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Abstract

This paper is concerned with non-trivial solvability in p-adic integers, for relatively large primes
p, of a pair of additive equations of degree k > 1:

/ ( x ) = a,x{c + --- + a n x * = 0 ,

g{x) = blX\ + • • • + bnxk
n = 0 ,

where the coefficients a\ ,an,b\, bn are rational integers.
Our first theorem shows that the above equations have a non-trivial solution in p-adic integers

if n > 4k and p > k6. The condition on n is best possible.
The later part of the paper obtains further information for the particular case k = 5. Specifi-

cally we show that when k = 5 the above equations have a non-trivial solution in p-adic integers
(a) for all p > 3061 if n > 21; (b) for all p except p = 5, 11 if n > 26.

1980 Mathematics subject classification [Amer. Math. Soc.) (1985 Revision): 11 D 88.

1. Introduction

It is well known (see, for example, Chapter 1 of Borevich and Shafarevich
[3]) that the number of solutions of a polynomial congruence

..,xn) = 0 mod p

may be estimated using exponential sums. For an additive form

(1) a\x\ H \-anx^ = 0 mod p,
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[2] Pairs of additive congruences 439

where p \ a . \ •••an, it follows f rom T h e o r e m B of Borevich a n d Shafarevich
[3, page 15] that the n u m b e r N of solut ions of (1) satisfies

(2) \N-pn-*\<CpW>-x,

with C = (k - 1)". Therefore a congruence

(3) axk + byk + czk = 0 mod p, p \ abc,

has a non-trivial solution for all p > k6. The condition on p may be improved
to p > k4 (see Theorem 1 of Chowla [4] or Lemma 2.4.1 of Dodson [17]).

Before considering pairs of additive equations we recall some of the results
on the p-adic solvability of a single additive equation

(4) / ( x ) = «,*? + • • • + « „ * * = <),
with coefficients in Z. For quadratic forms (k = 2) the equation has a non-
trivial solution in /7-adic integers for every prime p provided that n > 5 =
2.2 + 1. This result is best possible since when n = 4 and p = 3 mod 4 the
equation

(5)

has no non-trivial solution in /7-adic integers.
For k = 3 Lewis [20] showed that (4) has a non-trivial solution in p-adic

integers for every prime provided that n > 7 = 2.3 + 1. In order to see that
the condition n > 7 is best possible, let p be any prime with p = 1 mod 3
and let q be a cubic non-residue mod p. Then the equation

(6) (x\ - qy\) + p(x\ - qy\) + p2{xl - qy\) = 0

has no non-trivial solution in />-adic integers.
For k = 5, Gray [19] showed that (4) has a solution in every p-adic field

provided that n > 16 = 3.5 + 1. This is best possible since the equation

5

(7)

has no non-trivial solution in 11-adic integers.
Davenport and Lewis [11] showed that for any k > 1 the equation (4) has

a non-trivial solution in p-adic integers provided that n > k2 + 1. This is
best possible for any exponent k such that k — p — 1 for some prime p, as
can be seen from a generalization of the example (5); see [11, page 454].

The next theorem is a "folklore" result, which does not seem to appear
explicitly in the literature. It follows on combining the arguments of Daven-
port and Lewis [11] with the result for congruence (3), and the proof is left
to the reader.

https://doi.org/10.1017/S1446788700030925 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030925


440 O. D. Atkinson and R. J. Cook [3]

THEOREM A. Let n > 2k+l. A single additive equation (4) has a non-trivial
solution in p-adic integers for all p > kA.

A generalization of the example (6) shows that the condition n > 2k + 1
is best possible. The interest of the result is that the problem of p-adic
solvability is reduced to a finite, and explicit, question; for a given equation
the remaining primes can be dealt with by a computer.

Our aim here is to produce an analogue of Theorem A for pairs of addi-
tive equations and to exploit this further in the case k — 5. To gain some
idea of what may be feasible for given k and large primes p we consider a
generalization of the example (6). For any exponent k and any prime p = 1
mod k, let q be a /cth power non-residue mod p. Then the equation

has no non-trivial solution in p-adic integers. We consider (8) together with
a "disjoint copy" of (8) (the equation obtained by replacing .*,,>>, with new
variables x't,y'ifoTi = 1 , . . . , k). This gives a pair of equations in 4k variables
which have no non-trivial solution in p-adic integers, no matter how large p
is. Thus in order to generalize Theorem A to a pair of additive equations we
must at least assume that n > 4k + 1.

