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Admissible Majorants for
Model Subspaces of H2,
Part II: Fast Winding of the
Generating Inner Function

Victor Havin and Javad Mashreghi

Abstract. This paper is a continuation of [6]. We consider the model subspaces KΘ = H2 	 ΘH2 of

the Hardy space H2 generated by an inner function Θ in the upper half plane. Our main object is the

class of admissible majorants for KΘ, denoted by Adm Θ and consisting of all functions ω defined on

R such that there exists an f 6= 0, f ∈ KΘ satisfying | f (x)| ≤ ω(x) almost everywhere on R. Firstly,

using some simple Hilbert transform techniques, we obtain a general multiplier theorem applicable to

any KΘ generated by a meromorphic inner function. In contrast with [6], we consider the generating

functions Θ such that the unit vector Θ(x) winds up fast as x grows from −∞ to ∞. In particular,

we consider Θ = B where B is a Blaschke product with “horizontal” zeros, i.e., almost uniformly

distributed in a strip parallel to and separated from R. It is shown, among other things, that for

any such B, any even ω decreasing on (0,∞) with a finite logarithmic integral is in Adm B (unlike

the “vertical” case treated in [6]), thus generalizing (with a new proof) a classical result related to

Adm exp(iσz), σ > 0. Some oscillating ω’s in Adm B are also described. Our theme is related to the

Beurling-Malliavin multiplier theorem devoted to Adm exp(iσz), σ > 0, and to de Branges’ space

H(E).

1 Introduction

1.1 Some Background

This paper is a continuation of [6]. As in [6], we consider the model subspace KΘ of
the Hardy space H2(C+) generated by a function Θ which is inner in the upper half

plane C+:
KΘ = H2(C+) 	 ΘH2(C+).

(Subsection 1.1 of [6] contains a list of papers devoted to model subspaces.)

We call a measurable non-negative function ω : R 7→ [0,∞) an admissible majo-

rant for KΘ, and we write ω ∈ Adm Θ, if there exists a non-zero function f ∈ KΘ

satisfying

(1.1) | f (x)| ≤ ω(x)

almost everywhere on R ( f (x) = limε↓0 f (x + iε); this limit exists almost everywhere
on R, and the function x 7→ f (x) is in L2(R) [8, p. 114]). The subspace of L2(R)
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formed by all boundary traces of elements of H2(C+) is isometric to H2(C+) and is
denoted by H2(R) [3, pp. 190–191].

In the present paper we consider only meromorphic inner functions Θ (i.e. Θ is
the restriction to C+ of a meromorphic function with poles in the lower half plane
C− = {=z < 0} or, what is the same, Θ(z) = eiσzB(z) where σ ≥ 0 and B is a
Blaschke product in C+ whose zeros tend to infinity). For any meromorphic inner

function Θ there exists a real continuous and increasing function ϕ on R such that

Θ(x) = eiϕ(x), x ∈ R.

This function is unique up to an additive constant 2πk, k ∈ Z. We call it a continuous

argument of Θ and denote it by arg Θ.
In [6] Adm Θ was mainly studied for slowly winding unit vectors Θ(x), or, to be

more precise, for Θ’s with a slowly growing arg Θ(x). The generating inner functions
Θ considered in [6] satisfied the estimate

(arg Θ) ′(x) = o(1), |x| → ∞.

Note that in the classical Beurling-Malliavin case of Θ(z) = eiσz, σ > 0, we have

arg Θ(x) = σx, a linear increasing function.
In this paper we turn to Θ’s whose argument grows linearly or faster. These as-

sumptions create a completely new situation: the description of Adm Θ differs es-
sentially from what we had for slowly winding generating functions Θ. Not only our

results, but the technique as well is quite different from [6].
In [6] we were able to find the so called minimal elements of Adm Θ; they had

explicit expressions and were unique (in a sense); see Theorems 1.3, 1.4 and 1.5 in
[6]. A new feature of the results of the present paper (compared with [6]) is the

absence of minimal elements in Adm Θ.
E.g., in the Beurling-Malliavin case, Θ(z) = eiσz , σ > 0, and KΘ = eiσz/2 PWσ/2,

where PWσ/2 is the Paley-Wiener space of entire functions of degree not exceeding
σ/2 and square summable on R, any nonconstant element of KΘ is an entire function

of exponential type at most σ and thus has a zero by the Hadamard factorization
theorem [10, p. 16], since otherwise it is a pure exponential (up to a constant factor)
in KΘ ⊂ L2(dt) and thus identically zero. Repeating the argument from the proof
of Theorem 3.6 of [6] we conclude that ω(x)/(1 + |x|) is in Adm eiσz whenever ω ∈
Adm eiσz is positive and continuous.

Another distinction of the present paper from [6] is the role played by the loga-
rithmic integral

(1.2) L(ω) =

∫ ∞

−∞

Ω+(x)

1 + x2
dx,

where

(1.3) Ω(x) = − logω(x).

It is obvious that its convergence is necessary for the inclusion ω ∈ Adm Θ.
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As shown in [6], this necessary admissibility condition can be quantitatively very
far from being sufficient. E.g., if Θ = B, the Blaschke product with zeros in2,

n = 1, 2, . . . , then any ω(x) of the form e−|x|α with α ∈ (1/2, 1) is not admissible,
although L(ω) <∞ (see Sections 3.7 and 3.8 of [6] where a complete description of
ω ∈ Adm B is given for any Blaschke product with imaginary zeros).

For functions Θ considered in this paper the convergence of L(ω) is not so dra-

matically far from the admissibility of ω, and the non-admissibility is rather of quali-
tative than quantitative character. It can be only caused by a kind of irregularity of ω.
Indeed, we show that if ω is regular, then ω ∈ Adm Θ provided arg Θ grows almost
linearly, no matter how fast is the decrease of ω(x) if only L(ω) < ∞. In particular,

this is applicable to Θ = B where B is a Blaschke product with zeros almost uniformly
distributed in a strip {a < =z < b}, a > 0. The regularity means that ω is even and
decreases on [0,∞), so that it does not oscillate at all (see Theorems 1.4, 1.5 and 1.6).
The most interesting and difficult admissibility problems arise when arg Θ grows al-

most linearly or faster, and ω(x) oscillates as |x| tends to infinity. Such situations are
considered in Sections 3, 4 and 5.

Our proofs (as in [6]) are constructive; whenever we claim that ω ∈ Adm Θ we
can exhibit explicitly a non-zero f ∈ KΘ whose modulus is majorized by ω on R.

This article is organized as follows. In the short Section 2.1 we study Theorems 1.1
and 1.2 and reduce the former to the latter which is proved in Sections 2.2 and 2 con-
taining some preliminary information on the Hilbert transform of bounded func-
tions. Applications of Theorem 1.1 are collected in the last three sections.

1.2 A Survey of Our Results

In this paper the notion of a mainly increasing function plays an essential role. A

function f (x) defined on R is called mainly increasing if f (dn) = 2πn, n ∈ Z, for a
strictly increasing sequence {dn}n∈Z such that limn→−∞dn = −∞, limn→∞dn = ∞,
the distances dn+1−dn are bounded and f does not oscillate too wildly in the intervals
(dn, dn+1) (e.g., if f is Lipschitz or f ′ ∈ C1(R) and f ′ is uniformly continuous on R;

see the details in Section 2.1).
If L(ω) <∞, then

Ω̃(x) =
1

π

∫

R

( 1

x − t
+

t

1 + t2

)
Ω(t) dt,

the Hilbert transform of Ω, exists almost everywhere on R. In what follows we assume

that L(ω) <∞ is fulfilled.

Theorem 1.1 (Multiplier theorem) If arg Θ(x) + 2Ω̃(x) is mainly increasing, then

ω ∈ Adm Θ.

This theorem is a consequence of the following technical result which is interesting
in its own right.

Theorem 1.2 If f (x) is mainly increasing, then

f (x) = 2l̃og m(x) + 2πK(x)
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almost everywhere on R, where K is a non-decreasing step function with integer values

and m ≥ 0 with m ∈ L∞(dt) ∩ L2(dt) and

log m ∈ L1
( dt

1 + t2

)
.

An application of Theorem 1.1 is given in Section 4.10 where the Blaschke prod-
ucts B with zeros in a horizontal strip {0 < c < =z < C} are considered. The zeros

are supposed to be almost uniformly distributed in the strip.

Definition 1.3 A sequence {zk}k∈Z in the strip {0 < c < =z < C} has an almost
uniform distribution if there exist numbers L, K > 0 such that for any a ∈ R the
rectangle [a, a + L] × [c,C] contains at least one and no more than K zeros.

Theorem 1.4 Let B be a Blaschke product with almost uniformly distributed zeros in

a horizontal strip. If L(ω) < ∞, Ω̃ is Lipschitz and ‖Ω̃ ′‖∞ < δ, (δ depends on c, C, L

and K), then ω ∈ Adm B.

The geometric conditions imposed on the distribution of the zeros of B entail the

almost linear growth of arg B, i.e.,

0 < c1 < (arg B) ′(x) < C1

for all x ∈ R. A more general version of Theorem 1.4 is stated in Section 3.4.
The classical Beurling-Malliavin case (i.e. Θ(z) = eiσz, σ > 0) is discussed in

many books and papers. Theorem 1.1 applied to this case yields the following result.

Theorem 1.5 If L(ω) <∞, Ω̃ is Lipschitz and ‖Ω̃ ′‖∞ < σ/2, then ω ∈ Adm eiσz .

Beurling and Malliavin proved that ω ∈
⋂
σ>o Adm eiσz provided L(ω) < ∞

and Ω (not Ω̃) is Lipschitz, no matter how big ‖Ω ′‖∞ is. Another application of

Theorem 1.1 is the following result on the nice ω’s.

Theorem 1.6 Let B be a Blaschke product with almost uniformly distributed zeros

in a horizontal strip. If ω is even and decreasing on [0,∞) with L(ω) < ∞, then

ω ∈ Adm B.

In this case the convergence of L(ω) is sufficient forω to be admissible for KB. Our
method yields a new proof for the admissibility of nice ω’s for Keiσz as well. Three
other proofs of this result (for the particular case of Θ = eiσz) are available in [5,

p. 276], [9, p. 97] and [10, p. 159]. See also further remarks on [5, p. 393].
Two further applications of Theorem 1.5 are the following results which refer to

some irregular (oscillating) majorants ω.

