= 0 we let

H(r, x A) =
∫ r

0
κ(s, x A) ds, (4.11)

and then (4.9) is replaced by

ν0(r, x A)= (e
−Hϕ−(n−1)/2)(r, x A)

2
×
∫ r

0
(ϕ(n−1)/2Ω−2(Cµνηµν − 2)eH(s,x A))(s, x A) s−1 ds,

(4.12)

with identical conclusion.
Summarising, we have the following.

PROPOSITION 4.1. Under the hypotheses of Proposition 3.3, the solution ν0 of
(4.1) is the restriction to CO of a C k function which equals one at the vertex.

We show in appendix C that for any smooth metric C such that C1A = C11 =
0, and for any cone-smooth function ν0, there exists another smooth metric C̃
satisfying C AB = C̃ AB , C̃1A = C̃11 = 0, and C̃01 = ν0. This is not used in our
indirect proof below, but could be used towards a direct proof of our main results
in this paper, if such a proof is found.

5. Approximate polynomial solutions

As the next step, we construct a smooth metric which is an approximate solution
of the constraint equations.

Throughout this section the xµ are Cartesian coordinates on Rn+1 in which
the metric coefficients are smooth, and the light-cone is given by the equation
ηµνxµxν = 0, where ηµν is a diagonal matrix with entries (−1, 1, . . . , 1) on the
diagonal. This should not be confused with the coordinates adapted to the light-
cone, denoted by xµ in the remaining sections of this paper. One can think of the
coordinates xµ of this section as the coordinates yµ of Section 2, except that we
are not assuming that the xµ here are normal for the metric C .

5.1. The scalar wave equation. In our construction of the solutions of the
Einstein equations we will need existence and uniqueness of approximate
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polynomial solutions for the scalar wave equation. This can be reduced to an
analysis of polynomial solutions of the wave equation in Minkowski space–time.
The aim of this section is to establish these results.

Let 2η denote the Minkowskian wave operator,

2η = ηµν∂µ∂ν .
We start with the following observation.

LEMMA 5.1. Let k ∈ N. For any homogeneous polynomial P of degree k there
exists a unique homogeneous polynomial W of degree k + 2 such that 2ηW = P
and W |CO = 0.

Proof. Any such P can be uniquely written as

P = Cα1...αk xα1 · · · xαk , (5.1)

where Cα1...αk is symmetric under permutations, Cα1...αk = C(α1...αk ): indeed, the
Cα1...αk can be calculated by differentiating k times the polynomial P , and hence
are unique.

We seek a solution of the form

W = A(α1...αkηαk+1αk+2)x
α1 · · · xαk+2,

where Aα1...αk is also symmetric in all indices. All such polynomials W vanish on
the light-cone, as desired.

We start by noting that the map

Aα1...αk 7→ W = A(α1...αkηαk+1αk+2)x
α1 · · · xαk+2, (5.2)

which is surjective by definition, is also injective. Indeed, this statement is
equivalent to the fact that the only solution of the equation

A(α1...αkηαk+1αk+2) = 0, (5.3)

is zero. To see this, let k + 2 = 2m + ε, with ε ∈ {0, 1}. Contracting (5.3) with
ηα1α2 . . . ηα2m−1α2m we find that

0 =
{

Aα1
α1 . . .

αm
αm , k = 2m;

Aα1
α1 . . .

αm
αmα, k = 2m + 1.

If k equals zero or one we are done. Otherwise one can contract now (5.3) with
ηα1α2 . . . ηα2m−3α2m−2 , and using the previous equation obtain

0 =
{

Aα1
α1 . . .

αm−2
αm−1βγ , k = 2m;

Aα1
α1 . . .

αm−2
αm−1βγ δ, k = 2m + 1.

Continuing this way, after a finite number of steps we obtain the vanishing of
Aα1...αk , as desired.
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Consider, now, the linear map which to the tensor Aα1...αk assigns the tensor
Cα1...αk , obtained in the obvious way from what has been said so far:

Aα1...αk ←→ W 7→ 2ηW ←→ Cα1...αk .

This map is injective: indeed, let 2ηW2 = P = 2W1; then 2η(W1 − W2) = 0,
with W1 − W2 = 0 on the light-cone, and hence W1 − W2 = 0 by uniqueness
of solutions of the characteristic Cauchy problem on the light-cone. Surjectivity
follows now by elementary finite-dimensional algebra.

For further reference we note that for k > 2 one finds, in space–time dimension
n + 1, that

2W = (k + 2)ηµν∂ν(A(α1...αkηαk+1µ)x
α1 · · · xαk+1)

= (k + 2)(k + 1)ηµν A(α1...αkηµν)x
α1 · · · xαk

= (k + 2)(k + 1)
(k + 2)! ηµν(2k! Aα1...αkηµν + 4× k × k! Aµ(α1...αk−1ηαk )ν

+ k × (k − 1)× k! Aµν(α1...αk−2ηαk−1αk ))x
α1 · · · xαk

= ηµν(2Aα1...αkηµν + 4k Aµ(α1...αk−1ηαk )ν

+ k(k − 1)Aµν(α1...αk−2ηαk−1αk ))x
α1 · · · xαk

= (2(n + 2k + 1)Aα1...αk + k(k − 1)Aµµ(α1...αk−2ηαk−1αk ))x
α1 · · · xαk .

(5.4)

So Lemma 5.1 is equivalent to the statement that the equations

2(n + 2k + 1)Aα1...αk + k(k − 1)Aµµ(α1...αk−2ηαk−1αk ) = Cα1...αk (5.5)

have a unique totally symmetric solution Aα1...αk for any totally symmetric Cα1...αk .
A similar but simpler calculation shows that the formula (5.4) remains valid for

k = 0 and 1, and so for example we obtain

W =


C

2(n + 1)
ηαβxαxβ, k = 0;

1
2(n + 3)

C(γηαβ)xαxβxγ , k = 1.

As an obvious corollary of Lemma 5.1 one finds the following.

COROLLARY 5.2. Let k ∈ N. For any polynomial P of degree k there exists a
unique polynomial W of degree k + 2 such that 2ηW = P and W |CO = 0.

Let 2g be the Laplace–Beltrami operator of a metric g. We will need the
following result, the proof of which gives a taste of the induction needed for the
corresponding result for the Einstein equations.
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PROPOSITION 5.3. Let g be a smooth Lorentzian metric, and let there be given a
coordinate system near p such that xµ(p) = 0. For any smooth function ψ there
exists a unique polynomial φk+2 of degree k + 2 such that

2gφk+2 − ψ = O(|x |k+1), φk+2|CO = 0. (5.6)

If ψ = O(|x |`), then φk+2 = O(|x |`+2). The result remains true for k =∞, in the
sense that there exists a smooth function φ∞ vanishing at the light-cone such that
2gφ∞ − ψ vanishes to arbitrary order at the origin, similarly for derivatives of
arbitrarily high order of 2gφ∞ − ψ .

Proof. By a linear change of coordinates we can without loss of generality assume
that g(0) = η.

We will use induction upon k.
For k = 0, existence is obtained by setting φ2 = (ψ(0)/2(n + 1))ηαβxαxβ . To

prove uniqueness, consider the difference of two such polynomials solving (5.6);
call it W . Introduce a new coordinate system where x i is replaced by εx i ; one
obtains

∂i

(√
det g(εx)gi j(εx)∂ j W (x)

)
= O(ε|x |). (5.7)

Passing to the limit ε → 0 we find that

2ηW = 0,

and, since W vanishes on the light-cone, the vanishing of W follows from, for
example, Corollary 5.2.

Suppose, next, that the result has been established for some k; thus there exists
a polynomial solution φk+2 to (5.6).

Taylor expanding ψ , we can write

ψ = ψk + δψk+1 + O(|x |k+2),

where ψk is a polynomial of order k, and δψk+1 is a homogeneous polynomial of
order k + 1. Similarly Taylor expanding 2gφk+2, we can write

2gφk+2 − ψk = χk+1 + O(|x |k+2), (5.8)

where χk+1 is a homogeneous polynomial of order k + 1.
Let δφk+3 be the solution given by Lemma 5.1 of the equation

2ηδφk+3 = δψk+1 − χk+1.

This implies that

2gδφk+3 = δψk+1 − χk+1 + O(|x |k+2). (5.9)
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Set
φk+3 = φk+2 + δφk+3.

Adding (5.8) and (5.9) we obtain

2gφk+3 − ψk − δψk+1 = O(|x |k+2), (5.10)

which implies (5.6) with k replaced by k + 1, providing existence of the solution.
Uniqueness follows by a scaling argument similar to the one leading to (5.7),

where the equation for the difference W of two such polynomials becomes instead

∂i(
√

det g(εx)gi j(εx)∂ j W (x)) = O(ε|x |k+2). (5.11)

When k = ∞, the function ϕ∞ is obtained from the above sequence of
polynomials by Borel summation; see Lemma A.2 below. Uniqueness of ϕ∞ up
to an O(|x |∞)-function follows from what has been said, using the fact that the
difference W of any two such solutions satisfies (5.11) with an integer k as large
as desired.

We also have a uniqueness result.

PROPOSITION 5.4. Let g be a smooth Lorentzian metric, and let φ be a smooth
function such that, for some ` ∈ N,

2gφ = O(|x |`), φ|CO = 0. (5.12)

Then
φ = O(|x |`+2).