For k = 2, two quadratic equations (not necessarily additive) have a non-
trivial solution in p-adic integers for all primes p provided that n > 9 (see
Demyanov [16]), and this result is best possible. For k = 3, Davenport and
Lewis [ 12] showed that two additive equations

$ --- + anx* = 0, at el,
--- + bnx

k
n=0, b,el.

have a non-trivial solution in p-adic integers for every prime p provided that
n > 16. They also gave a counterexample with n — 15 and p - 1 showing
that this is best possible. More recently, Cook [7] has shown that for all p / 7
a sufficient condition is n > 13 = 4.3+ 1. In view of the example (8), and the
remarks following it, this result is best possible; if we reduce « to 12 there are
infinitely many primes p (p = 1 mod 3) for which we have counterexamples.

Davenport and Lewis [14] studied the case of two additive equations (9)
with an exponent k > 1, obtaining sufficient conditions for the equations to
have a non-trivial solution in p-adic integers for every prime p. For odd k
they showed that n > 2k2 + 1 variables are sufficient, but for even k they
were only able to prove that n>7k3 variables would suffice.

THEOREM 1. Let n > 4k. Any two additive equations (9) of degree k with
integer coefficients a,, b/ have a non-trivial solution in p-adic integers for all
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primes p > k6. Further this result is best possible in the sense that it fails to
hold when n = 4k.

The last sentence of Theorem 1 follows from the remarks following the
example (8). We also note that Theorem 1 follows from the results of De-
myanov [16] when k = 2 and Cook [7] when k = 3, so we may suppose
that k > 3. The case k = 5 has already been investigated in some detail
by Cook [8,9] who showed that n > 31 variables will suffice expect possibly
when p = 11. Moreover, consideration of two disjoint copies of the equation
(7), in a total of 30 variables, shows that the best possible condition for such
a result covering all primes p would be n > 31. However, for p = 11 Cook
[9] was only able to show that n > 41 variables will suffice.

We investigate those primes p for which the condition n > 21 =4.5 + 1
is sufficient. Theorem 1 deals with those primes p > 56 — 15625. Some
primes p < 56 may be dealt with by explicitly calculating exponential sums,
and appropriate computer investigation deals with other cases. The primes
p for which n > 26 = 5.5 + 1 is sufficient were also investigated by similar
methods. The results are summarized in the following theorem.

THEOREM 2. In the case k — 5 the equations (9) have a non-trivial solution
in p-adic integers

(a) for all p > 3061 when n > 21;
(b) for all p except p = 5,11 ifn> 26.

When p = 11 we have already constructed an example in 30 variables
having no non-trivial solutions. Computer searches have revealed examples
which may be used to construct similar counterexamples in 25 variables for
p = 31 and 41. These are listed at the end of this paper.

Apart from their intrinsic interest, />-adic solutions are an essential prelim-
inary to any application of the Hardy-Littlewood method. In the case k = 3,
Davenport and Lewis [12] showed that two additive cubic equations have a
non-trivial simultaneous solution in rational integers provided that n > 18.
Subsequently '18' was reduced to '17' by Cook [6] and '16' by Vaughan [24].
In view of the counterexample of Davenport and Lewis [ 12] with n = 15
and p = 7 this is the best that could be done without making some 7-adic
assumption. More recently, Baker and Briidern [2] have shown, using the
p-adic results of Cook [7], that 15 variables are sufficient if we assume the
existence of non-singular 7-adic solutions. Atkinson [ 1 ] has classified those
pairs of additive cubic equations in n = 13,14 or 15 variables which do not
have 7-adic solutions.
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The Hardy-Littlewood method requires the existence of non-singular (not
just non-trivial) p-adic solutions. In view of the recent advances in this
method, see for example Vaughan [25], we state (without proof) an appro-
priate version of Theorem 1. The point here being that this reduces any
p-adic assumptions to a finite (and explicit) set of primes.