Theorem 1.7 Suppose L(ω) < ∞. Denote by hΩ the modulus of continuity of Ω =

log 1/ω and suppose

(1.4)

∫ 1

0

hΩ(s)

s
ds +

∫ ∞

1

hΩ(s)

s2
ds <∞.

Then ω ∈ Adm eiσz for any σ > 0.
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Theorem 1.8 If ω satisfies the conditions of Theorem 1.7, then ω ∈ Adm B for any

Blaschke product B with zeros almost uniformly distributed in a horizontal strip.

The condition (1.4) is called the Zygmund condition and is well known in the the-

ories of approximation and singular integrals [14, p. 121], [2]; (1.4) if fulfilled if Ω

satisfies the Lipschitz condition of order α ∈ (0, 1), i.e.

(1.5) hΩ(t) ≤ Ctα, t > 0.

Thus we get the following corollary.

Corollary 1.9 If L(ω) <∞ and Ω satisfies (1.5), then the admissibility conditions of

Theorems 1.7 and 1.8 hold.

In fact ω ∈
⋂
σ>0 Adm eiσz whenever L(ω) < ∞ and Ω ∈ Lip 1 (i.e. hΩ(t) ≤ Ct ,

t > 0). This is a famous result of Beurling and Malliavin implied by their multiplier
theorem [1]. Several proofs are known now. For the present state of this topic see

books [5], [9], [10] and [7]. The Lip 1 case is much more difficult than the Lip α
case, 0 < α < 1. The authors believe, however, that this case can be also deduced
from our Theorem 1.5.

In Section 5.2 we consider the Blaschke products Bα, 1/2 < α < 1, with horizon-
tal zeros {|k|α sgn k + i}k∈Z (The convergence condition for Blaschke products forces
α > 1/2; α = 1 is a particular case of Theorem 1.4, and α > 1 is studied in [6]; arg B

grows slowly in that case and a unique minimal majorant for KB can be constructed

explicitly). For 1/2 < α < 1, arg Bα grows much faster than the almost linearly
growing arguments due to case α ≥ 1, and that’s why the admissibility conditions
for KBα are milder.

Theorem 1.10 Suppose
∫

R
|Ω(x)|/(1 + x2) dx <∞, Ω̃ ∈ C1(R) and that

−cα < lim inf
|x|→∞

Ω̃ ′(x)

|x|
1
α−1

≤ lim sup
|x|→∞

Ω̃ ′(x)

|x|
1
α−1

< Cα,

where cα = π/α and Cα is a positive constant. Moreover, suppose that

λt (t
1− 1

α ) ≤ K,

where K is a positive constant and λt is the modulus of continuity of Ω̃ ′ on R \ (−t, t).

Then ω ∈ Adm Bα.

We believe conditions imposed on Ω̃ in Theorem 1.10 can be expressed in terms
of Ω (maybe with some losses). Another open question is the sharpness of the con-
ditions. The authors hope to return to these problems.
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2 The Relation Between arg Θ and the Hilbert Transform

2.1 Mainly Increasing Functions

We need this notion to state our main result, Theorem 1.1. A function f : R 7→ R is
called mainly increasing if

1. f is absolutely continuous.

2. There is a strictly increasing sequence {dn}n∈Z with limn→−∞ dn = −∞,
limn→∞ dn = ∞ such that, for each n, f (dn) = 2πn. Moreover, there is a constant L

such that

`n =
dn − dn−1

2
≤ L

for each n ∈ Z.
3. There is a constant C such that

1

2`n

∫ dn

dn−1

| f ′(x) − f ′(t)| dt ≤ C

for all x ∈ (dn−1, dn) and for all n ∈ Z.
Note that for f ∈ C1(R), property (3) is implied by

(2.1) oscIn
f ′ ≤ Const, n ∈ Z.

Here oscE ϕ denotes the oscillation of the function ϕ on a set E, i.e.,

sup{ϕ(x2) − ϕ(x1) : x1, x2 ∈ E} = sup
E

ϕ− inf
E
ϕ.

Property (2.1) is, in its turn, implied by the following simpler property:

(2.2) oscI f ′ ≤ Const

for any interval of length at most one. Finally (2.2) is implied by the uniform conti-
nuity of f ′. Any Lipschitz function f satisfies (3) with Const = 2‖ f ′‖∞.

Any f satisfying (2) increases by 2π as its argument jumps from dn−1 to dn whereas
f does not vary too intensely between dn−1 and dn due to (3). This phenomenon
justifies our choice of the term mainly increasing.

2.2 Hilbert Transform of a Bounded Function

The definition and some simple theorems on the Hilbert transform in a form ad-
justed to our purposes is in [6]. The facts collected in this paragraph are stated in a

slightly more general form than we really need.

Lemma 2.1 Let u ∈ L1
loc (dt), and suppose that U (x) =

∫ x

0
u(t) dt belongs to

L1
(

dt/(1 + t2)
)

and U (t) = o(t) as |t| → ∞. Then

lim
a→−∞
b→∞

∫ b

a

t

1 + t2
u(t) dt

exists, and is finite.
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Proof By integration by parts. For each pair a, b, −∞ < a < b <∞,

∫ b

a

t

1 + t2
u(t) dt =

t

1 + t2
U (t)

∣∣∣∣
b

a

−

∫ b

a

1 − t2

(1 + t2)2
U (t) dt

=
b

1 + b2
U (b) −

a

1 + a2
U (a) −

∫ b

a

1 − t2

(1 + t2)2
U (t) dt.

Let a → −∞ and b → ∞. Since U (t) = o(t) as |t| → ∞, we have

lim
|t|→∞

t

1 + t2
U (t) = 0.

On the other hand ∣∣∣∣
1 − t2

(1 + t2)2
U (t)

∣∣∣∣ ≤
|U (t)|

1 + t2
.

Thus the right hand integral is absolutely convergent. Hence

lim
a→−∞
b→∞

∫ b

a

t

1 + t2
u(t) dt =

∫ ∞

−∞

t2 − 1

(1 + t2)2
U (t) dt,

which is finite.

Theorem 2.2 Suppose u ∈ L1
(

dt/(1 + t2)
)

satisfies the conditions of Lemma 2.1.

Then for almost all x ∈ R

ũ(x) = lim
a→−∞
b→∞
ε→0

∫

Iabε

u(t)

x − t
dt,

where Iabε = (a, x − ε) ∪ (x + ε, b). The order in which the passages to the limit are

taken is immaterial.

Proof We have, for almost all x ∈ R,

ũ(x) = lim
ε→0

∫

|x−t|>ε

( 1

x − t
+

t

1 + t2

)
u(t) dt

= lim
a→−∞
b→∞
ε→0

∫

Iabε

( 1

x − t
+

t

1 + t2

)
u(t) dt.

Thus, by Lemma 2.1,

ũ(x) = lim
a→−∞
b→∞
ε→0

∫

Iabε

u(t)

x − t
dt + c,

where c is a constant. Absorb c into ũ.

We need the following version of Theorem 2.2.
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Theorem 2.3 Suppose u ∈ L∞(dt), U (x) =
∫ x

0
u(t) dt ∈ L1

(
dt/(1 + t2)

)
, and

U (an) = U (bn) = 0, n = 1, 2, . . . ,

where limn→∞ an = −∞ and limn→∞ bn = ∞. Then

ũ(x) = lim
ε→0

n→∞

1

π

∫

{|t−x|≥ε}∩(an ,bn)

u(t)

x − t
dt.

The proof is an obvious modification of the proofs of Lemma 2.1 and Theo-
rem 2.2.

2.3 Systems of Short Intervals

Suppose that {dn}n∈Z is a strictly increasing sequence of real numbers with

lim
n→−∞

dn = −∞ and lim
n→∞

dn = ∞.

Put `n =
dn−dn−1

2
and cn =

dn+dn−1

2
. Suppose, furthermore, there is a number L > 0

such that

(2.3) `n ≤ L

for all n ∈ Z.

-
xcn

`n

dndn−1

`n

cn−1 cn+1

q q ss q

In the following, we study functions which are uniformly Lipschitz on each inter-
val (dn−1, dn); they have finite left-hand and right-hand limits at every dn.

We need the following assumption on dn.

(2.4)
∑

dn−1dn>0

`2
n

dn−1dn

<∞

It clearly holds whenever

(2.5)
∑

dn−1>0

`2
n

d2
n−1

+
∑

dn<0

`2
n

d2
n

<∞

The following fact will be used later.

Lemma 2.4 Suppose {`n}n∈Z is a bounded sequence of positive numbers, i.e. `n ≤ L

for all n ∈ Z. Then (2.4) and (2.5) are fulfilled.
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Proof We estimate the first sum in (2.5). The estimate of the second is quite similar.
First, note that if dn−1 > 0, then dn = dn−1 + 2`n ≤ dn−1 + 2L ≤ 2dn−1, if n is

sufficiently large, say n > N , since limn→∞ dn−1 = ∞. Thus, for n > N ,

`2
n

d2
n−1

≤
4L`n

d2
n

.

Now
2`n

d2
n

≤

∫ dn

dn−1

dx

x2
,

whence ∑

n>N

`2
n

d2
n−1

≤ 2L

∫ ∞

dN−1

dx

x2
≤

2L

dN−1
<∞.

In fact we only need (2.3), although (2.4) and (2.5) are satisfied by some (but
not all) unbounded sequences {`n}n∈Z. We mention (2.4) and (2.5) for two reasons.
First, (2.5) means the sequence {In}n∈Z is a so-called system of short intervals, a notion

occurring in some important theorems of Fourier analysis [5, p. 399]. Second, (2.4)
and (2.5) may be useful for possible generalizations of Theorem 1.10.

2.4 Sawtooth Functions

Let u(x) = πxκ(−1,1)(x), where κ is the characteristic function of [−1, 1].

6

-
0 x

u

π

−π

1

-1

p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p�
�

�
�

�
�

Then by a direct calculation, we have

(2.6) ũ(x) =
1

π

∫

R

u(t)

x − t
dt = −2 + x log

∣∣∣
x + 1

x − 1

∣∣∣ .

The function x 7→ x log | x+1
x−1

| is even; it is positive in (0, 1) and hence in (−1, 1).
Thus, for |x| < 1,

(2.7) ũ(x) ≥ −2.