Proof. Let φk+2 be the first nonvanishing homogeneous polynomial of degree k+
2 in the Taylor expansion of φ, and suppose that k < `. Then φk+2 vanishes on
CO , and a Taylor expansion of the left-hand side of (5.12) shows that 2ηφk+2 = 0;
hence φk+2 = 0 by Corollary 5.2, a contradiction.

5.2. The Ricci tensor. We continue with a perturbation lemma; namely, we
wish to deform a given smooth metric g to a new smooth metric ĝ, with the
property that some components of the Ricci tensor of ĝ tend to zero with decay
rate ` along the light-cone CO near its tip, with ` as large as desired, and such that
the new metric coincides with the old one on CO .

The metric g in the current section should be thought of as the metric C in the
remaining parts of the paper. Similarly to Section 5.1, the symbol xµ is not used
to denote the coordinates adapted to the light-cone, as is the case in the main body
of the paper: these are regular space–time coordinates near the vertex in which the
light-cone is given by the Minkowskian equation ηµνxµxν = 0.
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LEMMA 5.5. Let g be a smooth Lorentzian metric with the light-cone CO of O
described by the equation CO = {xα : ηµνxµxν = 0}, where, as elsewhere, ηαβ
denotes the Minkowski metric. We assume moreover that

gαβ − ηαβ = O(|x |2), ∂σ gαβ = O(|x |). (5.13)

For any ` ∈ N∪ {∞} there exists a smooth metric ĝ defined for |x | small enough,
which coincides with g on CO ,

gµν = ĝµν, (5.14)

and such that

R̂µν = O(|x |min (`,2)), R̂µνxν = O(|x |`+1)+ (`)

Pµηαβxαxβ, (5.15)

for small |x |, for some smooth functions
(`)

Pν , where R̂µν denotes the Ricci tensor
of the metric ĝ, and R̂ its Ricci scalar.

Proof. The Ricci tensor of g can be written as

Rαβ = − 1
22ggαβ + 1

2 (gαλ∂βΓ
λ + gβλ∂αΓ λ)+ qαβ(g, ∂g). (5.16)

Here, it is usual to take 2g to be the Laplace operator acting on functions:

2g f = |det g|−1/2∂µ(|det g|1/2gµν∂ν f ). (5.17)

Further, q is a quadratic form in the first derivatives ∂g of g with coefficients
polynomial in g and its contravariant associate, and the Γ λ are defined as

Γ α := gλµΓ α
λµ. (5.18)

However, instead of (5.17) one can take gµν∂µ∂ν , with a different q in (5.16); this
implies that it suffices to do the estimates below using gµν∂µ∂ν .

We assume first that ` <∞. The proof will be done by induction upon `.

To clarify notation,
(`)
g will denote a metric satisfying (5.15). We set

(0)
g = g,

consistently with this requirement. In particular, setting
(0)
Pµ = 0, the result is true

for ` = 0. For ` > 1 the metric
(`)
g will be of the form

(`)
g αβ =

(`−1)
g αβ +

(`+1)
δg αβ, (5.19)

where the correction term
(`+1)
δg αβ will be O(|x |`+1) near x = 0. Thus, the index

` over g denotes the induction step, while the index ` over δg denotes the decay

rate for small x . We let
(`)

Rαβ denote the Ricci tensor of
(`)
g .
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The first step is to achieve the result with ` = 1. In this case the first equality

in (5.15) is the important one, since the second automatically holds with
(1)
P ν = 0.

It follows from the calculations that we are about to do that the result is achieved
by setting

ĝµν = (1)
g := gµν + ηαβxαxβ Aµν, (5.20)

where Aµν is given by (5.34). The formula (5.20) defines a Lorentzian metric for
|x | small enough, and maintains (5.13).

Similarly, for the result with ` = 2 only the first equality in (5.15) needs to be

established; the second one with
(2)
P ν = 0 automatically follows.

In all subsequent steps one wishes to establish the second equality in (5.15),
making sure that the first one remains true at each induction step.

So, assuming that the result is true for some ` > 0, we write

(`+1)
g αβ =

(`)
g αβ +

(`+2)
δg αβ, (5.21)

where
(`+2)
δg takes the form

(`+2)
δg αβ := Aαβ(γ1...γ`ηγ`+1γ`+2)x

γ1 · · · xγ`+2, (5.22)

and hence vanishes on CO . We consider one by one the terms that occur in (5.16)

with g there replaced by
(`+1)

g . We assume that (5.15) holds with R̂αβ replaced by
(`)

Rαβ , and we want to choose
(`+2)
δg αβ to achieve the corresponding properties of the

Ricci tensor of
(`+1)

g .
The quadratic terms are simplest to analyse:

qαβ(
(`+1)

g , ∂
(`+1)

g ) = qαβ(
(`)
g , ∂

(`)
g )+ O(|x |`+2). (5.23)

Indeed, q is a sum of terms of the form

p(
(`+1)

g )∂
(`+1)

g ∂
(`+1)

g ,

for a rational function p of
(`+1)

g , which thus read (keeping in mind that ∂
(`)
g =

O(|x |) for all `)

p(
(`)
g + (`+2)

δg )∂(
(`)
g + (`+2)

δg )∂(
(`)
g + (`+2)

δg )

= (p((`)g + (`+2)
δg )− p(

(`)
g )︸ ︷︷ ︸

O(|x |`+2)

) ∂(
(`)
g + (`+2)

δg )︸ ︷︷ ︸
O(|x |)

∂(
(`)
g + (`+2)

δg )︸ ︷︷ ︸
O(|x |)

+p(
(`)
g )∂

(`)
g ∂

(`)
g
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+ 2 p(
(`)
g )︸ ︷︷ ︸

O(1)

∂
(`)
g︸︷︷︸

O(|x |)

∂
(`+2)
δg︸ ︷︷ ︸

O(|x |`+1)

+O(|x |2`+2)

= p(
(`)
g )∂

(`)
g ∂

(`)
g + O(|x |`+2).

Now,

− 1
22(`+1)

g

(`)
g αβ = − 1

22(`)
g

(`)
g αβ + O(|x |`+2), (5.24)

− 1
22(`+1)

g

(`+1)
g αβ = − 1

22(`)
g

(`)
g αβ − 1

22(`)
g

(`+2)
δg αβ + O(|x |`+2), (5.25)

where by (5.4) we also have

− 1
22(`)

g

(`+2)
δg αβ =− 1

22η

(`+2)
δg αβ + O(|x |`+2)

=− 1
2 (2(n + 2`+ 1)Aαβα1...α`

+ `(`− 1)Aαβµµ(α1...α`−2ηα`−1α`))x
α1 · · · xα` + O(|x |`+2).

(5.26)

Next,

(`+1)
g αλ∂β

(`+1)
Γ λ≡ (`+1)

g αλ∂β(
(`+1)

g µν
(`+1)
Γ λ

µν) =
(`)
g αλ∂β(

(`+1)
g µν

(`+1)
Γ λ

µν)+ O(|x |`+2)

= (`)
g αλ∂β(

(`)
g µν

(`+1)
Γ λ

µν)+ O(|x |`+2)

= (`)
g αλ∂β

(`)

Γ λ + ηαληµν∂β(
(`+1)
Γ λ

µν −
(`)

Γ λ
µν)︸ ︷︷ ︸+O(|x |`+2),

(5.27)

where, to estimate the error term in the last line, we have used

(`+1)
Γ λ

µν −
(`)

Γ λ
µν = O(|x |`+1), ∂β(

(`+1)
Γ λ

µν −
(`)

Γ λ
µν) = O(|x |`).

The underbraced expression in (5.27) can be analysed as follows:

ηµν(
(`+1)
Γ λ

µν −
(`)

Γ λ
µν) = 1

2η
µν(

(`+1)
g λσ (2∂ν

(`+1)
g µσ − ∂σ

(`+1)
g µν)

−(`)g λσ (2∂ν
(`)
g µσ − ∂σ

(`)
g µν))

= ηµνηλσ (∂ν
(`+2)
δg µσ − 1

2∂σ
(`+2)
δg µν)+ O(|x |`+3).

The underbraced term in (5.27) thus reads

ηµν(∂β∂ν
(`+2)
δg µα − 1

2∂β∂α
(`+2)
δg µν)+ O(|x |`+2).

https://doi.org/10.1017/fms.2013.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.8


Cauchy problem on the light-cone 23

It follows that the sum
(`+1)

g αλ∂β
(`+1)
Γ λ + (`+1)

g βλ∂α
(`+1)
Γ λ gives a contribution to the

Ricci tensor
(`+1)

R αβ of
(`+1)

g equal to

1
2η

µν(∂β∂ν
(`+2)
δg µα + ∂α∂ν

(`+2)
δg µβ − ∂β∂α

(`+2)
δg µν)+ O(|x |`+2). (5.28)

All this leads to the formula
(`+1)

R αβ =− 1
22η

(`+2)
δg αβ + 1

2η
µν(∂β∂ν

(`+2)
δg µα + ∂α∂ν

(`+2)
δg µβ − ∂β∂α

(`+2)
δg µν)

+ (`)

Rαβ + O(|x |`+2).