THEOREM 3. Let p > kA and suppose that the equations (10) have a non-
trivial p-adic solution. If every form Xf + fig, (A, n ^ 0,0) in the pencil of f
and g has at least Ik +1 variables with non-zero coefficients then the equations
have a non-singular p-adic solution.

The proof mimics the proofs of Theorem 2 of Davenport and Lewis [14]
except that we appeal to Theorem A instead of their result [11] on additive
forms in k2 + 1 variables.

One question which naturally arises is how these results generalize to R > 2
simultaneous equations. An example given by Davenport and Lewis [13,
Section 4] shows that the generalization is not straightforward. The p-adic
results obtained by Davenport and Lewis [15] for R simultaneous equations
required [9.R2*: log 3Rk] variables when k is odd, and [4SR2k3 log 3Rk2] vari-
ables when k is even. These results have recently been improved upon by
Schmidt [22] and Low, Pitman and Wolff [21].

When R = 3 the "Artin question" is whether 3k2 +1 variables are sufficient
to ensure non-trivial p-adic solutions for every prime p. In the case k - 2
this was proved by Ellison [19]. When k = 3 Stevenson [23] showed that,
except possibly for p = 3 or 7, n > 28 variables are sufficient. More recently
Atkinson [1] has shown that 25 variables are sufficient to ensure non trivial
p-adic solutions of three additive cubics in every p-adic field, except possibly
p — 3 or 7.

We are indebted to the referee for many useful comments which have
improved the exposition of our results.

2. Preliminaries to Theorem 1

We begin by recalling a normalisation procedure introduced by Davenport
and Lewis [12, 14, 15]. With a pair (9) of additive forms fg we associate
the parameter

(10) d

For a given pair of forms with 6(f g) / 0 and a fixed prime p, there is a
related p-normalized pair of forms (/*, g*). Further the equations f - g — 0
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have a non-trivial p-adic solution if and only if the equations / * = g* = 0
do. Also, by the p-adic compactness argument in Davenport and Lewis [14,
Section 5], it is sufficient to prove Theorem 1 with the additional assumption
that 0 / 0 . We may now suppose that the forms / , g are /^-normalized,
with 0 / 0 , and use the following property which is essentially Lemma 2 of
Davenport and Lewis [12].

LEMMA 1. Let f and g be a p-normalized pair of forms. Then we may
write

(11) /-/o + P/..
8 = go + Pgi-

Here fo.go are forms in m > n/k variables, each of which occurs in one at
least offo.go with a coefficient not divisible by p. Further, if q denotes the
minimum number of variables occuring explicitly in any form A/o + figo (A, /z
not both divisible by p) with a coefficient not divisible by p, then q > n/2k.

Our next lemma is a version of Hensel's Lemma; it is Lemma 7 of Dav-
enport and Lewis [14].

LEMMA 2. If p\k and the congruences

^ --- + amx^ = O mod p,

--- + bmx'tn = Q mod/?

have a solution £ = (£1, . . . , £m) for which the matrix

has rank 2 (mod p) then the equations fo — go — 0 have a non-trivial solution
in p-adic integers.

In the proof of Theorem 1 we have p > k6 so p \ k. It is therefore sufficient
to show that the congruences (12) have a solution of rank 2 (mod/)). We
may also suppose that p = 1 mod k, see Lemma 3 of Davenport and Lewis
[9]; similarly we may suppose that p = 1 mod 5 for Theorem 2.

Since n > 4k, Lemma 1 gives the bounds m > 5, q > 3. We partition the
variables x\,...,xm into blocks such that in each block the ratios a,/Z>, are
equal (mod/?). Let r be the length of the longest block of common ratios
cti/bi. We note that replacing fo, go by suitable linear combinations we may
take ai/bj = "1/0" for these r variables. Further, let t be the length of the
second longest block of common ratios. We may take the ratios in this block
tobe"0/ l" .
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We assert that if t > 3 then the congruences (12) have a common solution
of rank 2. This follows from our remarks on the single congruence (3) since
the congruences (12) contain two disjoint congruences in 3 variables. Now
we assume that t < 2 and reduce m from its initial value to 5 by discarding
variables from the longest block of common ratios. We end up with a pair
of congruences (12) satisfying

(14) m = 5 , q > 3 a n d r < 2

since r = m- q.