Now, for |x| > 1,

(2.8) ũ(x) > 0,
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since ũ(x) =
2

3x2 + 2
5x4 + 2

7x6 + · · · there. This expansion also yields

(2.9) ũ(x) ≤
2

x2 − 1

for |x| > 1.

6

-
x

ũ

1-1

-2
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

Let U (x) = 0 for x ≤ −1, U (x) =
∫ x

−1
u(t) dt for x ≥ −1, so that U (x) =

π(x2−1)
2

κ(−1,1)(x) for all x ∈ R; U is a primitive of u with

(2.10) −
π

2
≤ U (x) ≤ 0

for all x ∈ R. Put

u(x) =

∞∑

n=−∞

u
( x − cn

`n

)
.

-
x

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�
�

�
�

�
��

"
"

"
"

"
"

"
"

"
"

�
�

�
�

�
�

�
�

�
�

cn

u

−π

π

dndn−1cn−1 cn+1

For each x different from the dk at most one of the terms u( x−cn

`n
) is non-zero. The

sum u is thus a function with a graph shaped like a saw blade which grows linearly
from −π to π on each (dn−1, dn) and jumps downward by 2π at each dn. The slope of
each line is at least π/L if `n ≤ L for all n ∈ Z. The sawtooth function u plays a crucial
role in the proof of Theorem 1.2. We show that any mainly increasing function f can

be sufficiently well approximated modulo 2π by a sawtooth function u. On the other
hand ũ behaves sufficiently well to enable us to obtain the desired multiplier m.

Lemma 2.5 Suppose {`n}n∈Z satisfies (2.4). Then for each x ∈ R \ {dn}, ũ(x) exists

and

ũ(x) =

∞∑

n=−∞

ũ
( x − cn

`n

)
.
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Furthermore, ũ is bounded from below.
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cn

ũ

dndn−1

Proof For each x ∈ R at most one term in the series
∑∞

n=−∞ `nU ( x−cn

`n
) is non-

zero. The series thus represents a continuous function U(x) which is zero at each dn.

Furthermore, for every x ∈ (dk−1, dk),

dU(x)

dx
=

d

dx

∞∑

n=−∞

`nU
( x − cn

`n

)
= U ′

( x − ck

`k

)
= u

( x − ck

`k

)
= u(x),

so that U is a primitive of u. We also have

∫ dn

dn−1

|U(t)|

t2
dt = `n

∫ dn

dn−1

∣∣U
(

(t − cn)/2
) ∣∣

t2
dt =

π`2
n

2

∫ 1

−1

dτ

(cn + `nτ )2
=

π`2
n

dn−1dn

,

if 0 6∈ [dn−1, dn], whence, by (2.4), U ∈ L1(dt/(1 + t2)). Therefore, by Theorem 2.2,
for almost all x ∈ R,

ũ(x) = lim
ε→0,N→∞

1

π

∫

INε

u(t)

x − t
dt,

where INε = (d−N , x − ε) ∪ (x + ε, dN), and the passages to the limit can be taken in

any order. Hence,

ũ(x) = lim
ε→0

N→∞

1

π

∫

INε

u(t)

x − t
dt

= lim
ε→0

N→∞

1

π

∫

INε

∑N
n=−N u

(
(t − cn)/`n

)

x − t
dt.
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If dm−1 < x < dm, the integral on the right is equal, for large N and ε > 0 small
enough, to

ũ(x) =
1

π

∑

|n|≤N,n6=m

∫ dn

dn−1

u
(

(t − cn)/`n

)

x − t
dt

+
1

π

∫

dm−1<t<dm

|t−x|>ε

u
(

(t − cm)/`m

)

x − t
dt.

For n 6= m, the substitution τ =
t−cn

`n
converts the corresponding term of the sum-

mation to
1

π

∫ 1

−1

u(τ )

( x−cn

`n
) − τ

dτ = ũ
( x − cn

`n

)
,

and the remaining integral is similarly seen to equal

1

π

∫
|τ |<1

|τ− x−cm
`m

|> ε
`m

u(τ )

( x−cm

`m
) − τ

dτ .

Since u(τ ) = 0 for |τ | > 1, this tends to ũ( x−cm

`m
) when ε→ 0. We therefore have

lim
ε→0

∫

INε

u(t)

x − t
dt =

N∑

n=−N

ũ
( x − cn

`n

)
,

and finally

ũ(x) =

∞∑

n=−∞

ũ
( x − cn

`n

)
.

On (cm − `m, cm + `m), ũ( x−cm

`m
) ≥ −2. All other terms in the summation are positive.

Thus ũ is also bounded below.

Fix an integer m and let us look at the local behavior of ũ(x) near dm. We have

dm = cm + `m = cm+1 − `m+1. Here, for x ∈ (cm, cm+1), we have, by (2.6),

ũ
( x − cm

`m

)
= −2 +

( x − dm + `m

`m

)
log

∣∣∣
x − dm + 2`n

x − dm

∣∣∣

= − log |x − dm| + ϕm(x),

and again

ũ
( x − cm+1

`m+1

)
= −2 +

( x − dm − `m+1

`m+1

)
log

∣∣∣
x − dm

x − dm − 2`m+1

∣∣∣

= − log |x − dm| + ψm(x),
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where ϕm and ψm are analytic at dm. Therefore, for each x ∈ (cm, cm+1),

ũ(x) = −2 log |x − dn| + ϕm(x) + ψm(x) + ρm(x),

where

(2.11) ρm(x) =

( m−1∑

n=−∞

+

∞∑

n=m+2

)
ũ
( x − cm+1

`m+1

)
= ṽ(x).

Note that v(x) = u(x) off (dm−1, dm+1) and v(x) = 0 in (dm−1, dm+1), and thus, ρm

is analytic at dm. Hence ũ is a continuous function on R \ {dn}n∈Z and, in a neigh-
borhood of each dn, it is equal to −2 log |x − dn| + ϕn(x), where ϕn is a continuous
function in that neighborhood.

From Lemma 2.5 and the preceding computation, we get, finally

Lemma 2.6 Let u be as in Lemma 2.5. Then for each m ≥ 0, the ratio

e−ũ(x)

∏m
k=1(x − d jk

)2

formed using arbitrary distinct d jk
from among the dn, is a bounded continuous function.

2.5 Distorted Sawtooth Functions

Let g be a real function such that for each dn,

lim
x→d+

n

g(x) = −π

and
lim

x→d−

n

g(x) = π.

Moreover, suppose g is absolutely continuous on every In = (dn−1, dn), and for a
C > 0

(2.12)
1

dn − dn−1

∫ dn

dn−1

|g ′(t) − g ′(x)| dt ≤ C

for all x ∈ In and for all n ∈ Z.

-
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dndn−1

cn−1
q

cn+1
q
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If g|In
is in C1(In), then (2.12) is implied by

sup
n∈Z

oscIn
g ′ ≤ C.

The estimate (2.12) also holds if g satisfies a uniform Lipschitz condition on any In,

i.e., for each x1, x2 ∈ In, we have

(2.13) |g(x2) − g(x1)| ≤ Lipg |x2 − x1|,

where the constant Lipg does not depend on n (then C = Lipg).

Let u be the linear sawtooth function constructed in Section 2.4 with discontinu-

ities at the dn. Put r = g − u on R \ {dn : n ∈ Z} and r(dn) = 0, n ∈ Z. Then r is
continuous on R.
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Lemma 2.7 Suppose the sequence {`n}n∈Z is bounded, and g satisfies (2.13). Then r

is a bounded Lipschitz function on R.

Proof Clearly r is absolutely continuous. We only need to prove that r ′ ∈ L∞(dt)

since it entails r ∈ L∞(dt):

(2.14) |r(x)| =

∣∣∣
∫ x

dn−1

r ′(t) dt
∣∣∣ ≤ 2`n‖r ′‖∞ ≤ 2L‖r ′‖∞,

if x ∈ In. Now, for x ∈ In, we have

r(x) = g(x) − g(d+
n−1) −

g(d−
n ) − g(d+

n−1)

dn − dn−1
(x − dn−1).

Hence, for almost all x ∈ In, we get

(2.15) |r ′(x)| =

∣∣∣g ′(x) −
1

2`n

∫ dn

dn−1

g ′(t) dt
∣∣∣ ≤

1

2`n

∫ dn

dn−1

|g ′(x) − g ′(t)| dt ≤ C.

https://doi.org/10.4153/CJM-2003-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-049-5


1278 Victor Havin and Javad Mashreghi

Lemma 2.8 Suppose r is a bounded Lipschitz function on R, i.e., for each x1, x2 ∈ R,

|r(x2) − r(x1)| ≤ Lipr |x2 − x1|.

Then r̃(x) is continuous and

r̃(x) = O(log |x|),

as |x| → ∞.

Proof Since r is Lipschitz, r̃ is at least continuous. Indeed, its modulus of continuity
behaves like O(∆ log 1/∆) as ∆ → 0+ [13, p. 146].

Without loss of generality assume that r(0) = 0. Now

πr̃(x) =

∫ x+1

x−1

r(t)

x − t
dt +

∫ x+1

x−1

r(t)

t
dt +

∫

|t−x|>1

xr(t)

t(x − t)
dt = I + I + I.

Clearly,

|I| =

∣∣∣
∫ x+1

x−1

r(t) − r(x)

t − x
dt

∣∣∣ ≤ 2 Lipr,

and

|I| ≤ ‖r‖∞ log
∣∣∣

x + 1

x − 1

∣∣∣ = o(1),

as |x| → ∞. From now on we assume x > 0. Then, breaking I into four more
integrals, we get

|I| ≤ ‖r‖∞

∫ −1

−∞

x

t(t − x)
dt + Lipr x

∫ 1

−1

dt

x − t

+ ‖r‖∞

∫ x−1

1

x

t(x − t)
dt + ‖r‖∞

∫ ∞

x+1

x

t(x − t)
dt

= 2‖r‖∞ log(x2 − 1) + Lipr x log
( x + 1

x − 1

)

= 4‖r‖∞ log x + O(1),

as x → ∞. The estimate for x → −∞ is now clear. Therefore,

(2.16) |r̃(x)| ≤
4‖r‖∞
π

log x + O(1),

as |x| → ∞.