(5.29)

Inserting (5.22) with ` = 0 into (5.28), one obtains at O

2Aαβ − ηµν Aµνηαβ . (5.30)

Next, the polynomial part of (5.28) with ` = 1 reads

3ηµν((Aαµ(β + Aβµ(α)ηνγ ) − Aµν(αηβγ ))xγ . (5.31)

For ` > 2 the corresponding calculations require more work: we have

∂β∂ν
(`+2)
δg µα = (`(`− 1)Aµαβν(γ1...γ`−2ηγ`−1γ`) + 2`Aµαβ(γ1...γ`−1ηγ`)ν

+ 2`Aµαν(γ1...γ`−1ηγ`)β + 2Aµαγ1...γ`−1γ`ηβν)x
γ1 · · · xγ`,

∂β∂α
(`+2)
δg µν = (`(`− 1)Aµνβα(γ1...γ`−2ηγ`−1γ`) + 2`Aµνβ(γ1...γ`−1ηγ`)α

+ 2`Aµνα(γ1...γ`−1ηγ`)β + 2Aµνγ1...γ`−1γ`ηβα)x
γ1 · · · xγ`,

which results in a polynomial part of (5.28) equal to

( 1
2`(`− 1)Aµαβµ(γ1...γ`−2ηγ`−1γ`) + 1

2`(`− 1)Aµβαµ(γ1...γ`−2ηγ`−1γ`)

+ `Aα(γ1...γ`)β + `Aβ(γ1...γ`)α + `Aµαµ(γ1...γ`−1ηγ`)β + `Aµβµ(γ1...γ`−1ηγ`)α
+ 2Aβαγ1...γ` − 1

2`(`− 1)Aµµβα(γ1...γ`−2ηγ`−1γ`) − `Aµµβ(γ1...γ`−1ηγ`)α

− `Aµµα(γ1...γ`−1ηγ`)β − Aµµγ1...γ`ηβα)x
γ1 · · · xγ` .

(5.32)

Recall that we wish to choose
(`+2)
δg so that the Ricci tensor of

(`+1)
g satisfies

(5.15) with ` replaced by `+ 1 there. In view of (5.26) with ` = 0 and (5.30), to
establish (5.15) with ` = 1 we need to show existence of solutions to the set of
equations

− (n − 1)Aαβ − ηµν Aµνηαβ = −Rαβ(O), (5.33)

with symmetric tensors Aαβ and Rαβ(O). The solution is

Aαβ = 1
n − 1

(
Rαβ(O)− 1

2n
ηµνRµν(O)ηαβ

)
. (5.34)
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Having thus established the result with ` = 1, we expand the Ricci tensor
(0)
R of

(0)
g in Taylor series to order one,

(0)
Rαβ = Cαβγ xγ + O(|x |2).

In view of the equations derived so far, we will obtain

(`)

Rαβ = O(|x |2) (5.35)

with ` = 1 if we can solve the set of equations

− (n + 3)Aαβγ + 3ηµν((Aαµ(β + Aβµ(α)ηνγ ) − Aµν(αηβγ )) = −Cαβγ , (5.36)

keeping in mind that A and C are symmetric in the first two indices. Moreover,
because of the contracted Bianchi identity, C satisfies

Cα
αβ = 2Cα

βα. (5.37)

Now, either directly from (5.32), or by expanding, (5.36) can be rewritten as

− (n + 1)Aαβγ + Aαγβ + Aβγα + Aαµµηβγ + Aβµµηαγ − 3Aµµ(αηβγ )
= −Cαβγ . (5.38)

As a consistency check with the contracted Bianchi identity, we take a trace in
α and β of (5.38) to obtain

− 2(n + 2)Aααγ + 4Aγαα = −Cα
αγ ,

while a trace in α and γ yields

− (n + 2)Aααβ + 2Aγαα = −Cα
βα,

as required by (5.37).
To invert equation (5.38) we express Aαβγ as a linear combination of all

possible linear terms which we can form from Cαβγ with the correct symmetry,
with unknown coefficients which need to be determined. Replacing that
expression in (5.38) gives a linear system for the coefficients, which we can solve.
The result is

Aαβγ = 1
(n + 2)(n − 1)

(nCαβγ + Cαγβ + Cβγα − Cµ
γµηαβ)

+ c(Cµ
βµηαγ + Cµ

αµηβγ ),

(5.39)

where c is an arbitrary constant. Choosing, for example, c = 0, establishes our
claim with ` = 1.
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A similar, but rather more involved, analysis applies for ` > 2; note that (5.35)
remains true under the current changes of the metric for all ` > 2.

We Taylor-expand
(`)

Rαβ to order `. Note that so far all error terms were of
order O(|x |`+2), but this Taylor expansion leaves behind an error term O(|x |`+1).
Denote by

Cαβγ1...γ`x
γ1 · · · xγ`

the homogeneous polynomial of order ` in that Taylor expansion. In view of (5.26)
and (5.32), the homogeneous polynomial of order ` in the Taylor expansion of
(`+1)

R αβ is

(− 1
2 (2(n + 2`+ 1)Aαβγ1...γ` + `(`− 1)Aαβµµ(γ1...γ`−2ηγ`−1γ`))

+ 1
2`(`− 1)Aµαβµ(γ1...γ`−2ηγ`−1γ`) + 1

2`(`− 1)Aµβαµ(γ1...γ`−2ηγ`−1γ`)

+ `Aα(γ1...γ`)β + `Aβ(γ1...γ`)α + `Aµαµ(γ1...γ`−1ηγ`)β + `Aµβµ(γ1...γ`−1ηγ`)α

+ 2Aβαγ1...γ`−1γ` − 1
2`(`− 1)Aµµβα(γ1...γ`−2ηγ`−1γ`) − `Aµµβ(γ1...γ`−1ηγ`)α

− `Aµµα(γ1...γ`−1ηγ`)β − Aµµγ1...γ`ηβα + Cαβγ1...γ`)x
γ1 · · · xγ` .

(5.40)

Multiplying by xβ , and disregarding momentarily all terms involving the
Minkowski metric η, we obtain

(−(n + 2`− 1)Aαβγ1...γ` + `Aβ(γ1...γ`)α + `Aα(γ1...γ`)β

+Cαβγ1...γ`)x
βxγ1 · · · xγ` . (5.41)

Set
Eαβγ1...γ` := Cα(βγ1...γ`); (5.42)

thus Eαβγ1...γ` is totally symmetric in the last `+ 1 indices. Let us write

Aαβγ1...γ` = aCαβγ1...γ` + b(Cα(γ1...γ`)β + Cβ(γ1...γ`)α)︸ ︷︷ ︸
=: Âαβγ1 ...γ`

+Bαβγ1...γ` (5.43)

where, for reasons that will become apparent shortly, we will choose the constants
a and b to cancel the following linear combination of the Eαβγ1...γ` terms in (5.41):

− (n + `− 1) Âα(βγ1...γ`) + ` Â(βγ1...γ`)α + Eαβγ1...γ` = 0. (5.44)

To check that this is possible, we calculate

Âα(βγ1...γ`)= (a + b)Eαβγ1...γ` + bC(βγ1...γ`)α,

` Âβγ1...γ`α = a`Cβγ1...γ`α + b`(Cβ(γ2...γ`α)γ1 + Cγ1(γ2...γ`α)β),

= a`Cβγ1...γ`α + b(Cαβ(γ2...γ`)γ1 + (`− 1)Cβ(γ2...γ`)γ1α

+ Cαγ1(γ2...γ`)β + (`− 1)Cγ1(γ2...γ`)βα),

` Â(βγ1...γ`)α = 2bEβγ1...γ`α + (a`+ 2b(`− 1))C(βγ1γ2...γ`)α.
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We thus find that (5.44) is equivalent to

[−(n + `− 1)(a + b)+ 2b + 1]Eαβγ1...γ` + [a`− (n + 1− `)b]︸ ︷︷ ︸C(βγ1...γ`)α

= 0. (5.45)

We choose a to make the underbraced term vanish,

`a = (n + 1− `)b,
and then determine b by requiring the vanishing of (5.45):

(n − 1)(n + `+ 1)b = `.
Therefore the coefficients are

a = n + 1− `
(n − 1)(n + 1+ `) , b = `

(n − 1)(n + 1+ `) .

Inserting (5.43) in (5.40),
(`+1)

R αβxβ now takes the form

(`)

Pαηβγ xβxγ |` + (− 1
2 (2(n + 2`+ 1)Bαβγ1...γ`

+ `(`− 1)Bαβµµ(γ1...γ`−2ηγ`−1γ`))+ 1
2`(`− 1)Bµ

αβµ(γ1...γ`−2ηγ`−1γ`)

+ 1
2`(`− 1)Bµ

βαµ(γ1...γ`−2ηγ`−1γ`) + `Bα(γ1...γ`)β

+ `Bβ(γ1...γ`)α + `Bµ
αµ(γ1...γ`−1ηγ`)β + `Bµ

βµ(γ1...γ`−1ηγ`)α

+ 2Bβαγ1...γ`−1γ` − 1
2`(`− 1)Bµ

µβα(γ1...γ`−2ηγ`−1γ`)

− `Bµ
µβ(γ1...γ`−1ηγ`)α − `Bµ

µα(γ1...γ`−1ηγ`)β − Bµ
µγ1...γ`ηβα + ηα(βČγ1...γ`)

+ η(βγ1Čγ2...γ`)α)x
βxγ1 · · · xγ` + O(|x |`+2),

(5.46)

for some tensors Čγ1...γ` and Čγ1...γ`−1α; we have denoted by
(`)

Pαηβγ xβxγ |` the

polynomial of order ` in the Taylor series of
(`)

Pαηβγ xβxγ . Without loss of
generality we can assume that Čγ1...γ` is completely symmetric.