3. Exponential sums

Since r < 2 we may renumber the variables in (12) so that {£1/61,02/62}
and {£3/63,^4/64,(25/65} are sets of unequal ratios mod p. We count the
number N of solutions of the congruences (12) using exponential sums:

(15) 1

where

(16) 1

(17)

and e{6) = e\p(2nid)
Separating out the

T{A)-

term u\ =

L2-
,»2 mod p

\-u2bj,

x mod

H2 = 0

( 0

e(Ajc5

P

in (15)

•• ( 5)

IP).

we find that

(18)

where £)' denotes the omission of the term u\ = u2 - 0, £ , is the sum
over those terms for which no A, = 0 and Yli *s t n e s u m o v e r t n o s e terms
(«i, U2) ^ (0,0) for which some A, = 0.

Now

(20) | £ j 2 < 2 , |r(A,)r(A2)|
2 • £ ( |r(A3)r(A4)r(A5)|

2.
We put

(21) Sr = J2\T(u)\r.
u=\
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Since Ai, A2 are independent linear forms the mapping (Ai, A2)
is a bijection and therefore

(22) XI.ITWTWI2^ E \T(Ai)T(A2)\
2 =

{u\,

Similarly, using Holder's inequality, we have

|r(A3)r(A4)r(A5) | 2 < m a x X , \T(At)T
2(Aj)\2

(23) ' '

"1 "2

Thus

(24)

In order to estimate ^ 2 suppose first that the ratio (25/65 mod p occurs
only once amongst the a,-/bj. Then the contribution of the points (MI,«2)

with A5 = 0 to £ 2 is at most

(25)

E |7'(AI)...7'(A4)|<pmjaE
A5=0 A5=0

u=l

since the mapping (A,, A5) —> («i, u2) is a bijection. If the ratio a^/bs occurs
twice amongst the a,/6, a similar argument shows that the contribution is at
most p2Si. Thus

(26)

Now (see Dodson [17, Lemma 2.5.1]),

(27) S2 = {k-\)p(p-\)

and (see Davenport [10, Lemma 12])

(28) \T{u)\<{k-\)y/p, M ^ O m o d / ?

so that

\£y) l*^3| "̂  v*̂  — ^/ P

and
(30) |54 | <(A;- 1 ) V .
Hence

-2E,+E2(31) '

since p> k6.

<
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Any solution of rank 1 occurs in a pair of linearly dependent columns
and since r < 2 there are at most 2 such pairs of columns, each pair giving
5(p - 1) solutions. Further there is one solution of rank 0 and so at most
10p - 9 solutions of rank < 2. Thus we obtain the required solution of rank
2 provided that p3 - k3p5'2 > 10/?.

This is equivalent to

(32) h(p,k) = p2-k3p3/2- 10 >0,

and, for fixed k, h(p,k) is an increasing function of p so it is enough to
verify (32) when p = k6 + 1:

kn + 2k6-9-kl2(l+k-6)i'2>0

or
(1 + 2k~6 - 9k~n)2 > (1 + it"6)3.

Writing y for k6, we obtain H(y) = y3 - 11 y2 - 37y + 81 > 0. Now H' > 0
for y > 37/3 and the inequality is easily verified for y > 26 - 64, which
completes the proof of Theorem 1.

4. Preliminary remarks for Theorem 2

After Theorem 1, we only need to consider those primes p < 56 — 15625.
The quintic residues mod p form a cyclic subgroup of the non-zero residue
classes, and the value of the exponential sum T(u) depends only on the coset
in which u lies. For each prime p = 1 mod 5 with p < 15625 we find the least
quintic non-residue q mod p, using a computer. Then S = {l,q,q2,q3,q4}
is a set of representatives from the 5 cosets. Using double precision Fortran
we calculate the absolute values of the exponential sums

(33) Tt= J2 e(ql-lx5/p) , i=\,...,5,
x mod p

and these values are checked using the identity

(34)

As u runs through 1,2 , p - 1 it falls into each coset exactly (p - l ) /5
times and so

(35)
;=1
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In this way we calculate 52(= 4p(p - 1)), S3 and S4 exactly, and compute the
bound

(36) B = Sll4S\12 + max(5/?S4,3pS4 + p2S3,pS4 + 2p2S3)

for J2\ +Z^2- Then, checking the primes up to 15625 we obtain

(37) p3-p~2B>l0p for 6800 <p< 15625

which leads to the required solution of rank 2.