Remark Our estimate of r̃ in Lemma 2.8 follows also from the inclusion r̃ ∈ BMO.
If r = g − u, where g satisfies (2.13), then by (2.14), (2.15) and (2.16),

|r̃(x)| ≤
4L Lipg

π
log x + O(1),

as |x| → ∞.
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Corollary 2.9 Under the conditions of Lemma 2.7, the ratio

e−r̃(x)

(1 + |x|)αg
,

where αg = 4L Lipg /π, is a bounded continuous function on R.

Corollary 2.10 Let g be as in Lemma 2.7. Let m ∈ N such that 2m ≥ αg + 2, where

αg = 4L Lipg /π. Then, for any choice of different d jk
, 1 ≤ k ≤ m, the ratio

exp
(
−g̃(x)

)
∏m

k=1(x − d jk
)2

is a bounded continuous and integrable function on R.

Proof Since g̃ = r̃ + ũ, we have

e−g̃(x)

∏m
k=1(x − d jk

)2
=

e−r̃(x)e−ũ(x)

∏m
k=1(x − d jk

)2
.

By Lemma 2.6, the function

e−r̃(x) ·
e−ũ(x)

∏m
k=1(x − d jk

)2

is bounded and continuous on any bounded interval. For large values of |x|, by
Lemma 2.6 and Corollary 2.9,

e−ũ(x) ·
e−r̃(x)

|x|αg

is bounded. Thus we get

∣∣∣∣
e−g̃(x)

∏m
k=1(x − d jk

)2

∣∣∣∣ ≤
Const

x2

for large values of |x|. Therefore this ratio represents a bounded continuous and
integrable function on R.

2.6 Representation of a Mainly Increasing Function

We are now ready to complete the proof of Theorem 1.2.

Theorem 2.11 Let f be a mainly increasing function. Then there are a non-decreasing

step function K(x) with values all equal to integral multiples of 2π and also a function

m ≥ 0 with m ∈ L∞(dt) ∩ L2(dt) and log m ∈ L1( dt
1+t2 ), such that

f = 2l̃og m + K.
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Proof Put L(x) = (2n+1)π for x ∈ (dn, dn+1). Then g = f−L is a sawtooth function
like the one examined in Section 2.4; it satisfies the conditions of Lemma 2.7. Choose

m according to the recipe in the Corollary 2.10, and any m different points d jk
from

among the dn. Put

m(x) =
e−

1
2

g̃(x)

∏m
k=1 |x − d jk

|
.

Then

2 log m(x) = −g̃(x) − 2

m∑

k=1

log |x − d jk
|.

By Corollary 2.10, m ∈ L∞(dt) ∩ L2(dt). Since g = u + r ∈ L∞(dt),

log m(x) ∈ L1
( dt

1 + t2

)
.

If we substitute u(t) = log |t| into (4.1) of [6] we obtain a Hilbert transform equal to
− π

2
sgn t . Here, however, it is convenient to subtract π

2
from the latter and we take

−
π

2
sgn t −

π

2
=

{
0, t < 0

−π, t > 0

as our Hilbert transform of log |t|. Referring to Theorem 4.1 of [6], we thus get

2l̃og m(x) = −˜̃g(x) − 2

m∑

k=1

(
−
π

2
−
π

2
sgn(x − d jk

)
)

= g(x) + π
m∑

k=1

(
1 + sgn(x − d jk

)
)
.

Hence, for each x ∈ R \ {dn}n∈Z, we finally have

f(x) = 2l̃og m(x) − π

m∑

k=1

(
1 + sgn(x − d jk

)
)

+ L(x).

The function K(x) = −π
∑m

k=1

(
1+sgn(x−d jk

)
)

+L(x) is an increasing step function
with values all equal to integral multiples of 2π.

The proof of Theorem 1.2, and thus Theorem 1.1, is now complete.

3 A Multiplier Theorem and Some of its Applications

One can look at the question of characterizing admissible majorants of KΘ from a
different point of view. If we consider the reciprocals W (x) =

1
ω(x)

, we are interested
in describing the W for which nonzero functions f ∈ KΘ with

(3.1) |W (x) f (x)| ≤ 1 for x ∈ R
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exist. One can think of such a W as a weight that can be multiplied down by the
“multiplier” f and thus a multiplier theorem is any result describing conditions on W ,

or equivalently on ω, from which (3.1) follows for appropriate functions f . In those
circumstances, we say that W admits multipliers or that ω is an admissible majorant.

3.1 An Admissibility Criterion

Here we find some admissible majorants. Using tools developed above, we deduce
a multiplier theorem applying to all model subspaces KΘ of H2 formed from inner
functions Θ having smooth arguments on the real line. Application of that result to

meromorphic Blaschke products Θ(z) = B(z) will give concrete results involving the
zeros of B.

Theorem 3.1 If Ω(x) = − logω(x) is bounded below and arg Θ + 2Ω̃ is mainly

increasing, then ω ∈ Adm Θ.

Proof By Theorem 2.11, there is an m ∈ L∞(dt) ∩ L2(dt), m ≥ 0, such that

log m ∈ L1
( dt

1 + t2

)

and
arg Θ + 2Ω̃ = 2l̃og m + K,

where K is a step function with values all equal to integral multiples of 2π. Since ω =

e−Ω is now bounded, we also have mω ∈ L2(dt). The inclusion ω ∈ Adm Θ follows
now from Theorem 4.7 of [6] which was deduced from Dyakonov’s description of
the moduli of functions in KΘ [4].

Corollary 3.2 Let Ω(x) be bounded below and ϕ = arg Θ + 2Ω̃ be a uniformly Lips-

chitz function on R, i.e.,

|ϕ(x1) − ϕ(x2)| ≤ C|x1 − x2| for x1, x2 ∈ R,

where C is a positive constant, and suppose that

lim
x→−∞

ϕ(x) = −∞, lim
x→∞

ϕ(x) = ∞.

Suppose, moreover, that for x1 and x2 both either sufficiently large or sufficiently nega-

tive,

|ϕ(x1) − ϕ(x2)| ≥ c|x1 − x2|,

where c is a positive constant. Then ω ∈ Adm Θ.

Proof For each n ∈ Z, let

dn = sup{x ∈ R;ϕ(x) = 2nπ}.
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The point (dn, 2nπ) is the last point where the horizontal line y = 2nπ meets the
graph of y = ϕ(x). By the intermediate value theorem for continuous functions and

the limit relations in the hypothesis, we have dn < dn+1 for each n ∈ Z. Moreover,
for large values of |n|, we have

dn+1 − dn ≤
2π

c
,

and therefore such inequalities (with different constants on the right) hold for all n.
Hence ϕ is a mainly increasing Lipschitz function and thus, by Theorem 3.1, ω =

exp(−Ω) is an admissible majorant.

3.2 The Classical Case Θ(x) = eiσx

Let ϕ(x) = σx + 2Ω̃(x). Suppose Ω̃ is Lipschitz. Then

c|x1 − x2)| ≤ |ϕ(x1) − ϕ(x2)| ≤ C|x1 − x2|,

with c = (σ − 2‖Ω̃ ′‖∞) and C = (σ + 2‖Ω̃ ′‖∞).

Referring to Corollary 3.2, we have, with the preceding,

Corollary 3.3 If Ω̃ is Lipschitz with

‖Ω̃ ′‖∞ <
σ

2
,

then ω ∈ Adm eiσx.

3.3 A Blaschke Product With Zeros in a Horizontal Strip

Here we turn to Θ = B, a meromorphic Blaschke product with zeros almost uni-
formly distributed in a horizontal strip. To apply Theorem 1.1 we need some infor-
mation on arg B, the continuous argument of B.

Let {zk = xk + i yk}k∈Z be a Blaschke sequence in the upper half plane such that

0 < a ≤ yk ≤ b <∞ for k ∈ Z.

Since
a

x2
k + b2

≤
yk

|zk|2
≤

b

x2
k + a2

for k ∈ Z,

a necessary and sufficient condition for the uniform convergence of BK to B on com-

pact sets disjoint from {z̄k; k ∈ Z} is that

(3.2)

∞∑

k=−∞

1

1 + x2
k

<∞.
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Suppose that the xk are indexed in increasing order: xk ≤ xk+1, k ∈ Z. Let n(t) denote
the counting function of the sequence {xk}k∈Z. Then we have

∫ ∞

−∞

dn(t)

1 + t2
=

∞∑

k=−∞

1

1 + x2
k

<∞.

This identity implies that n(t) = o(t2) as |t| → ∞. Furthermore, by using integration

by parts, one can show that n(t) = O(|t|α) for |t| → ∞, where 0 < α < 2, is
sufficient for the convergence of

∫ ∞

−∞
dn(t)
1+t2 .

Theorem 3.4 Let a and b, 0 < a < b, be fixed. Let B be a meromorphic Blaschke

product with zeros in the horizontal strip 0 < a ≤ =z ≤ b <∞. Then:

(a)
d arg B(x)

dx
is uniformly bounded from above on R if and only if there exist a real

number d > 0 and an integer N > 0 such that any rectangle

Rx,d = [x, x + d] × [a, b] with x ∈ R,

contains at most N zeros of zk.

(b)
d arg B(x)

dx
is uniformly bounded away from zero on R if there exists a real number

d > 0 such that any rectangle Rx,d contains at least one zero zk.

(c)
d arg B(x)

dx
is uniformly bounded from above on R and uniformly bounded away from

zero on R if and only if the zeros zk satisfy both conditions of (a) and (b) simulta-

neously.

Proof (a) Suppose d and N exist. Then the segments [`d, (` + 1)d], ` ∈ Z, cover R.
For simplicity, put

R` = R`d,d and R∗
` = R`−1 ∪ R` ∪ R`+1 for ` ∈ Z.

Then, if x ∈ R`, ∑

zk∈R∗

`

2yk

(x − xk)2 + y2
k

≤
∑

zk∈R∗

`

2

yk

≤
6N

a
.

For x ∈ R`, we also have

∑

zk 6∈R∗

`

2yk

(x − xk)2 + y2
k

≤
∑

zk 6∈R∗

`

2b

(x − xk)2
≤

∞∑

m=1

4bN

m2d2
.

Therefore,

d arg B(x)

dx
≤

6N

a
+

4bN

d2

∞∑

m=1

1

m2
for x ∈ R.