Many terms in (5.46) are proportional to ηµνxµxν , and thus are of the desired
form. However, in the homogeneous part of (5.46) of order ` + 1 there remain
some terms proportional to xα := ηαβxβ which are not multiplied by a factor
ηµνxµxν , and which need to be set to zero. We start by removing from (5.46)
those terms which obviously vanish on the light-cone; what remains is

(−(n + 2`+ 1)Bαβγ1...γ` + `Bα(γ1...γ`)β + `Bβ(γ1...γ`)α

+ `Bµ
βµ(γ1...γ`−1ηγ`)α + 2Bβαγ1...γ`−1γ` − `Bµ

µβ(γ1...γ`−1ηγ`)α

− Bµ
µγ1...γ`ηβα + ηα(βČγ1...γ`))x

βxγ1 · · · xγ` + O(|x |`+2).

(5.47)
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To continue, the tensor Bαβγ1...γ` in (5.43) is taken of the form

Bαβγ1...γ` = ηαβBγ1...γ`, (5.48)

where Bγ1...γ` is symmetric in all indices. The formula (5.47) becomes, up to terms
which vanish on the light-cone,

(−(n + 2`− 1)ηαβBγ1...γ` + `ηα(γ1 B...γ`)β + `Bβ(γ1...γ`−1ηγ`)α

− `(n − 1)Bβ(γ1...γ`−1ηγ`)α − (n − 1)Bγ1...γ`ηβα

+ ηα(βČγ1...γ`))x
βxγ1 · · · xγ` + O(|x |`+2).

(5.49)

Equivalently,

ηα(β(−(n + 1)(`+ 2)Bγ1...γ`) + Čγ1...γ`))x
βxγ1 · · · xγ` + O(|x |`+2). (5.50)

Setting

Bγ1...γ` =
1

(n + 1)(`+ 2)
Čγ1...γ`,

the polynomial in (5.50) vanishes. This finishes the induction, and proves the
result for all ` ∈ N.

When ` = ∞, the result is obtained by Borel-summing (see Lemma A.2) the

sequence of corrections
(`+2)
δg constructed above.

For the purposes of Theorem 6.1 below it is convenient to have the conclusion
of Lemma 5.5 in coordinates which are harmonic for the metric ĝ. Note that the
transition to such coordinates as in the next lemma will not change g̃, though it
will in general change the remaining metric functions on CO .

LEMMA 5.6. Under the hypotheses of Lemma 5.5, for any ` ∈ N ∪ {∞} there
exists a smooth metric ĝ defined for |x | small enough, such that the tensor field
˜̂g = ĝAB |CO dx A dx B induced by ĝ on CO coincides with g̃, such that with (5.15)
holding for small |x |, and the coordinates in which (5.15) holds can be chosen to
be harmonic for the metric ĝ, coinciding with the original ones on the light-cone.

Proof. We define
(`)
x µ as being normal-wave coordinates for a metric

(`)
g defined

using a modification, explained below, of the proof of Lemma 5.5: by definition,

these are coordinates which satisfy the wave equation in the metric
(`)
g , with

(`)
x µ

coinciding with the original normal coordinates xµ on the light-cone.
Although some components of the metric tensor on CO will change when

passing to the new coordinates, the AB components will not. We need to
marginally modify the construction of Lemma 5.5 so that the introduction of
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harmonic coordinates does not affect the remaining conclusions of that lemma,
as follows.

We start with an observation. Suppose that a function f + δ f solves the wave
equation for a metric h. Given any other metric g, we then have

0=2h( f + δ f ) = hµν∂µ∂ν( f + δ f )− hµνΓ (h)λµν ∂λ( f + δ f )
= (hµν − gµν)∂µ∂ν( f + δ f )+ (gµν − hµν)Γ (h)λµν ∂λ( f + δ f )
+ gµν(Γ (g)λµν − Γ (h)λµν) ∂λ( f + δ f )+ 2g( f + δ f )︸ ︷︷ ︸

=2gδ f if 2g f = 0

.
(5.51)

We consider (5.51) with f = xµ, where xµ denotes normal coordinates for the

metric g, and with h := (0)
g ≡ g, δ f = (0)

x µ− xµ. We then have ∂( f + δ f ) = O(1),
∂∂( f +δ f ) = O(1), gµν−hµν = O(|x |2), Γ (g)λµν = O(|x |), Γ (h)λµν = O(|x |),
2g f = O(|x |), and so (5.51) implies that

2g(
(0)
x µ − xµ) = O(|x |).

Proposition 5.4 gives
(0)
x µ − xµ = O(|x |3). (5.52)

From the tensorial transformation law of the Ricci tensor, we conclude that after
the coordinate change xµ→ (0)

x µ, the equation

(0)
Rαβ(O) = 0

will still hold in the new coordinates. Then, in the proof of Lemma 5.5 we

make this coordinate change after having constructed the metric
(0)
g there. The

construction of the metric
(1)
g in that proof is thus done using the coordinates

(0)
x µ.

To continue, we write
(`+1)

x µ = (`)
x µ + δ(`+3)

x µ,

where the notation anticipates the fact, which we are about to prove, that the

coordinates
(`+1)

x µ differ from the coordinates
(`)
x µ by terms which are O(|x |`+3).

We consider (5.51) with f = (`)
x µ, g = (`)

g , h = (`+1)
g , and δ f = δ(`+3)

x µ. We again
have ∂( f + δ f ) = O(1), ∂∂( f + δ f ) = O(1), Γ (g)λµν = O(|x |), Γ (h)λµν =
O(|x |), but now gµν − hµν = O(|x |`+2), Γ (g)λµν − Γ (h)λµν = O(|x |`+1), and
2g f = 0. It then follows from (5.51) that

2gδ
(`+3)

x µ = O(|x |`+1),
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and Proposition 5.4 gives

δ
(`+3)

x µ = O(|x |`+3), (5.53)

as anticipated by the notation.
This shows that, in the proof of Lemma 5.5, after having constructed the metric

(`+1)
g , a coordinate change

(`)
x → (`+1)

x ,

will preserve (5.15) (with xµ there equal to
(`)
x µ), and for ` < ∞ the proof is

completed.
If ` = ∞, the construction above provides a sequence of Taylor coefficients

of the metric which are needed so that both (5.15) and the harmonicity vector
vanish to any order. Using Borel summation, we obtain a metric for which both
Rµνxµ and the wave-gauge vector vanish at the vertex of the light-cone to infinite
order along CO . Denoting by yµ the normal-wave coordinates for this metric, by
Proposition 5.4 we have

yµ − xµ = O(|x |∞).
Transforming the metric to the y-coordinates, the result follows.

6. The remaining constraints: the (κ, g̃) scheme

In this section we consider the scheme of [5], where one seeks a metric which
realises the initial data (κ, g̃) satisfying the first constraint equation (3.29). We
further assume that g̃ is induced on CO by a smooth metric C . The analysis of
Section 3 shows how the unconstrained scheme, where κ and the conformal class
[g̃] are prescribed, is reduced to the current one, by rescaling C by a conformal
factor, and again calling C the resulting metric.

Let Č be the metric obtained by applying Lemma 5.6 of Section 5.2 to the
metric C , so that the Ricci tensor Řµν of Čµν satisfies

Řαµ y̌α|CO = O`(r `), (6.1)

for any ` when C is smooth. This equation holds in coordinates near O , which
we denote by y̌µ, such that y̌µ = yµ on the light-cone and such that

2Č y̌µ = 0. (6.2)

The symbols Čµν will refer to the coefficients of the metric Č in these coordinates.
Then the coordinates x̌µ, constructed as in (3.3) using the y̌µ instead of the yµ,
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coincide on CO with the xµ. The tensor field C AB dx A dx B is intrinsic to CO , and
thus coincides with Č ABdx̌ Adx̌ B . Hence, in the checked coordinates x̌µ we still
have

ČAB(ř = r, x̌ A = x A) = CAB(r, x A) =: gAB(r, x A).

Let Ȟµ be the wave-map gauge vector associated with the metric Č ,

Ȟµ := Čαβ(Γ̌
µ

αβ︸ ︷︷ ︸
=:Γ̌ µ

−Γ̂ µ

αβ) =: Γ̌ µ − W̌µ, (6.3)

where the Γ̂ µ

αβ are the Christoffel symbols of the flat metric

ĝ ≡ η = −(d y̌0)2 + (d y̌1)2 + · · · + (d y̌n)2 = −dǔ2 + 2dǔdř + ř 2sABdx̌ Adx̌ B .

It follows from (6.2) that all the components Ȟ
µ

vanish; hence we have Ȟµ = 0
in any coordinates.

Summarising,

Č AB = C AB = gAB at r = ř , x A = x̌ A and Ȟ
µ

= 0. (6.4)

Let us denote by τ̌ , σ̌ , and so on, the fields τ and σ associated with the metric Č ;
for example,

χ̌AB := 1
2 ∂̂r ČAB . (6.5)

From (6.4) we find in particular that

σ̌AB = σAB and τ̌ = τ at r = ř , x A = x̌ A. (6.6)

Set
κ̌ := Γ̌ 1

11.

