ON THE ZEROES OF PROFILES

W. D. WALLIS

(Received 23 May 1988; revised 29 July 1988)

Communicated by Louis Caccetta

Abstract

The k-profile of an Hadamard matrix of order n is a function defined on the integers $0, 1, \ldots, n$. If k is even, k-profiles have been used in investigations of Hadamard equivalence. In this paper it is shown that the k-profile of an Hadamard matrix of order n (k even) has non-zero terms only in every eighth position. If k is divisible by 4, the non-zero positions are those congruent to n (modulo 8).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 B 20.

1. Introduction

A general discussion of Hadamard matrices can be found in various places, such as [2], [4], [5]. We defined the *profile*, or 4-profile, in [1]. Given an Hadamard matrix $H = (h_{ij})$, define

$$P_{ijkl} = \left| \sum_{\alpha} h_{i\alpha} h_{j\alpha} h_{k\alpha} h_{l\alpha} \right|.$$

and define $\pi(t)$ to equal the number of 4-sets $\{i, j, k, l\}$ such that $P_{ijkl} = t$. The function π is the 4-profile of H. More generally one can define 6-profiles, 8-profiles, and k-profiles for any larger even integer k. (The case of odd k, and the case k = 2, are not interesting.) These profiles have been used in studying Hadamard equivalence (see [1], [3]).

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

It is easy to show (see [1]) that every P_{ijkl} is congruent to n modulo 8; so, for a 4-profile of an $n \times n$ Hadamard matrix, $\pi(t) = 0$ unless $t \equiv n \pmod{8}$. Empirical evidence suggests a similar result for k-profiles in general (only one in eight of the integers give a non-zero value of the function) but clearly the proof in [1] does not generalize to k greater than 4; it depends on solving a set of equations, and the number of variables grows more quickly than the number of equations when k increases. Moreover the behavior of the profile function is not easy to predict: the 6-profile of an Hadamard matrix of order 20 has its non-zero entries at t = 0, 8 and 16 (not $t \equiv n$), but the 6-profiles of Hadamard matrices of order 24 have zero entries for t = 0, 8, 16 and 24 $(t \equiv n)$.

Our aim in this paper is to clarify this aspect of the behavior of profiles.

2. Binomial coefficients

We need some well-known preliminary results on binomial coefficients. Proofs are included for completeness; various alternative proofs are known.

LEMMA 1. For any positive integer t,

$$\begin{pmatrix} 4t \\ 0 \end{pmatrix} + \begin{pmatrix} 4t \\ 4 \end{pmatrix} + \begin{pmatrix} 4t \\ 8 \end{pmatrix} + \cdots + \begin{pmatrix} 4t \\ 4t \end{pmatrix}$$

is even.

PROOF. Since $\binom{4t}{0} = \binom{4t}{4t}$, $\binom{4t}{4} = \binom{4t}{4t-4}$, and so on, we can pair off the terms in the sum with equals. When t is odd, this process exhausts the terms, so the sum is even. When t is even, $\binom{4t}{2t}$ is left unpaired; but

$$\binom{4t}{2t} = \binom{4t-1}{2t-1} + \binom{4t-1}{2t} = \binom{4t-1}{2t-1} + \binom{4t-1}{2t-1}$$

which is even.

LEMMA 2. If t is any positive integer, then

$$1+\binom{4t+2}{4}+\binom{4t+2}{8}+\cdots+\binom{4t+2}{4t}$$

is even.

PROOF. Consider

$$S = \begin{pmatrix} 4t+2\\0 \end{pmatrix} + \begin{pmatrix} 4t+2\\2 \end{pmatrix} + \begin{pmatrix} 4t+2\\4 \end{pmatrix} + \cdots + \begin{pmatrix} 4t+2\\4t+2 \end{pmatrix}.$$

Using the rule

$$\binom{4t+2}{i} = \binom{4t+1}{i} + \binom{4t+1}{i-1}$$

we see that

$$S = 1 + \left[\begin{pmatrix} 4t+1\\1 \end{pmatrix} + \begin{pmatrix} 4t+1\\2 \end{pmatrix} \right] + \left[\begin{pmatrix} 4t+1\\3 \end{pmatrix} + \begin{pmatrix} 4t+1\\4 \end{pmatrix} \right] + \dots + \begin{pmatrix} 4t+1\\4t+1 \end{pmatrix} = 2^{4t+1}.$$