Now suppose that
d arg B(x)

dx
is bounded from above. Put d = 1, and let N` denote

the number of zeros in R`. Then, for x ∈ [`, ` + 1],

d arg B(x)

dx
≥

∑

zk∈R`

2a

1 + b2
≥ N`

2a

1 + b2
.
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Therefore,

N` ≤
1 + b2

2a
‖(arg B) ′‖∞ for ` ∈ Z.

(b) If x ∈ [`d, (` + 1)d], with ` ∈ Z and R` contains at least one zero, we have

d arg B(x)

dx
=

∑

k

2yk

(x − xk)2 + y2
k

≥
2a

d2 + b2
.

(c) Suppose d arg B(x)/dx is uniformly bounded from above and uniformly
bounded away from zero. Then zk have the property stated in (a). We only have to
check the property stated in (b). Suppose for any ∆ > 0 there is a rectangle R = Rx,∆

free of zk. Take a big integer M and put ∆ = (2M + 1)d, where d is the number from

(a). Let c be the center of [x, x + ∆]. We have

(arg B) ′(c) =

∑

zk 6∈R

2yk

(c − xk)2 + y2
k

≤
∑

m≥M

2bN

m2 d2
= O(1/M).

The condition stated in part (b) is not necessary. As a counter example, consider

the Blaschke product with k2 repeated zeros at points ±k2 + i, k ≥ 1. Then d arg B(x)
dx

is

an even function, and for x ∈ [`2 − `− 1, `2 + ` + 1] with ` ≥ 2,

d arg B(x)

dx
≥ `2 ·

2

(x − `2)2 + 1
≥

2`2

`2 + 2` + 2
≥

4

5
.

Hence
d arg B(x)

dx
≥

4

5
for x ≥ 1.

Moreover, for 0 ≤ x ≤ 1,

d arg B(x)

dx
≥

2

(x − 1)2 + 1
≥ 1.

Therefore, arg B is bounded away from zero, but the number d mentioned in part (b)
does not exists.

Let B be a meromorphic Blaschke product with zeros in the horizontal strip 0 <
a ≤ =zk ≤ b <∞. We say that the zeros of B are almost uniformly distributed if there
exist d > 0 and an integer N > 0 such that any rectangle Rx,d = [x, x + d] × [a, b],
x ∈ R, contains at most N zeros, and at least one zero, of B.

Corollary 3.5 Let B be a meromorphic Blaschke product with zeros in the horizontal

strip 0 < a ≤ =zk ≤ b < ∞. Then there are positive constants c and C such that for

all x1, x2 ∈ R

(3.3) c|x2 − x1| ≤ | arg B(x2) − arg B(x1)| ≤ C|x2 − x1|.

if and only if the zeros of B are almost uniformly distributed in that strip.
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Now we are ready to prove our result mentioned as Theorem 1.4 in the Section 1.2.

Theorem 3.6 Let B be a meromorphic Blaschke product whose zeros are almost uni-

formly distributed in a horizontal strip way from R. Suppose that Ω̃ is uniformly Lips-

chitz on R, and that for

L <
1

2
inf
x∈R

∣∣∣∣
d arg B(x)

dx

∣∣∣∣ ,

we have

|Ω̃(x2) − Ω̃(x1)| ≤ L|x2 − x1|

for x1 and x2 both either sufficiently large or sufficiently negative. Then ω ∈ Adm B.

Proof By Corollary 3.5,

c = inf
x∈R

∣∣∣∣
d arg B(x)

dx

∣∣∣∣ > 0

and (3.3) holds. Here we assumed that L < c/2. Hence, by (3.3), the function
ϕ(x) = arg B(x) + 2Ω̃(x) is uniformly Lipschitz on R. Moreover,

|ϕ(x2) − ϕ(x1)| ≥ (c − 2L)|x2 − x1|

for x1 and x2 both either sufficiently large or sufficiently negative. Thus ω(x) is an
admissible majorant for KB by Corollary 3.2.

Remark Note that Theorem 3.6 is applicable to any Blaschke product satisfying
(3.3).

3.4 A Slight Generalization of the Admissibility Criterion

The results of Sections 3.2 and 3.3 can be given a stronger form. Suppose Ω̃ is in
C1(R) and satisfies the following conditions:

(a) Ω̃ ′(x) ≥ −δ where δ < σ/2 (in Section 3.2), or δ < c/2 (in Section 3.3).
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(b) oscI Ω̃ ′ is bounded uniformly with respect to intervals I of length at most one.

So we do not even need to assume Ω̃ is Lipschitz; we only need the lower Lipschitz

estimate Ω̃ ′(x) ≥ −δ plus a mild control of the oscillations of Ω̃ on intervals of length
at most one.

To see this, note that the functions ϕ1(x) = σx + 2Ω̃(x) and ϕ2(x) = arg B(x) +
2Ω̃(x) are mainly increasing if (a) and (b) hold; their derivatives are bounded away

from zero, so that they tend monotonically to ±∞ as x tends to ±∞; (a) clearly
implies the uniform boundedness of `n, and

1

2`n

∫ dn

dn−1

|ϕ j(t) − ϕ j(x)| dt, j = 1, 2,

are uniformly bounded with respect to n ∈ Z and x ∈ In, because of (b) and the
boundedness of `n.

4 Further Applications of Our Multiplier Theorem

4.1 The Relation Between Convolution and Hilbert Transform

We want now to modify the admissibility criteria of Corollary 3.3 and Theorem 3.4
so as to describe some majorants in

⋂
σ>0 Adm eiσx and ∩Adm B where the intersec-

tion is taken over all meromorphic Blaschke products B with zeros almost uniformly
distributed in a horizontal strip. This will be done by simultaneous regularization of
Ω and Ω̃, i.e. by means of convolutions Ω ∗Φ, Ω̃ ∗Φ with mollifier Φ. The results we
get will be stated first in terms of Ω̃ in subsection 4.3, but then in subsections 4.4 and

4.5 we also obtain some admissibility theorems in terms of Ω itself.

Here we assume Ω to be non-negative continuous function on R satisfying, as

always,

(4.1) L(Ω) =

∫ ∞

−∞

Ω(t)

1 + t2
dt <∞.

These assumptions imply the local summability of Ω̃. (In our final result Ω̃ will be
in fact continuous, so that the following simple proof could be omitted.) To prove
Ω̃ ∈ L1

loc (dt) note that for any x ∈ R

Ω = Ω
x
1 + Ω

x
2,

where Ωx
1 = χ(x−1,x+1)Ω, so that Ωx

2 is analytic in (x − 1, x + 1) whereas is summable
on any compact interval by the M. Riesz theorem [8, p. 88]. (In fact Ωx

1 + Ωx
2 is the

boundary trace of an H p(C+) function for any p <∞.)

Fix now a positive L > 0 and consider a function Φ ∈ L∞(R) vanishing off

(−L, L). Then both convolutions Ω ∗ Φ and Ω̃ ∗ Φ exists. Moreover,

(4.2) Ω ∗ Φ ∈ L1
( dt

1 + t2

)
.
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It is enough to show that
∫ ∞

3L

(Ω ∗ |Φ|)(x)

x2
dx <∞.

According to the definition of Φ and convolution we have
∫ ∞

3L

(Ω ∗ |Φ|)(x)

x2
dx =

∫ ∞

3L

dx

x2

∫ x+L

x−L

Ω(t)|Φ(x − t)| dt

≤ ‖Φ‖∞

∫ ∞

3L

dx

x2

∫ x+L

x−L

Ω(t) dt

≤ ‖Φ‖∞

∫ ∞

2L

(∫ t+L

t−L

dx

x2

)
Ω(t) dt

= 2L‖Φ‖∞

∫ ∞

2L

Ω(t)

(t − L)2
dt <∞.

In view of (4.2) the Poisson integral U of Ω ∗ Φ and Ω̃ ∗ Φ are well defined (re-
spectively in C+ and almost every where in R).

Lemma 4.1 Let Ω and Φ be as described in the preceding paragraphs. Then

(Ω̃ ∗ Φ)(x) = (Ω̃ ∗ Φ)(x)

almost every where on R.

Proof Denote by u the Poisson integral of Ω in C+, and let v be the harmonic conju-
gate of u, so that

Ω̃(x) = lim
y↓0

v(x, y)

almost every where on R. We also have

(4.3) lim
y↓0

∫

I

|Ω̃(x) − v(x, y)| dx = 0

for any compact interval I ∈ R (see the end of the proof for local summability of Ω̃

at the beginning of this subsection).
Let V be the harmonic conjugate of U . By Fubini’s theorem

U (x, y) =
1

π

∫ ∞

−∞

y

(x − s)2 + y2

(∫ ∞

−∞

Ω(s − t)Φ(t) dt
)

ds(4.4)

=

∫ ∞

−∞

Φ(t)u(x − t, y) dt

Using (4.4) a direct consideration of the Cauchy-Riemann system for U and V shows

(4.5) V (x, y) =

∫ L

−L

Φ(t)v(x − t, y) dt + Const, x + i y ∈ C+.

The left side of (4.5) tends to (Ω̃ ∗ Φ)(x) as y ↓ 0, almost every where on R, whereas
by (4.3) its right side tends to Ω̃ ∗ Φ in L1(I) on any compact interval I.
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4.2 Admissibility of Ω in Terms of Ω1

Here we give a simple method to deduce the admissibility of a majorant ω from the
admissibility of another majorant ω1 obtained from ω by a regularization of Ω. But
first we have to impose one more condition on Ω: the oscillations of Ω on intervals of

length one are uniformly bounded, i.e.

(4.6) cΩ = sup{|Ω(x ′) − Ω(x ′ ′)| : |x ′ − x ′ ′| ≤ 1} <∞.

Let ϕ ∈ L∞(R) be a non-negative function vanishing off (−1, 1) and such that∫ 1

−1
ϕ = 1. Fix a number L > 0 and put

Φ(t) =
1

L
ϕ
( t

L

)
.

Then, for any x ∈ R,

|Ω(x) − (Ω ∗ Φ)(x)| ≤

∫ L

−L

|Ω(x) − Ω(x − t)|Φ(t) dt(4.7)

≤ (L + 1)cΩ = c(Ω, L).(4.8)

Put

(4.9) Ω1 = Ω ∗ Φ + c(Ω, L), ω1 = e−Ω1 .