Let `µ = x̌µ/ř . From [5, Equation (6.11)] we have

O`(ř `−1)= Řµν`
µ`ν = −∂1τ̌ + Γ̌ 1

11τ − χ̌A
B χ̌B

A

=−∂1τ + κ̌τ − τ 2

n−1 − |σ |2.
(6.7)

Keeping in mind the equation satisfied by τ ,

∂1τ − κτ + τ 2

n − 1
+ |σ |2 = 0, (6.8)

and using the fact that τ behaves as (n − 1)/r for small r , we conclude, at r = ř ,
that

τ(κ̌ − κ) = O`(r `−1) H⇒ κ̌ − κ = O`(r `). (6.9)
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To continue, recall the identities [5, Appendix A]

Γ̌ 1
11 = ν̌0∂1ν̌0 − 1

2 ν̌
0∂0ǧ11, (6.10)

ν̌0Γ̌
0 = ν̌0∂0ǧ11 − 1

2 ǧ
AB
∂1ǧAB = ν̌0∂0ǧ11 − τ̌ , (6.11)

W̌ 0 = −ř ǧ
AB

sAB; (6.12)

hence, since Ȟµ ≡ Γ̌ µ − W̌µ = 0,

κ̌ ≡ Γ̌
1

11 = ν̌0∂1ν̌0 − 1
2 (ν̌0Γ̌

0
+ τ̌ )

= ν̌0∂1ν̌0 − 1
2 (−ř ν̌0ǧ

AB
sAB + τ̌ ).

(6.13)

Keeping in mind that ν̌0 = 1/ν̌0, we obtain

∂1ν̌0 = (κ̌ + 1
2 (−(ν̌0)2ř ǧ

AB
sAB + τ̌ ))ν̌0; (6.14)

equivalently,

∂1ν̌
0=−(κ̌ + τ̌

2

)
ν̌0 + 1

2 ř ǧ
AB

sAB

=−(κ + τ

2 + O`(r `)
)
ν̌0 + 1

2rgABsAB .
(6.15)

Comparing with the equation satisfied by ν0,

∂1ν
0 = −

(
τ

2
+ κ

)
ν0 + 1

2
gABrsAB, (6.16)

and using the fact that ν̌0 is smooth, and hence ν̌0 = O`(1) for any `, we find that

∂1(ν
0 − ν̌0) = −

(
τ

2
+ κ

)
(ν0 − ν̌0)+ O`(r `). (6.17)

Integrating, we conclude that

ν0 = ν̌0 + O`(r `). (6.18)

6.1. Integration of the second constraint. With a Minkowski target the
vacuum wave-map gauge CA constraint reduces to [5]

CA ≡ − 1
2 (∂1ξA + τξA)+ ∇̃BχA

B − ∂Aτ = 0, (6.19)

https://doi.org/10.1017/fms.2013.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.8


P. T. Chruściel 32

where ∇̃ is the covariant derivative operator of the metric gAB dx A dx B , and where
ξA is defined as

ξA = −2ν0∂1νA + 4ν0νBχA
B + f A, (6.20)

with [5, Section 8.1]

f A = −
(

rgC DsC D + 2ν0

r

)
νA + gAB gC D(SB

C D − Γ̃ B
C D), (6.21)

and where the Γ̃ B
C D are the Christoffel symbols of the metric gAB dx A dx B . On

the other hand, for the metric Č we have the identity

− 1
2
(∂1ξ̌A + τ̌ ξ̌A)+ ∇̃B χ̌A

B − ∂Aτ̌ = ∂yi

∂x A
Řiν`ν = O`(ř `−1), (6.22)

where ξ̌A is

ξ̌A=−2ν̌0∂1ν̌A + 4ν̌0ν̌B χ̌A
B + f̌ A

=−2ν0∂1ν̌A + 4ν0ν̌BχA
B + f̌ A + O`(ř `).

(6.23)

In the second line above we have used the calculations in [4], which show that

ν̌A = O`(ř 3).

Further,

f̌ A=−
(

ř ǧ
C D

sC D + 2ν̌0

ř

)
ν̌A + ǧAB ǧ

C D
(SB

C D − ˜̌Γ B
C D)

=−
(

rgC DsC D + 2ν0

r
+ O`(r `−1)

)
ν̌A

+ gAB gC D(SB
C D − Γ̃ B

C D),

(6.24)

at r = ř .
Set

δνA := νA − ν̌A, δξA := ξA − ξ̌A.

Subtracting (6.19) from (6.22), one obtains

− 1
2 (∂1δξA + τδξA) = O`(r `−1). (6.25)

Integrating, one finds that

δξA(r, x A) = O`(r `). (6.26)
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Subtracting (6.23) from (6.20), we obtain

− 2∂1δνA −
(

rgC DsC Dν
0 + 2

r

)
δνA + 4χA

BδνB = O`(r `). (6.27)

Integrating again, Proposition B.5 in appendix B gives

νA = ν̌A + O`(r `+1). (6.28)

6.2. Integration of the third constraint. We pass now to the ‘C0 constraint
operator’ of [5]. It arises from an identity, which for the Č-metric takes the form

0= (ν̌0)2[2∂2
1 (Č00 − gAB ν̌Aν̌B)− (τ + 4W

1
)∂1(Č00 − gAB ν̌Aν̌B)

+ (−∂1(τ + 2W
1
)+W

1
(τ + 2W

1
))(Č00 − gAB ν̌Aν̌B)]

−2(∂1W
1 + τW

1
)− R̃ + 1

2 gAB ξ̌Aξ̌B − Č AB∇̃Aξ̌B

−Š11Č11 − 2Š1AČ1A − 2Š01Č01,

(6.29)

where Š is the Einstein tensor of the metric Č ; here, for simplicity, we have
omitted to put hats on those fields which coincide with their unhatted equivalents,
for example τ̂ = τ , and so on. For the vacuum metric gµν that we seek to construct,
this provides instead a constraint-type equation for g00:

0= (ν0)2[2∂2
1 (g00 − gABνAνB)− (τ + 4W

1
)∂1(g00 − gABνAνB)

+ (−∂1(τ + 2W
1
)+W

1
(τ + 2W

1
))(g00 − gABνAνB)]

−2(∂1W
1 + τW

1
)− R̃ + 1

2 gAB ξ̌Aξ̌B − gAB∇̃Aξ̌B .

(6.30)

Subtracting (6.29) from (6.30), we obtain an ODE for Č00 − g00 which, as before,
leads to

g00 = Č00 + O`(r `).

To establish this, the reader might find it convenient to argue in two steps, by
first considering the first-order ODE satisfied by the difference between ∂1(g00 −
gABνAνB) and ∂1(C00 − gABνAνB).

6.3. End of the proof. Let Cµν be a smooth metric, and let κ be a function on
CO such that κ/r extends to a smooth function on space–time.

From what has been said, there exist smooth space–time functions δČ0A, δČ01

and δČ00 vanishing to infinite order at the origin such that

δČ0A = −Č0A + νA, δČ00 = −Č00 + g00 δČ01 = −Č01 + ν0.
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Then the tensor field δČ defined as

δČ := 2δČ01du dr + 2δČ0Adu dx A + δČ00du2

has smooth components δČµν , and satisfies

δČAB = 0 = δČA1 = δČ11.

It follows that the tensor
Čµν + δČµν

has smooth components, and satisfies the Raychaudhuri constraint equation (3.29)
with prescribed function κ , as well as the remaining wave-map gauge constraint
equations. The existence theorem of [12] shows existence of a smooth metric gµν ,
defined in a neighbourhood of the vertex O , which satisfies the vacuum Einstein
equations to the future of O , such that

gµν |CO = Čµν + δČµν .

It then follows from the analysis in [5] that Hµ ≡ 0 (compare the argument at the
end of Section 7), and that gµν solves the Einstein vacuum equations to the future
of O , with

Γ 1
11 = κ.

We have therefore proved the following.

THEOREM 6.1. Consider a pair (κ, g̃), where g̃ is a symmetric tensor field
induced by a smooth Lorentzian metric C on its null cone CO with vertex at O, and
where rκ is the restriction to CO of a smooth function on space–time vanishing
to second order at O. Suppose moreover that (κ, g̃) satisfy the Raychaudhuri
equation

∂1τ − κτ + τ 2

n − 1
+ |σ |2 = 0, (6.31)

where τ is the divergence of CO and σ its shear. Then there exists a smooth metric
g, defined in neighbourhood O of O and solving the vacuum Einstein equations
in I+(O)∩O , such that CO is the light-cone of g, g̃ is the tensor field induced by
g on CO \ {O}, and κ determines parallel transport along the generators of CO:
in adapted coordinates,

∇∂r ∂r = κ∂r .

We note that (6.31) is a necessary condition for g to be vacuum, so Theorem 6.1
is in fact an if-and-only-if statement.
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7. The gµν scheme

In this section we prove Theorem 1.3, namely existence of solutions of the
vacuum Cauchy problem on the light-cone in the scheme of [9], where all the
metric functions are prescribed by restricting a smooth metric C to its light-cone.

As in our previous treatment, we use a ‘generalised wave-map gauge’ with
target metric ĝ being the Minkowski metric η = −(dy0)2+ (dy1)2+· · ·+ (dyn)2.
As gravitational initial data, we choose a smooth tensor field C . The coordinates
y are chosen so that the future light-cone CO of C with vertex at O coincides
with the Minkowskian light-cone y0 = |Ey|. We then use the metric components
Cµν = Cµν |CO as initial data for g:

gµν := Cµν .