This is divisible by 4. Now

$$S = \begin{pmatrix} 4t+2\\0 \end{pmatrix} + \begin{pmatrix} 4t+2\\4 \end{pmatrix} + \dots + \begin{pmatrix} 4t+2\\4t \end{pmatrix} + \begin{pmatrix} 4t+2\\4t+2 \end{pmatrix} + \begin{pmatrix} 4t+2\\4t-2 \end{pmatrix} + \dots + \begin{pmatrix} 4t+2\\2 \end{pmatrix}$$

which equals twice the required sum.

3. Symmetric functions

Suppose the *m* variables $x_1, x_2, ..., x_m$ each satisfy $x_i^2 = 1$. Write $X = \{x_1, x_2, ..., x_m\}$, and define σ_j to be the *j*th symmetric function on X:

$$\sigma_j = \sum_{Y} \prod_{x \in Y} x,$$

where Y ranges through the distinct j=subsets of X. In particular $\sigma_0 = 1$. Then σ_j is the sum of $n_j = \binom{m}{j}$ terms.

LEMMA 3.
$$\sigma_1 \sigma_j = (j+1)\sigma_{j+1} + (m-j+1)\sigma_{j-1}$$
.

PROOF. Since σ_j contains $\binom{m}{j}$ terms, so does $x_i\sigma_j$; of these $\binom{m-1}{j}$ contain no repeated terms and $\binom{m-1}{j-1}$ contain an x_i^2 . So $x_i\sigma_j$ contains $\binom{m-1}{j}$ terms of length j+1 and $\binom{m-1}{j-1}$ terms of length j-1. Consequently $\sigma_1\sigma_j$ contains $m\binom{m-1}{j}$ terms of length j+1 and $m\binom{m-1}{j-1}$ terms of length j-1. By symmetry it is clear that $\sigma_1\sigma_j=A\sigma_{j+1}+B\sigma_{j-1}$ for some integers A and B; therefore $An_{j+1}=m\binom{m-1}{j}$, $Bn_{j-1}=m\binom{m-1}{j-1}$, and it follows that A=j+1, B=m-j+1, giving the lemma.

COROLLARY. If x_0 is another variable satisfying $x_0^2 = 1$, then

$$(x_0 + x_1)(x_0 + x_2) \cdots (x_0 + x_m)(x_1 + x_2 + \cdots + x_m)$$

= $m(\sigma_0 + x_0\sigma_1 + \sigma_2 + x_0\sigma_3 + \cdots + x_0^m\sigma_m).$

PROOF. The left-hand side equals $(x_0^m + x_0^{m-1}\sigma_1 + x_0^{m-2}\sigma_2 + \cdots + \sigma_m)\sigma_1$. The result now follows from repeated application of Lemma 3.

4. Profiles

THEOREM. Suppose H is an Hadamard matrix of side n, $n \ge 4$, and suppose k is even. Then the generalized inner product of k rows,

$$P_{i_1i_2\cdots i_k}=\sum_{j=1}^n h_{i_1j}h_{i_2j}\cdots h_{i_kj},$$

is congruent to n modulo 8 when 4 divides k, and is congruent to 0 modulo 8 when k is congruent to 2 modulo 4.

PROOF. We write $X_j = \{h_{i_2j}, h_{i_3j}, \dots h_{i_kj}\}$, and denote the *i*th symmetric function on X_i by σ_{ij} .