Clearly, Ω1 ∈ L1
(

dt/(1 + t2)
)

(by (4.2) or simply because Ω − Ω1 is bounded by
(4.7), and Ω1 ≥ Ω). We arrive at the following conclusion.

Theorem 4.2 Given an inner function Θ in C+, if ω1 ∈ Adm Θ, then ω ∈ Adm Θ

(recall that Ω = log 1/ω).

Proof If f ∈ KΘ, f 6≡ 0 and | f | ≤ ω1 almost every where on R, then e−c(Ω,L)| f | ≤ ω
almost every where on R.

Remark This assertion shows that studying the admissibility of an ω satisfying (4.6)
there is no loss of generality to assume Ω ∈ C

∞(R), since Ω1 is in C
∞(R) whenever

Φ is. Note that Ω̃ ∈ C
∞(R) if Ω ∈ C

∞(R).

4.3 Classical Case Revisited

Now we turn again to the classical case (Θ = eiσz, σ > 0) and obtain two admissi-
bility criteria applicable to all σ > 0 (see Theorems 4.3 and 4.4 below). As before we

assume that Ω ≥ 0 is continuous and satisfies (4.1) and (4.6). We denote by hF the
continuity modulus of a function F defined on R:

(4.10) hF(t) = sup{|F(x ′) − F(x ′ ′)| : |x ′ − x ′ ′| ≤ t}, t > 0.

We avoid the usual notation ωF , since ω is for us a generic notation of a majorant.
Note also that unlike in the traditional situations we are mainly interested in the
behavior of hF(t) for large rather than small values of t . Thanks to (4.6), hΩ(t) < ∞
for all t > 0.

https://doi.org/10.4153/CJM-2003-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-049-5


Admissible Majorants for Model Subspaces of H2, Part II 1289

Theorem 4.3 If h
Ω̃

(t) <∞ for all t > 0, and

(4.11) lim
t→∞

h
Ω̃

(t)

t
= 0,

then ω ∈
⋂
σ>0 Adm eiσz.

Proof Here we use the Steklov mollifier ϕ = s =
1
2
χ[−1,1] and apply Theorem 4.2

with Φ(t) =
1
L

s(t/L) where L is large depending on σ.
For a fixed σ > 0, we show that

(4.12) ω1 = e−Ω1 ∈ Adm eiσz

where Ω1 = Ω ∗ Φ + Const (see (4.9)). By Lemma 4.1 and assuming Ω and Ω1 are
smooth (see the remark after Theorem 4.2, for any x ∈ R, we have

|Ω ′
1(x)| =

∣∣∣
d

dx
(Ω̃ ∗ Φ)(x)

∣∣∣ =

∣∣∣
d

dx

( 1

2L

∫ x+L

x−L

Ω̃(t) dt
)∣∣∣(4.13)

=
|Ω̃(x + L) − Ω̃(x − L)|

2L
≤

h
Ω̃

(2L)

2L
≤
σ

2
,

if L is large. By Corollary 3.3 we conclude that ω1 ∈ Adm eiσz , and by Theorem 4.2,
ω ∈ Adm eiσz .

Remark Our condition (4.11) is also sufficient for ω to be in Adm B for any mero-
morphic Blaschke product B with zeros almost uniformly distributed in a horizon-
tal strip. The proof remains the same (reduction to Theorem 3.4 instead of Corol-

lary 3.3).
We can immediately illustrate Theorem 4.3 and the preceding remarks on Blaschke

products by an example where the admissibility condition is stated explicitly in terms
of Ω.

Example Suppose Ω ∈ Lipα, 0 < α < 1, i.e.

(4.14) |Ω(x ′) − Ω(x ′ ′)| ≤ Const |x ′ − x ′ ′|α, x ′, x ′ ′ ∈ R.

Then ω ∈
⋂
σ>0 Adm eiσz. An analogous result is also applicable to the Blaschke

products with zeros almost uniformly distributed in a horizontal strip.

Indeed, (4.14) implies (4.1) and (4.6). Then by a classical Privalov theorem (see
[12] and [13, p. 144]) Ω̃ ∈ Lipα whence h

Ω̃
(t) = O(tα) as t → ∞, and (4.11) holds.

The Privalov theorem is not applicable if α = 1 (it may happen that for an Ω ∈
Lip 1 satisfying (4.1) the function Ω̃(x + 1) − Ω̃(x) is unbounded). Thus the above

argument cannot be applied to the Lip 1 case and does not lead to Beurling-Malliavin
theorem in its full strength. However, this example will be generalized in an essential
way below in subsection 4.5.

Remark In the proof of Theorem 4.3, we actually used a formally weaker assumption
than (4.11), i.e. for any σ > 0 there are A, L > 0 such that |Ω̃(a+2L)−Ω̃(a)| < σL for

any a ∈ R\[−A,A]. Indeed, putting a = x−L and following (4.13) we get |Ω ′
1(x)| <

σ/2 for |x| > L + A which is sufficient for ω1 ∈ Adm eiσz (see Corollary 3.3).
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4.4 Universal Admissibility

Our next theorem gives a BMO type condition for the universal (i.e. for all σ > 0)
admissibility in the classical case and for all Blaschke product B with zeros almost
uniformly distributed in a horizontal strip.

Denote by fI the average of a function f over a bounded interval I:

fI =
1

|I|

∫

I

f ,

and put
b( f , I) = inf{| f − c|I : c ∈ R}

and
B( f , L) = sup{b( f , I) : |I| = L}.

Theorem 4.4 Let Ω be as in Theorem 4.3 and suppose that

lim
L→∞

B(Ω̃, L)

L
= 0.

Then ω ∈
⋂
σ>0 Adm eiσz andω ∈ Adm B for any Blaschke product B with zeros almost

uniformly distributed in a horizontal strip.

Proof We again use Lemma 4.1 and define Ω1 and ω1 as in (4.9). This time Φ(t) =
1
L
ϕ(t/L) where ϕ ≥ 0 is in C

∞(R), vanishes off (−1, 1) and
∫

R
ϕ = 1. We prove

‖Ω̃ ′
1‖∞ < σ/2. In the case of a Blaschke product B, σ/2 is to be replaced by the

respective constant
1

2
inf
x∈R

∣∣∣
d arg B(x)

dx

∣∣∣ .

We have

Ω̃1(x) =

∫

R

Ω̃(t)Φ(x − t) dt,

hence

(Ω̃1) ′(x) =

∫

R

Ω̃(t)Φ ′(x − t) dt =

∫ L

−L

Ω̃(x − t)Φ ′(x − t) dt

=

∫ L

−L

(
Ω̃(x − t) − c

)
Φ

′(x − t) dt

where c ∈ R is arbitrary. Therefore,

|(Ω̃1) ′(x)| ≤
1

L2
‖ϕ ′‖∞

∫ L

−L

|Ω̃(x − t) − c| dt, I + (x − L, x + L).

Choosing an appropriate c we get

|(Ω̃1) ′(x)| ≤
3

L
‖ϕ ′‖∞b(Ω̃, I) ≤

3

L
‖ϕ ′‖∞B(Ω̃, 2L) <

σ

2
,

where L is large.
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4.5 Admissibility in Terms of Ω (Not Ω̃)

Now we give conditions stated in terms of Ω sufficient for admissibility. The first the-

orem is a generalization of the example in subsection 4.3; its proof uses the admissi-
bility test stated in Theorem 4.2. The second is deduced directly from Corollary 3.3.

Here we need the following condition on a positive increasing function h defined
on (0,∞):

(4.15)

∫ 1

0

h(t)

t
dt +

∫ ∞

1

h(t)

t2
dt <∞.

It is well known in connection with conjugate functions and polynomial best approx-
imation [2], [14, p. 121].

Suppose h = hΩ satisfies (4.15). Then Ω is continuous, satisfies (4.6) and (4.1),
since Ω(t) ≤ Ω(0) + h(|t|), t ∈ R, so that Ω̃ exists. Moreover, it exists at any point
x ∈ R. We are going to show that Ω̃ is even continuous and estimate its continuity

modulus h
Ω̃

. This estimate is analogous to a known estimate of the continuity mod-
ulus of conjugate function on the circle. The case of R is somewhat special and we
have the following result.

Lemma 4.5 If h = hΩ satisfies (4.15), then

(4.16) h
Ω̃

(t) ≤
2

π

∫ ∞

0

(
2

τ (τ 2 + 1)
+

1

τ 2 + 1

)
h(tτ ) dτ .

Note that the right side of (4.16), say R(t), is comparable with

∫ t

0

h(s)

s
ds + t

∫ ∞

t

h(s)

s2
ds.

Therefore, if h(t) = tα, 0 < α < 1, i.e. if Ω ∈ Lipα, then R(t) � tα, so that Ω̃ ∈ Lipα
in accordance with Privalov’s theorem.

Now if we just combine Theorem 4.3 and the estimate

lim
t→∞

h
Ω̃

(t)

t
= 0

we arrive at the following result.

Theorem 4.6 If h = hΩ satisfies (4.15), then ω ∈
⋂
σ>0 Adm eiσz and ω ∈ Adm B

for any Blaschke product B with zeros almost uniformly distributed in a horizontal strip.

4.6 Ω Even and Increasing

This subsection is a technical preparation to the next one where the admissibility of
regular ω’s with L(ω) <∞ is proved.
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Let ω be even, decreasing for x > 0, and such that 0 < ω(x) ≤ 1 for x ∈ R with,

however,
∫ ∞

−∞
| log ω(x)|

1+x2 dx < ∞. Moreover, we assume, without loss of generality,

that ω(x) ≡ 1 for −e2 ≤ x ≤ e2. Then Ω(x) = − log
(
ω(x)

)
is even, positive and

increasing for x > 0 with Ω(x) ≡ 0 for −e2 ≤ x ≤ e2 and
∫ ∞

−∞
Ω(x)
1+x2 dx <∞. Put

(4.17) Ω1(x) =

∫ |x|

0

Ω(et)

t
dt for x ∈ R.

Obviously Ω1(x) ≡ 0 for −e ≤ x ≤ e. Then, since Ω(t) is positive, even and increas-
ing for t > 0,

Ω1(x) ≥

∫ |x|

|x|/e

Ω(et)

t
dt ≥ Ω(x)

∫ |x|

|x|/e

1

t
dt = Ω(x) for x ∈ R.