It follows from Lemma 5.5 that there exists a metric Č such that

gµν = Cµν = Čµν, (7.1)

with the Ricci tensor Řµν of the metric Č satisfying the conclusions of that lemma:
for small r ≡ |Ey|,

Řµν = O(r 2), Řµν yν |CO = O∞(r∞). (7.2)

To obtain a well-posed system of evolution equations for the metric g we will
impose a generalised wave-map gauge condition,

H λ = 0,

with the harmonicity vector Hµ defined as

H λ := gαβΓ λ
αβ︸ ︷︷ ︸

=:Γ λ

−W λ with W λ := gαβΓ̂ λ
αβ︸ ︷︷ ︸

=:Ŵ λ

+W̊ λ, (7.3)

where the Γ̂ λ
αβ are the Christoffel symbols of the metric η ≡ ĝ. Roughly speaking,

we calculate Γ λ − Ŵ λ from the initial data, and use the result as the definition
of W̊ λ; this will ensure the vanishing of H

µ
. The details are somewhat less

straightforward, as H λ − Ŵ λ involves some transverse derivatives of the metric
which are not part of the initial data; this is taken care of as in [9]. One then needs
to prove that W̊µ is the restriction to the light-cone of a smooth vector field in
space–time, and this is the focus of the work here.
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Recall that the vector field Ȟµ has been defined in (6.3) as

Ȟ λ := Čαβ(Γ̌ λ
αβ︸ ︷︷ ︸

=:Γ̌ λ

−Γ̂ λ
αβ), (7.4)

where the Γ̌ λ
αβ are the Christoffel symbols of the metric Č . This is clearly a smooth

vector field in space–time. We will show that the components of W̊µ differ from
those of Ȟµ by terms which are O∞(r∞). It easily follows from Lemma A.1,
appendix A, that a vector field, defined along CO , with (u, r, x A)-components that
are O∞(r∞) extends to a smooth vector field on space–time, which will establish
the desired property of W̊µ.

We pass now to the details of the above. There exists a neighbourhood of O on
which τ has no zeros. There we solve the first constraint by setting

κ = ∂1τ + 1
n−1τ

2 + |σ |2
τ

. (7.5)

The argument leading to (6.9) applies, and gives

κ̌ − κ = O∞(r∞). (7.6)

Following [9], we choose W̊ 0 to be

W̊ 0 = −Ŵ 0 − ν0(2κ + τ)− 2∂1ν
0; (7.7)

equivalently, using the unchecked versions of (6.10)–(6.12),

Γ 1
11 = κ − 1

2ν0 H 0. (7.8)

The last equation is further equivalent to (compare the unchecked version of (6.7))

R11 = − 1
2ν0 H 0τ. (7.9)

Comparing the definition (7.4) of Ȟ with (7.7), using (7.1) and (7.6) we find
that

W̊ 0 = Ȟ 0 + 2ν0(κ̌ − κ) = Ȟ 0 + O∞(r∞). (7.10)

The next constraint equation follows from R2A = 0. We note the identity [5]

(∂r + τ)Γ 1
1A + ∇̃Bσ

B
A −

n − 2
n − 1

∂Aτ − ∂AΓ
1
11 = R2A, (7.11)

where ∇̃ is the covariant derivative associated to the Riemannian metric gAB .
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We let ξA to be the unique solution, which vanishes at the tip of the light-cone,
of the equation obtained by replacing Γ 1

1A in (7.11) by −ξA/2, Γ 1
11 by κ , and

setting the right-hand side to zero,

− 1
2
(∂r + τ)ξA + ∇̃Bσ

B
A −

n − 2
n − 1

∂Aτ − ∂Aκ = 0, (7.12)

as in (6.19). We choose W̊ A to be

W̊ A := gAB[ξB + 2ν0(∂rνB − 2νCσB
C − νBτ)− νB(W̊ 0 + Ŵ 0)]

+ gC DΓ̃ A
C D − Ŵ A;

(7.13)

equivalently,

ξA=−2ν0∂rνA + 4ν0νBσA
B + 2ν0νAτ + νA(W̊ 0 + Ŵ 0)

+ gAB(W̊
B + Ŵ B)− gAB gC DΓ̃ B

C D.
(7.14)

This has been chosen so that, using the formulae in [5, Appendix A and Section 9],

R1A = − 1
2 (∂r + τ)(gAB H B + νA H 0)+ 1

2∂A(ν0 H 0). (7.15)

Moreover, one finds that (cf. [5, Equation (10.35)])

ξA = −2Γ 1
1A − gAB H B − νA H 0. (7.16)

We let ξ̌ A be −2Γ̌ 1
1A. The check-equivalent of (7.11) reads

− 1
2
(∂r + τ) ξ̌ A + ∇̃Bσ

B
A −

n − 2
n − 1

∂Aτ − ∂Aκ̌ = O∞(r∞). (7.17)

Comparing with (7.12) defining ξA, we find that

− 1
2 (∂r + τ)(ξA − ξ̌ A) = O∞(r∞). (7.18)

Integration establishes that

ξA = ξ̌ A + O∞(r∞). (7.19)

The field Ȟ A, defined in (7.4) and written out in detail using [5, Appendix A],
takes the form

Ȟ A= gAB[ ξ̌ B + 2ν0(∂rνB − 2νCσB
C − νBτ)− νBΓ̌

0]
+ gC DΓ̃ A

C D − Ŵ A.
(7.20)
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Comparing with (7.13), and using (7.10) and (7.19), we conclude that

W̊ A= Ȟ A + gAB[ξB − ξ̌ B − νB(W̊ 0 + Ŵ 0 − Γ̌ 0)]
= Ȟ A + O∞(r∞).

(7.21)

Let Sµν denote the Einstein tensor of g. We continue with the equation S01 = 0;
equivalently, gAB R AB = 0. Using the identities (10.33) and a corrected version of
[5, Equation (10.36)] we find the identity

gAB R AB ≡ (∂r + Γ 1
11 + τ)(2gABΓ 1

AB + τg11)

−2gABΓ 1
1AΓ

1
1B − 2gAB∇̃AΓ

1
1B + R̃.

(7.22)

(On the far-right-hand side of (10.36) in [5] a term τg11/2 is missing.) This
motivates the equation

(∂r + κ + τ)ζ + (∇̃A − 1
2ξA)ξ

A + R̃ = 0, (7.23)

with ξ A := gABξB , and where the quantity ζ will be the restriction of

2(gABΓ 1
AB + τg11)

to CO , once the final vacuum metric g has been constructed. We integrate (7.23),
viewed as a first-order ODE for ζ , as

ζ = −e−
∫ r

1 (κ+τ−((n−1)/r̃)) dr̃

r n−1

∫ r

0
r̃ n−1e

∫ r̃
1 (κ+τ−((n−1)/ ˜̃r)) d ˜̃r

×
(

R̃ + gAB∇̃AξB − 1
2

gABξAξB

)
dr̃

= −(n − 1)r−1 + O(1).

We choose
W̊ 1 := 1

2ζ − (∂r + κ + 1
2τ)ḡ

11 − Ŵ 1; (7.24)

equivalently,

ζ = 2gABΓ 1
AB + g11(τ + ν0 H 0)− 2H 1. (7.25)

With the choice (7.24) we have

gAB R AB = (∂r + κ + τ − 1
2 g12 H 0)(2H 1 − g12ν

0 H 0)− 1
2 g12 H 0ζ

+ (∇̃A − ξA − 1
2 gAB H B − 1

2νA H 0)(H A + νC gAC H 0).
(7.26)
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Let ζ̌ be the check-counterpart of ζ ,

ζ̌ := 2(gABΓ̌ 1
AB + τν0). (7.27)

Integrating the check-version of (7.22), we obtain

ζ̌ =−e−
∫ r

1 (κ̌+τ−((n−1)/r̃)) dr̃

r n−1

∫ r

0
r̃ n−1e

∫ r̃
1 (κ̌+τ−((n−1)/ ˜̃r)) d ˜̃r

×
(

R̃ + gAB∇̃A ξ̌ B − 1
2 gAB ξ̌ A ξ̌ B − gAB Ř AB

)
dr̃

= ζ + O∞(r∞).

(7.28)

From (7.27) and from [5, Appendix A] we find that

1
2 ζ̌ = Γ̌ 1 + (∂r + κ̌ + 1

2τ)g
11. (7.29)

Comparing with (7.24), in view of (7.6) and (7.28), we conclude that

W̊ 1 = 1
2 (ζ − ζ̌ )+ Γ̌ 1 + (κ̌ − κ)ḡ11 − Ŵ 1 = Ȟ 1 + O∞(r∞). (7.30)

Summarising, given the fields gµν on CO , we have found a vector field W̊ on
CO satisfying

W̊µ = Ȟµ + O∞(r∞).

The field Ȟµ extends trivially to the smooth vector field Ȟµ, while a vector field
with components which are O∞(r∞) extends to a smooth vector field in space–
time by Lemma A.1. We conclude that there exists a smooth vector field, which
we call W̊ , defined in a neighbourhood O of O , which coincides with W̊ on
CO ∩O .