Assume $k \ge 4$; consider

$$Q_{jk} = (h_{i_1j} + h_{i_2j})(h_{i_1j} + h_{i_3j}) \cdots (h_{i_1j} + h_{i_kj})(h_{i_2j} + h_{i_3j} + \cdots + h_{i_kj}).$$

As $k \ge 4$, Q_{jk} is divisible by 8. On the other hand, by the Corollary to Lemma 3,

$$Q_{jk} = (k-1)(\sigma_{0j} + h_{i_1j}\sigma_{1j} + \sigma_{2j} + h_{i_1j}\sigma_{3j} + \cdots + h_{i_1j}\sigma_{k-1,j}).$$

Now

$$\sum_{j=1}^{n} Q_{jk} = (k-1) \left(n + \sum_{i=1}^{n} h_{i_1 j} \sigma_{ij} + \sum_{i=1}^{n} \sigma_{2j} + \cdots + \sum_{i=1}^{n} h_{i_1 j} \sigma_{k-1,j} \right).$$

We now reduce modulo 8. Since each Q_{jk} is zero (mod 8), the sum is zero. Since n is the order of an Hadamard matrix and $n \ge 4$, n is divisible by 4, so $n \equiv -n \pmod{8}$. Finally k-1 is odd. So

We now write f(k) for the residue class of $P_{i_1i_2\cdots i_k} \pmod{8}$, and define $f(0) \equiv n$. We prove by induction that f(k) is well defined (in other words, the residue class depends only on k), and that

(2)
$$\sum_{2|\alpha} \binom{k}{\alpha} f(\alpha) \equiv 0 \pmod{8}.$$

When k=0 the result is obvious. In general, if 2t < k, $\sum h_{i,j}\sigma_{2t-1,j} + \sum \sigma_{2t,j}$ is the sum of $n_{2t-1} + n_{2t}$ terms, each of which equals an inner product of 2t rows, so by the hypothesis that f(2t) is well defined the sum is congruent to $(n_{2t-1} + n_{2t})f(2t)$; and

$$n_{2t-1}+n_{2t}=\binom{k-1}{2t-1}+\binom{k-1}{2t}=\binom{k}{2t}.$$

Moreover $P_{i_1i_2\cdots i_k} = \sum h_{i,j}\sigma_{k-1,j}$. So (2) yields

$$\binom{k}{2}f(2)+\binom{k}{4}f(4)+\cdots+f(k)\equiv n\pmod{8},$$

which becomes (1) when we observe that $\binom{k}{0} f(0) \equiv n \equiv -n \pmod{8}$.

We now show, by induction again, that $f(k) \equiv n$ when 4 divides k and is congruent to 0 otherwise. Suppose this is true of $f(\alpha)$ for all values of α less than k. Then

$$-f(k) \equiv \sum \binom{k}{\alpha} f(\alpha) \equiv \left[\sum_{1} \binom{k}{\alpha} \right] \cdot n + \left[\sum_{2} \binom{k}{\alpha} \right] \cdot 0$$

where \sum_{1} is over α divisible by 4 and \sum_{2} over α congruent to 2 (mod 4), $0 \le \alpha < k$.

If 4 divides k then by Lemma 1, $\sum_{1} {4 \choose \alpha} + {k \choose k}$ is even, so $\sum_{1} {k \choose \alpha}$ is odd and the expression is congruent to n modulo 8. If 4 does not divide k then $\sum_{1} {k \choose \alpha}$ is even by Lemma 2 and the expression is congruent to zero. The other bracketed term is zero. Since $-n \equiv n \pmod{8}$, the negative sign is irrelevant.

COROLLARY. If $k \equiv 0 \pmod{4}$ then the k-profile of an Hadamard matrix has non-zero terms only in positions congruent to $n \pmod{8}$. If $k \equiv 2 \pmod{4}$ then the k-profile of an Hadamard matrix has non-zero terms only in positions congruent to $0 \pmod{8}$.

References

^[1] J. Cooper, J. Milas and W. D. Wallis, 'Hadamard equivalence,' Combinatorial Mathematics, 126-135 (Springer-Verlag, Heidelberg, 1978).

^[2] M. Hall, Jr., Combinatorial theory (2nd ed., John Wiley, New York, 1986).

- [3] C. Lin and W. D. Wallis, Profiles of Hadamard matrices of order 24, Congr. Numer. 66 (1988), 93-102.
- [4] W. D. Wallis, Combinatorial designs (Marcel Dekker, New York, 1988).
- [5] W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices (Springer-Verlag, Heidelberg, 1972).

Department of Mathematics Southern Illinois University Carbondale, Illinois 62901-4408 U.S.A