Furthermore, we have

∫ ∞

0

Ω1(x)

x2
dx =

∫ ∞

0

∫ x

0

Ω(et)

tx2
dt dx =

∫ ∞

0

(∫ ∞

t

dx

x2

)
Ω(et)

t
dt

=

∫ ∞

0

Ω(et)

t2
dt = e

∫ ∞

0

Ω(τ )

τ 2
dτ <∞.

Now put

(4.18) Ω2(x) =

∫ |x|

0

Ω1(et)

t
dt for x ∈ R.

By the preceding argument, Ω2(x) is also positive, even and increasing for x > 0, and
identically zero for −1 ≤ x ≤ 1. Moreover,

(4.19) Ω2(x) ≥ Ω1(x) ≥ Ω(x) for x ∈ R,

and

(4.20)

∫ ∞

0

Ω2(x)

x2
dx = e

∫ ∞

0

Ω1(x)

x2
dx = e2

∫ ∞

0

Ω(x)

x2
dx <∞.

An immediate consequence of (4.20) is that

(4.21) Ω2(x) = o(x), Ω1(x) = o(x), Ω(x) = o(x) for |x| → ∞.

Lemma 4.7 The function Ω̃2(x) is differentiable on R and

dΩ̃2(x)

dx
= −

1

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω(e2 x τ )

|x| τ
dτ

for each x ∈ R \ {0}.
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Proof In the first place, Ω̃2(x) is odd (since Ω2(x) is even). Moreover, Ω̃2(x) is C∞

near the origin where Ω2(x) vanishes. The differentiability of Ω̃2(x) and the formula

in question need therefore only be verified at points x > 0, Ω̃2 being odd. In the
latter circumstance we have, by the evenness of Ω2,

Ω̃2(x) =
1

π

∫

R

( 1

x − t
+

t

1 + t2

)
Ω2(t) dt =

1

π

∫ ∞

0

( 1

x − t
+

1

x + t

)
Ω2(t) dt

=
1

π
Ω2(t) log

∣∣∣
x + t

x − t

∣∣∣
∣∣∣

t→∞

t=0
−

1

π

∫ ∞

0

log
∣∣∣

x + t

x − t

∣∣∣
Ω1(et)

t
dt

= −
1

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω1(exτ )

τ
dτ

Thus, fixing x > 0,

Ω̃2(x + ∆x) − Ω̃2(x)

∆x
= −

e

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω1(exτ + eτ∆x) − Ω1(exτ )

eτ∆x
dτ .

But, by (4.17), we have, as long as x + ∆x > 0,

Ω1(exτ + eτ∆x) − Ω1(exτ )

eτ∆x
=

1

eτ∆x

∫ exτ+eτ∆x

exτ

Ω(e, s)

s
ds =

Ω(e2x ′τ )

ex ′τ

for some x ′ between x and x +∆x. Thus, for |∆x| < x
2
, Ω being increasing on [0,∞),

0 ≤
Ω1(exτ + eτ∆x) − Ω1(exτ )

eτ∆x
≤

2Ω(2e2xτ )

exτ

For τ > 2, the Taylor series expansion of log(1 + s) around the origin yields

log
∣∣∣

1 + τ

1 − τ

∣∣∣ = log
(

1 +
1

τ

)
− log

(
1 −

1

τ

)
= 2

( 1

τ
+

1

3τ 3
+

1

5τ 5
+ · · ·

)

≤
2

τ

(
1 +

1

3 × 22
+ · · ·

)
=

2 log 3

τ
.(4.22)

By this inequality and (4.20) log | 1+τ
1−τ |

Ω(2e2xτ )
exτ is in L1(dτ ) for 2 ≤ τ < ∞. Also,

log | 1+τ
1−τ | is in L1(dτ ) for 0 ≤ τ ≤ 2 and Ω(2e2xτ )

exτ is bounded there. Hence

log | 1+τ
1−τ |

Ω(2e2xτ )
exτ is in L1(dτ ) for 0 ≤ τ < ∞. Thus, by the dominated convergence

theorem, we have

dΩ̃2(x)

dx
= lim

∆x→0

Ω2(x + ∆x) − Ω2(x)

∆x

= −
e

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣ lim
∆x→0

Ω1(exτ + eτ∆x) − Ω1(exτ )

eτ∆x
dτ

= −
e

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
dΩ1(exτ )

dτ
dτ

= −
1

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω(e2xτ )

xτ
dτ .
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This shows that Ω̃ ′
2(x) exists and is given by the asserted formula for x > 0, all that

remained to be checked.

Theorem 4.8 Let ε > 0. Then Ω̃2 is uniformly Lipschitz on R and

|Ω̃2(x2) − Ω̃2(x1)| ≤ ε|x2 − x1|

for x1 and x2 both either sufficiently large or sufficiently negative.

Proof Referring to Lemma 4.7, we have, for x > 0,

dΩ̃2(x)

dx
= −

1

π

∫ ∞

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω(e2xτ )

xτ
dτ

= −
1

π

∫ 2

0

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω(e2xτ )

xτ
dτ −

1

π

∫ ∞

2

log
∣∣∣

1 + τ

1 − τ

∣∣∣
Ω(e2xτ )

xτ
dτ(4.23)

Since Ω(t) vanishes for t near the origin, and is increasing for t > 0, Ω(t)
t

is bounded
by (4.21). Therefore, the first integral on the right in (4.23) is bounded for x > 0,

since
∫ 2

0
log | 1+τ

1−τ | dτ is finite. By (4.22), the second integral on the right in (4.23) is

in absolute value

≤ 2 log 3

∫ ∞

2

Ω(e2xτ )

|x|τ 2
dτ = 2e2 log 3

∫ ∞

2e2x

Ω(s)

s2
ds.

and this is bounded for x > 0 by (4.20). Thus, |Ω̃ ′
2(x)| is bounded for x > 0, and,

since Ω̃2(x) is odd, for x 6= 0, so, finally for all x. The uniform Lipschitz character of
Ω̃2(x) now follows from the mean value theorem.

When x → ∞, both right hand integrals in (4.23) tend to zero, the first by dom-

inated convergence, since then, by (4.21), Ω(e2xτ )
xτ → 0 for τ > 0, and the second by

the preceding estimate and (4.20), since then 2e2x → ∞. The relation affirmed by

the theorem now follows from this by the mean value theorem and the oddness of
Ω̃2(x).

4.7 A New Proof of Admissibility of Regular Majorants

The following classical result has several proofs. Some constructive methods are
available in [5, pp. 276, 393], [9, p. 97] and [10, p. 159]. We give a new proof.

Theorem 4.9 Suppose that ω is even, decreasing for x > 0, and that 0 < ω(x) ≤ 1

for x ∈ R, with
∫ ∞

−∞
| log ω(x)|

1+x2 dx < ∞. Then there is a nonzero entire function f of

arbitrarily small exponential type > 0, with

| f (x)| ≤ ω(x) for x ∈ R.

https://doi.org/10.4153/CJM-2003-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-049-5


Admissible Majorants for Model Subspaces of H2, Part II 1295

Proof By Theorem 2.5 of [6] and Theorem 4.8 and Corollary 3.2, ω2(x) = e−Ω2(x),
with Ω2 defined by (4.18), is an admissible majorant for Keiσx for any σ > 0. By

(4.19) we have ω2(x) ≤ ω(x) and thus ω(x) is also an admissible majorant for Keiσx

for any σ > 0. Hence, by Theorem 2.5 of [6], there is a nonzero entire function f of
arbitrarily small exponential type > 0 with

| f (x)| ≤ ω(x) for x ∈ R.

4.8 Admissibility Depends on the Distribution of Zeros

Now we are able to generalize Theorem 4.9 for more classes of model subspaces.

Theorem 4.10 Let B be a meromorphic Blaschke product whose zeros are almost uni-

formly distributed in a horizontal strip separated from R. Suppose that ω is even, de-

creasing for x > 0 and that 0 < ω(x) ≤ 1 for x ∈ R, with

∫ ∞

−∞

| logω(x)|

1 + x2
dx <∞.

Then ω ∈ Adm B.

Proof By Theorems 3.6 and 4.8, ω2(x) = exp
(
−Ω2(x)

)
is an admissible majorant

for KB. By (4.19) we have ω2(x) ≤ ω(x) and thus ω(x) is also an admissible majorant

for KB.

Corollary 4.11 Under the conditions of Theorem 4.10, any function of the form

ω(x) = exp(−c|x|α)

with c > 0 and 0 < α < 1 is an admissible majorant for KB.

The preceding corollary implies that ω(x) = exp(−c|x|α), 0 < α < 1, is an
admissible majorant for KB, where B(z) is any meromorphic Blaschke product whose

zeros are almost uniformly distributed in a horizontal strip. On the other hand, by
(3.10) of [6], ω(x) ceases, as soon as α > 1/2, to be an admissible majorant for KB

when B(z) is the Blaschke product

∞∏

k=1

( ik2 − z

ik2 + z

)
.

Therefore, the admissibility of a given ω(x) ≥ 0 for KB depends on the distribution of

the zeros of the Blaschke product B.
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5 Admissible Majorants For Some B s With Rapidly Growing arg B

In this section we consider the Blaschke products

Bα(z) =

∞∏

k=−∞

1 − z/(xk + i)

1 − z/(xk − i)
,

where xk = |k|α sgn k and 1/2 < α < 1. The restriction α > 1/2 comes from the

Blaschke condition. If α = 1, then we return to a very particular case of Section 2,
i.e., the continuous argument of B1 behaves almost linearly: (arg B1) ′(x) � 1, x ∈ R.
As to the case α > 1, it is studied in [6], since in that case

Bα(z) =
E∗
α(z)

Eα(z)
,

where

Eα(z) =

∞∏

k=−∞

(
1 −

z

xk − i

)

is an entire function of zero exponential type. Moreover,

(5.1) cot(π/2α)|x|1/α + O(log |x|) ≤ log |Eα(x)| ≤ csc(π/2α)|x|1/α + O(log |x|),

as |x| → ∞. Thus Eα(z) is in the Cartwright class and 1/Eα(x) is in L2(R). Therefore,
according to Theorem 3.5 of [6], 1/|Eα(x)| is a minimal majorant for KBα if α > 1.
The estimate (5.1) follows from the general results in [11, p. 64]; a proof can be given
following the argument on [5, pp. 146–151]. We shall see in subsection 5.1 that for

α ∈ (1/2, 1) the continuous argument of Bα(x) behaves as |x|1/α sgn x, a much faster
rate of growth than for α ≥ 1.