We apply the existence and uniqueness theorem of [13] to the reduced Einstein
equations R(H)

αβ = 0, with initial data g, where

R(H)
αβ := Rαβ − 1

2 (gαλ D̂βH λ + gβλ D̂αH λ), (7.31)

with Hµ defined by (7.4), where D̂ is the Levi-Civita covariant derivative in the
metric ĝ. Indeed, it follows from [3, p. 163] that R(H)

αβ is a quasi-linear, quasi-
diagonal operator on g, tensor-valued, depending on ĝ, of the form

R(H)
αβ ≡ − 1

2 gλµ D̂λ D̂µgαβ + f̂ [g, D̂g]αβ, (7.32)

where f̂ [g, D̂g]αβ is a tensor quadratic in D̂g with coefficients depending upon
g, ĝ, W̊ , D̂Ŵ , and D̂W̊ , which is of the right form for [13].
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Now, the metric g so obtained will solve the vacuum Einstein equations if and
only if Hµ vanishes on CO . It should be clear that κ then equals Γ 1

11 and ξA equals
− 1

2Γ
1
1A, but, to avoid ambiguities, we will justify these inequalities explicitly in

what follows.
Note that at this stage a smooth metric g and smooth vector fields W̊µ and Hµ

are known in a neighbourhood U of O , with g satisfying the reduced Einstein
equations in U ∩ J+(O).

The proof of the vanishing of H is essentially the same as the one in [5]; we
outline it here for completeness.

In order to prove that H
0 = 0 holds, we note the identity (see (7.31))

R11 ≡ R
(H)
11︸︷︷︸
=0

+ν0 D̂1 H 0. (7.33)

The reader will note that this equation, as well as (7.36) and (7.37) below, are
identical with the corresponding equations in [5], even though our H is not the
same as the corresponding vector field in [5]. This is due to the fact that our
operator R

(H)
11 in (7.31) is constructed using our vector field Γ µ − Ŵµ − W̊µ,

while in [5] the vector field Γ µ − Ŵµ is used for Hµ.
Equations (7.9) and (7.33) imply that H 0 satisfies a linear homogeneous

differential equation on CO , namely,

D̂1 H 0 + 1
2τH 0 = 0. (7.34)

As explained in [5, Section 7.6], the only bounded solution of this equation is
H 0 ≡ 0. The equality Γ 1

11|CO = κ follows trivially now from (7.8),

H 0|CO ≡ 2ν0(κ − Γ 1
11). (7.35)

To establish the vanishing of H A we invoke the following identity [5,
Equation (9.8)]:

R1A ≡ R
(H)
1A︸︷︷︸
=0

+1
2
(ν0 D̂A H 0 + νA D̂1 H 0 + gAB D̂1 H B). (7.36)

Combined with (7.15), and taking into account that H 0 = 0 has already been
established, this gives a radial homogeneous ODE for H A, with H A ≡ 0 being the
only solution with the relevant asymptotic behaviour at O . We can now conclude
that ξA = −2Γ 1

1A from (7.16).
Finally, we have the identity [5, Equation (11.18)] (recall that Sµν denotes the

Einstein tensor)

S01 ≡ S
(H)
01︸︷︷︸
=0

+1
2
(g00 D̂1 H 0 + νA D̂1 H A − ν0 D̂A H A). (7.37)
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Combining this with (7.26), one similarly concludes that H 1 = 0; see also [5,
Section 11.3]. The vanishing of H 0 and H 1, together with the identity (7.25),
implies that on CO the field ζ coincides with 2gABΓ 1

AB + τν0.
Thus Hµ vanishes on C0, and by the usual arguments (see, for example, [5,

Theorem 3.3]) we have Hµ ≡ 0.
This completes the proof of Theorem 1.3.
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Appendix A. On Taylor expansions

To proceed, some terminology will be needed. We say that a function g defined
on a space–time neighbourhood of the origin is om(|y|k) if g is Cm and if for
0 6 ` 6 m we have

lim
|y|→0
|y|`−k∂µ1 . . . ∂µ`g = 0,

where |y| :=
√∑n

µ=0(yµ)2.
A similar definition will be used for functions defined in a neighbourhood of

O on the light-cone CO : we parameterise CO by coordinates yi ∈ Rn , and we
say that a function g defined on a neighbourhood of O within CO is om(r k)

if g is a Cm function of the coordinates yi and if for 0 6 ` 6 m we have
limr→0 r `−k∂µ1 . . . ∂µ`g = 0, where r := √∑n

i=1(yi)2.
We consider a light-cone CO which is smooth away from its tip. The following

lemma will be used repeatedly (recall that Θ i = yi/r ).

LEMMA A.1 [7, Lemma A.1]. A function ϕ defined on a light-cone CO is the
trace f on CO of a C k space–time function f if and only if ϕ admits an expansion
of the form

ϕ =
k∑

p=0

f pr p + ok(r k), (A.1)

with
f p ≡ fi1... i pΘ

i1 · · ·Θ i p + f ′i1... i p−1
Θ i1 · · ·Θ i p−1, (A.2)

where fi1... i p and f ′i1... i p−1
are numbers.

The claim remains true with k = ∞ if (A.1) holds for all k.
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We will also need the following.

LEMMA A.2 (Borel summation; see for example [7, Lemma D.1]). For any given
sequence

{ci1... ik }k∈N = {c, ci , ci j , . . .}
there exists a smooth function f such that, for all k ∈ N,

f −
k∑

p=0

ci1... i p yi1 · · · yi p = ok(r k).

Appendix B. ODE lemmas

For k ∈ N ∪ {∞, ω} we will say that a function ϕ : CO → R is C k-cone
differentiable if there exists a C k function on space–time φ such that ϕ is the
restriction to CO of φ. We shall say ‘cone-smooth’ for C∞-cone differentiable.

We start with the following elementary result.

LEMMA B.1. Let k ∈ N∪ {∞, ω}, and let ϕ be a C k-cone differentiable function
on CO . Then the integrals

ψ(r, x A) =
∫ r

0

ϕ(s, x A)

s
ds and χ(r, x A) = 1

r

∫ r

0
ϕ(s, x A) ds (B.1)

are C k-cone differentiable, assuming moreover that ϕ(0) = 0 in the case of the
integral defining ψ .

Proof. Let, first, k ∈ N. By Lemma A.1 we have

ϕ =
k∑

p=0

f pr p + ok(r k), (B.2)

where the coefficients f p are of the form (A.2). Inserting (B.2) into (B.1), we find
that

ψ(r, x A) =
k∑

p=1

f pr p

p
+ ok(r k), χ(r, x A) =

k∑
p=0

f pr p

p + 1
+ ok(r k), (B.3)

and the result follows from Lemma A.1.
The case k = ∞ is established in a similar way using Borel summation.
The case k = ω is the contents of [6, Lemma 6.5].
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We will need the following result about systems of Fuchsian ODEs.

LEMMA B.2. Let r0 > 0, k ∈ N∪ {∞}, N ∈ N, 0 > a ∈ R, ψ ∈ C k([0, r0],RN ),
and α ∈ C k([0, r0],End(RN )) with

α(0) = aId,

where Id is the identity matrix in End(RN ). If φ ∈ C1((0, r0],RN ) is a solution of

φ′ = α

r
φ + ψ, (B.4)

then:

(1) the limit
lim
r→0

r−aφ (B.5)

exists;

(2) there exists a solution such that the last limit is zero. For such solutions, φ
extends by continuity to a function in C k+1([0, r0]). If moreover ψ = O(rm),
respectively o(r k), then φ = O(rm+1), respectively o(r k+1). Here, by o(r∞)
we mean a function which is o(r k) for all k.

REMARK B.3. The fact that φ ∈ C k((0, r0) is standard, so the only issue is at
r = 0. Similarly the case a = 0 is standard. It is easy to analyse the equation with
a > 0 using similar methods, but the results are more complicated to describe,
and will not be needed in this work.

REMARK B.4. We will be using Lemma B.2 in the following equivalent form.
Suppose that there exist matrices αi such that α has an expansion

α = aId+ α1r + · · · + αkr k + ok(r k), (B.6)

and suppose that there exist vectors ψi ∈ RN such that ψ has an expansion

ψ = ψ0 + ψ1r + · · · + ψkr k + ok(r k). (B.7)

Here we write f = ok(rm) if for 0 6 i 6 k we have ∂ i
r f = o(rm−i). Then the

limit (B.5) exists. If this limit vanishes, then there exist vectors φi ∈ RN such that
φ has an expansion

φ = φ1r + · · · + φkr k + ok(r k). (B.8)
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Proof. Let us denote by 〈·, ·〉 the canonical scalar product in RN , with |φ|2 = 〈φ,
φ〉. Set f := r−2a|φ|2. From (B.4) we have, for some constant C ,

r∂r (r−2a|φ|2︸ ︷︷ ︸
f

)= 2r−2a〈φ, (α − aId)︸ ︷︷ ︸
>−Cr

φ + rψ〉

> r(−2Cr−2a|φ|2 + r−2a 2〈φ,ψ〉︸ ︷︷ ︸
>−|φ|2−|ψ |2

)

>−r(2(C + 1) f + r−2a|ψ |2);
equivalently,

∂r

(
e2(C+1)r f +

∫ r

r0

e2(C+1)ss−2a|ψ(s)|2 ds︸ ︷︷ ︸
=:h

)
> 0.

So the function h defined in the last equation is monotonic and nondecreasing.
Monotonicity and positivity of h imply that of existence of the nonnegative limit
limr→0 h(r), and we conclude that r−a|φ| has a finite limit as r → 0. In particular,
|φ| 6 Cr a for some constant C .

We rewrite (B.4) as

∂r (r−aφ) = r−a(ψ + (α − aId)φ).

Integrating, for 0 < r1 < r 6 r0, one finds that

φ(r)
r a
= φ(r1)

r a
1
+
∫ r

r1

s−aψ(s) ds +
∫ r

r1

(α − aId)s−aφ(s)︸ ︷︷ ︸
6Cs1

dx . (B.9)

Passing with r1 to zero, using convergence of the integrals above in the limit, we
find that the limit

φ̃ := lim
r1→0

φ(r1)

r a
1

exists. Hence point (1) holds, and moreover

φ(r) = r aφ̃ + r a
∫ r

0
s−aψ(s) ds + r a

∫ r

0
(aId− α)s−aφ(s) dx . (B.10)

(2) It is standard that solutions of the homogeneous equation can be uniquely
parameterised by φ̃. So, given any solution of the nonhomogeneous equation
(B.4), we can subtract from it a solution of the homogeneous equation with the
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same value of φ̃, obtaining a solution with φ̃ = 0. It follows from (B.10) that we
then have

φ(r) = r a
∫ r

0
s−aψ(s) ds + r a

∫ r

0
(aId− α)s−aφ(s) dx

= r
1− a

ψ0 + o(r).
(B.11)

Suppose, now, that
φ = φ1r + · · · + φ jr j + o(r j) (B.12)

holds for some 1 6 j < k + 1; we have just shown that this holds with
j = 1. Inserting (B.6)–(B.7) and (B.12) into (B.11), one then finds by elementary
manipulations that (B.12) holds with j replaced by j + 1. Lemma B.2 follows
now by induction, using Remark B.4.

Let M be any smooth compact manifold; in our applications M will be a
sphere Sn−1. By commuting (B.4) with differential operators tangential to M one
immediately obtains the following corollary to Remark B.4.

PROPOSITION B.5. Let r0 > 0, k, N ∈ N, 0 > a ∈ R. Suppose that there exist
matrices αi ∈ C∞(M,End(RN )) such that α has an expansion

α = aId+ α1r + · · · + αkr k + ok(r k), (B.13)

and suppose that there exist vectors ψi ∈ C∞(M,RN ) so that ψ has an expansion

ψ = ψ0 + ψ1r + · · · + ψkr k + ok(r k). (B.14)

We assume moreover that, for any ` ∈ N and for any smooth differential operator
X on M of order `, the error terms in (B.13) and in (B.14) satisfy, for 0 6 i 6 k
and 0 6 i + ` 6 k + 1,

∂ i
r X (ok(r k)) = o(r k−i). (B.15)

Let φ ∈ C0(M × (0, r0],RN ) be differentiable in r and satisfy

φ′ = α

r
φ + ψ. (B.16)

Then:

(1) the limit
lim
r→0

r−aφ (B.17)

exists;
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(2) there exists a solution φ ∈ C k+1(M × (0, r0],RN ) of (B.4) such that the last
limit is zero. Fur such solutions φ has an expansion

φ = φ1r + · · · + φk+1r k+1 + ok+1(r k+1),

where φi ∈ C∞(M × [0, r0]), and where the error term satisfies (B.15), with
k in the exponent replaced by k + 1. If moreover ψ = O(rm), respectively
o(r k), then φ = O(rm+1), respectively o(r k+1).

Appendix C. Prescribing ν0

Let ν0 be the restriction of a smooth space–time function to the future light-
cone of a smooth metric C . In this appendix we show how to deform C to achieve
C01 = ν0 without changing C AB dx A dx B .

Let y be a coordinate system in which the future light-cone of C takes the
Minkowskian form y0 = |Ey|, and let x be coordinates as in (3.3). Using the
notation

Cµν = C
(
∂

∂yµ
,
∂

∂yµ

)
, Cµν = C

(
∂

∂xµ
,
∂

∂xµ

)
,

we have the transformation formulae

C00 ≡ C00, C01 ≡ −C00 − C0iΘ
i , C0A ≡ −C0ir

∂Θ i

∂x A
, (C.1)

C11 ≡ C00 + 2C0iΘ
i + Ci jΘ

iΘ j , C1A ≡ C0ir
∂Θ i

∂x A
+ C j irΘ j ∂Θ

i

∂x A
, (C.2)

CAB ≡ Ci jr 2 ∂Θ
i

∂x A

∂Θ j

∂x B
. (C.3)

Conversely, Cλµ = (∂xα/∂yλ)(∂xβ/∂yµ)Cαβ gives

C00 ≡ C00, C0i ≡ −(C00 + C01)Θ
i − C0A

∂x A

∂yi
, (C.4)

Ci j = (C00 + 2C01 + C11)Θ
iΘ j + (C0A + C1A)

(
Θ i ∂x A

∂y j
+Θ j ∂x A

∂yi

)
+ CAB

∂x A

∂yi

∂x B

∂y j
.

(C.5)

As the first step of our argument, we need to write ν0 as

ν0 = 1+ r 2 f̄0 +
n∑

i=1

f̄i yi , (C.6)
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where f̄0, respectively f̄i , are restrictions to the light-cone of functions f0,
respectively fi , which are smooth on space–time. (It follows from (4.10) that
f̄0 = O(r 2) when κ = 0, a harmonic gauge, and the vacuum Raychaudhuri
equation are assumed, but this will not be needed in what follows.) To prove (C.6),
let f be any smooth function on space–time; Taylor expanding f with respect to
y1, we can write

f (y0, y1, . . . , yn) = f (y0, 0, y2, . . . , yn)+ f1(y0, y1, . . . , yn)y1,

where

f1 =
∫ 1

0

∂ f
∂y1

(y0, sy1, y2, . . . , yn) ds ∈ C∞.

Similarly,

f (y0, 0, y2 . . . , yn) = f (y0, 0, 0, y3, . . . , yn)+ f2(y0, y2, . . . , yn)y2,

with

f2 =
∫ 1

0

∂ f
∂y2

(y0, 0, sy2, y3, . . . , yn) ds ∈ C∞.

Continuing in this way, after n steps the function

f −
n∑

i=1

fi yi = f (y0, 0, . . . , 0) (C.7)

depends only upon y0. A final Taylor expansion allows us to rewrite the right-
hand side as f (0, 0, . . . , 0)+ (y0)m f0, where f0 is a smooth function of y0 and m
is the order of the zero of f (y0, 0, . . . , 0)− f (0, 0, . . . , 0). Keeping in mind that
y0|CO = r , (C.6) for ν0 = f follows.

Let, now, Cµν be given, and consider

C̃µν := Ω2Cµν + δCµν,

where Ω = 1 if one wishes to keep C AB dx A dx B fixed, or Ω is a smooth space–
time function with prescribed Ω (for example the conformal factor determined
in Section 3.3), if one only wishes to prescribe C AB dx A dx B up to a conformal
factor.

Suppose, momentarily, that the components

δC0µ

are prescribed smooth functions on space–time, and suppose that δC satisfies

δCAB = 0 = δC11 = δC1A. (C.8)
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The first equality guarantees that the initial data C̃AB defined by C̃ coincide with
the metric gAB solving the first constraint equation, while the last two guarantee
that the cone {y0 = |Ey|} remains characteristic for C̃ .

Then, by (C.1),

δC00 = δC00, δC01 = −δC00 − δC0kΘ
k, δC0A = −δC0k

∂yk

∂x A
, (C.9)

and so all components δCµν are known. We can now find the restrictions to the
light-cone of the missing components δCi j of δC using (C.5):

δCi j = (δC00 + 2δC01)Θ iΘ j + δC0A

(
Θ i
∂x A

∂y j
+Θ j

∂x A

∂yi

)

= −(δC00 + 2δC0kΘk)Θ iΘ j − δC0k
∂yk

∂x A

(
Θ i
∂x A

∂y j
+Θ j

∂x A

∂yi

)
= −(δC00 + 2δC0kΘk)Θ iΘ j − δC0k((δ

k
j −ΘkΘ j )Θ i + (δk

i −ΘkΘ i )Θ j )

= −δC00Θ iΘ j − δC0iΘ j − δC0 jΘ i .

(C.10)

Keeping in mind that δCµν is required to satisfy (C.8), we chose the tensor field
δCµν now so that in addition to this last equation it holds that

C̃01 = ν0, (C.11)

where ν0 is the restriction to the light-cone of a smooth function f . Equivalently,

δC01 = r 2 f0 +
n∑

i=1

fi yi + 1−Ω2, (C.12)

where f0 and fi are given by (C.6). As in that last equation, we can also write

Ω2 = 1+ r 2h0 +
n∑

i=1

hi yi ,

which allows us to rewrite (C.12) as

δC01 = r 2( f0 − h0)+
n∑

i=1

( fi − hi)yi . (C.13)

Comparing with (C.9), we see that (C.12) will hold if we choose

δC00 = r 2(h0 − f0), δC0i = t (hi − fi),
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while, in view of (C.10), (C.8) will be satisfied if δCi j is further chosen to be

δCi j = ( f0 − h0)yi y j + ( fi − hi)y j + ( f j − y j)yi . (C.14)

The reader might wish to verify by a direct calculation that, with these choices,
(C.8) and (C.11) hold.

The metric C̃ will clearly be Lorentzian in a sufficiently small neighbourhood
of the vertex of the cone.
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(conformes) du vide et pour les équations de Yang-Mills-Higgs’, Ann. Henri Poincaré 4
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