5.1 Asymptotic Behavior of (arg Bα) ′(x)

Here arg Bα(x) denotes the continuous argument of Bα vanishing at the origin.

Lemma 5.1 If α ∈ (1/2, 1), then

d

dx
arg Bα(x) =

2π

α
|x|

1
α−1 + O(1), x ∈ R.

Proof According to Lemma 4.5 of [6]

(5.2)
d

dx
arg Bα(x) = 2

∞∑

k=−∞

1

(x − |k|α sgn k)2 + 1
= 2σ(x), x ∈ R.

Suppose that x is a large positive number, say `α ≤ x < (` + 1)α. Then

σ(x) =

( 0∑

k=−∞

+
∑̀

k=1

+

∞∑

k=`+1

) 1

(x − |k|α sgn k)2 + 1
= Σ1 + Σ2 + Σ3.
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Now,

Σ1 =
1

1 + x2
+

∞∑

k=1

1

(x + kα)2 + 1
≤ 1 +

∞∑

k=1

1

k2α
= O(1).

To estimate Σ2 and Σ3 put

F(t) =
1

(x − tα)2 + 1
, t > 0,

so that Σ2 =
∑`

k=1 F(k) and Σ3 =
∑∞

k=`+1 F(k). Clearly F(t) increases as t grows
from 0 to x1/α whence

F(1) +

∫ `

1

F(t) dt ≤ Σ2 ≤

∫ `

1

F(t) dt + 1.

(note that 0 < F ≤ 1). Therefore,

Σ2 =

∫ `

1

F(t) dt + O(1) =

∫ x1/α

0

F(t) dt + O(1).

But F decreases on (x1/α,∞) whence

F(` + 1) +

∫ ∞

`+1

F(t) dt ≥ Σ3 ≥

∫ ∞

`+1

F(t) dt,

so that

Σ3 =

∫ ∞

x1/α

F(t) dt + O(1).

To estimate Σ2 put τ = 1 − tα/x for t ∈ [0, x1/α]; then

∫ x1/α

0

1

(x − tα)2 + 1
dt =

∫ x1/α

0

1

(x − tα)2 + 1
d(t − x1/α)

=
t − x1/α

(x − tα)2 + 1

∣∣∣∣
t=x1/α

t=0

−

∫ x1/α

0

2αtα−1(x − tα)(t − x1/α)
(

(x − tα)2 + 1
) 2

dt

=
x1/α

x2 + 1
+ 2x2+1/α

∫ 1

0

τ
(

1 − (1 − τ )1/α
)

(x2τ 2 + 1)2
dτ

= 2x−2+1/α

∫ 1

0

τ

(τ 2 + x−2)2

( τ
α

+ τ 2ϕ(τ )
)

dτ + O(1),

where ϕ is a bounded function on [0, 1]. Put s = xτ . Hence

Σ2 =
2

α
x−1+1/α

∫ x

0

s2

(s2 + 1)2
ds +

2

α
x−2+1/α

∫ x

0

s3ϕ(s/x)

(s2 + 1)2
ds + O(1)

=
2

α
x−1+1/α

∫ ∞

0

s2

(s2 + 1)2
ds + O(x−1+1/α · x−1) + O(x−2+1/α log x) + O(1)

=
π

2α
x−1+1/α + O(1).
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To estimate Σ3 put τ = −1 + tα/x for t ∈ [x1/α,∞]; then

∫ ∞

x1/α

1

(x − tα)2 + 1
dt =

∫ ∞

x1/α

1

(x − tα)2 + 1
d(t − x1/α)

=
t − x1/α

(x − tα)2 + 1

∣∣∣∣
t→∞

t=x1/α

−

∫ ∞

x1/α

2αtα−1(x − tα)(t − x1/α)
(

(x − tα)2 + 1
) 2

dt

= 2x2+1/α

∫ ∞

0

τ
(

(1 + τ )1/α − 1
)

(x2τ 2 + 1)2
dτ

=
2

α
x2+1/α

∫ 1

0

τ 2

(τ 2 + x−2)2
dτ +

2

α
x2+1/α

∫ 1

0

τ 3ψ(τ )

(τ 2 + x−2)2
dτ

+ 2x2+1/αO

(∫ ∞

1

(1 + τ )1/α − 1

τ 3
dτ ·

1

x4

)
,

where ψ is a bounded function on [0, 1]. As in the previous case, the first two in-
tegrals are correspondingly π

2αx−1+1/α
(

1 + O(1)
)

and O(x−2+1/α log x). The third

integral is O(x−2+1/α). Hence

Σ3 =
π

2α
x−1+1/α + O(1).

Putting all previous estimates together, we have

σ(x) =
π

α
x−1+1/α + O(1).

5.2 Some Elements of Adm Bα With 1/2 < α < 1

Let ω be a positive function on R and Ω = log 1/ω. As usual we assume that∫
R
|Ω(x)|/(1 + x2) dx < ∞, so that Ω̃ exists. To ensure the admissibility of ω for

KBα we consider the function f (x) = arg Bα(x) + 2Ω̃(x) and try to find conditions
(to be imposed on Ω) making f mainly increasing (see Section 2.1). Put cα = π/α.
Suppose that Ω̃ is in C1(R) and

(5.3) −cα < lim inf
|x|→∞

Ω̃ ′(x)

|x|
1
α−1

≤ lim sup
|x|→∞

Ω̃ ′(x)

|x|
1
α−1

< Cα.

Then, according to Lemma 5.1,

(5.4) f ′(x) = 2cα|x|
1
α−1 +ϕα(x) + 2Ω̃

′(x) ≥ 2cα|x|
1
α−1 +ϕα(x) + (δ− 2cα)|x|

1
α−1,

where δ is a positive constant, ϕα(x) is bounded on R. Thus, by (5.3) and (5.4), and
for sufficiently large values of |x|,

(5.5) f ′(x) � |x|
1
α−1.
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We see that
f (x) � |x|

1
α as |x| → ∞,

and
lim

x→±∞
f (x) = ±∞,

and f is increasing on R \ [−∆,∆] for a large ∆ > 0. Thus there exists an increasing

sequence {dn}n∈Z satisfying f (dn) = 2πn, n ∈ Z, and

(5.6) |dn| � |n|α.

(See Section 2.1). To estimate `n, we have

2π = f (dn) − f (dn−1) = f ′(ξn)2`n,

whence, by (5.5) and (5.6),

`n ≤
π

infIn
f ′

≤
Const

(|n|α)
1
α−1

≤ L|n|α−1.

We now have to show that

In =
1

2`n

∫

In

| f ′(t) − f ′(x)| dt

is bounded uniformly with respect to n and x ∈ In = (dn−1, dn). According to (5.4)

In =
cα

`n

∫

In

∣∣ |t| 1
α−1 − |x|

1
α−1

∣∣ dt +
1

2`n

∫

In

|ϕα(t) − ϕα(x)| dt

+
1

2`n

∫

In

|Ω̃ ′(t) − Ω̃
′(x)| dt.

The first and the second integrals are uniformly bounded, since

∣∣ |t| 1
α−1 − |x|

1
α−1

∣∣ ≤ |t − x|
1
α−1 ≤ (2`n)

1
α−1,

and ϕα is a bounded function on R. To estimate the third integral, denote by λt the
modulus of continuity of Ω̃ ′ on R \ (−t, t), i.e.,

λt (δ) = sup{oscI Ω̃
′ : I an interval, I ∩ (−t, t) = ∅, |I| ≤ δ}, t > 0, δ > 0.

Recall that

λt (cδ) ≤ (c + 1)λt (δ), c > 0, δ > 0.

Suppose that λt (t
1− 1

α ) is bounded, i.e., there exists a number K > 0 such that

(5.7) λt (t
1− 1

α ) ≤ K
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for all t > 0. Clearly (5.7) is fulfilled if Ω̃ ′′(x) = O(|x|
1
α−1) as |x| → ∞. Then, for

each x ∈ In,

1

2`n

∫

In

|Ω̃ ′(t) − Ω̃
′(x)| dt ≤ λ(c|n|)α

(
(c ′|n|)1− 1

α

)

≤
(

(c/c ′)1− 1
α + 1

)
λ(c|n|)α

(
(c|n|)1− 1

α

)

≤
(

(c/c ′)1− 1
α + 1

)
K.

Hence f is mainly increasing. Now we can sum up this reasoning as stated in Theo-
rem 1.10 in the Introduction.

Theorem 5.2 Suppose
∫

R
|Ω(x)|/(1 + x2) dx < ∞, Ω̃ ∈ C1(R) and (5.3) and (5.7)

hold. Then ω ∈ Adm Bα.

Comparing this result with the result of Section 3.4, we see that the restrictions

imposed there on Ω̃ are essentially stronger than in Theorem 5.2. The conditions
moderating the speed of descent of Ω̃, i.e., lower estimates of Ω̃ ′, are

Ω̃
′(x) > −k

in Section 3.4, and

Ω̃
′(x) > −k|x|

1
α−1

in Theorem 5.2; restrictions on general oscillations are respectively

oscI Ω̃
′(x) ≤ K

for all intervals I of length at most one, and

oscI Ω̃
′(x) ≤ K

if I ⊂ R\(−t, t) and |I| < t1− 1
α . This liberalization is natural, since the density of sin-

gularities of functions from the class KBα , i.e., the poles at ±kα−i, k = 1, 2, . . . grows
as αmoves from 1 to 1/2. A generic element of KBα for α ∈ (1/2, 1) is less analytic in

C+ ∪ R than an element of B1. Hence the mere convergence of
∫

R
|Ω(x)|/(1 + x2) dx

gets closer to a condition sufficient for the admissibility of ω for KBα .
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[8] , Introduction to H p Spaces. Cambridge Tracts in Math. 115, Second Edition, 1998.
[9] , The Logarithmic Integral I. Cambridge Stud. Adv. Math. 12, 1988.
[10] , The Logarithmic Integral II. Cambridge Stud. Adv. Math. 21, 1992.
[11] B. Levin, Distribution of zeros of Entire Functions. Transl. Math. Monogr. 5, 1980, Amer. Math. Soc.
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