We now take p = 1 mod 5 to be a fixed prime in the range

(38) l l < / > < 6 8 0 0 .

We find the least quintic non-residue q mod p and put

(39) S = {l,q q4}.

LEMMA 3. Let p = 1 mod 5, p > 11. Ifabc ^ 0 mod p then

(40) ax5 + by5 + cz5 = d mod p

has a solution, which is non-trivial ifd = 0 mod p.

PROOF. For d ^ 0 mod p this follows from Theorem 3 of Chowla, Mann
and Straus [5]. Now d = 0 mod p and for p > 625 the result follows from
Theorem 1 of I Chowla [3] (or Lemma 2.4.1 of Dodson [17]).

For 11 < p < 625, using substitutions x —• ax, we may assume that
a.b.c € S. This result is obvious unless a.b.c are unequal and we may
suppose that

(41) \=a<b<c.

Thus for each prime p there are only 6 cases to consider and the result is
easily verified by computer.

5. Proof of Theorem 2(a)

The normalization process described in Section 2 results in a pair of forms
with m = 5, q < 3 and r < 2, which we can write in the form

/ 0 = xf + £2*2 + • • • + a*x4 = 0 m ° d P,
go = 63xf + • • • + x | = 0 mod p

where possibly a4 = 0 mod p but a$ £ 0 mod p, and ai, by, b4 e 5. In this
section we consider the case r = 2.

https://doi.org/10.1017/S1446788700030925 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030925


448 O. D. Atkinson and R. J. Cook [11]

LEMMA 4. Let p = 1 mod 5, p > 101. Ifabc ^ 0 mod p then the congru-
ence

(43) ax5 + by5 + cz5 = d mod p

has a solution with xyz £ 0 mod p.

PROOF. We count the number N\ of solutions of (43) using exponential
sums:

(44) \Nx-p
2\<p~lSz

using (27) and (28).
When x = 0 the congruence (43) becomes

(45) by5 + cz5 = d mod p.

For any given value y there are at most 5 solutions for z, so the number of
solutions of (43) with xyz = 0 mod p is at most 15p. We have

(46) Ni > p2 - 16pV2 > I5p

for p>29l.

For 101 < p < 291 we take a.b.c eS with

(47) 1 = a < b < c

(after substitutions x —• ax). The result is now easily verified by computer.

LEMMA 5. Let p = 1 mod 5, p > 101. Ifr = 2 then the congruences (42)
have a solution of rank 2 mod p.

PROOF. We begin by solving

(48) &3JC35 + 64*4 + x\ = 0 mod p

with X3JC4X5 ^ 0 mod p. This solution involves 2 linearly independent columns
of coefficients.

Let

(49) A = aixl +

If A = 0 we take X\ = X2 = 0 to give the required solution. Otherwise we
multiply X3, X4, X5 by £ and solve

(50) jcf + a2*2 + ̂ 5 = ° m o d P

with X i ^ ^ 0 mod p to give the required solution.

We now take t to be the length of the second longest block of common
ratios a, /bt mod p.
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LEMMA 6. Let p = 1 mod 5, p > 11. Ifr = 2, t = 1 andai is a quintic non-
residue mod p then the congruences (42) have a solution of rank 2 mod p.

PROOF. This is a repetition of Lemma 5 except that the solution of (48)
is non-trivial, but still involves two linearly independent columns, and the
solution of (50) has £ ^ 0 since a2 is a quintic non-residue.

We are now left with the cases

(51) p = 31,41,61 or 71;

either r = 2,t = 2, and then

(52) / 0 = jcf + a2x}+a3xl

(53) So = hx\ + bAx\ + xl

where a2,63. b4 € S, 03 ^ 0 mod p;

or r = 2, t - 1, a2 = 1, and then

(54) /o = jcf + J : |

(55) go=

where 63,£4 e S, a^a^ £ 0 mod p.
For a fixed prime p there 25 forms go to consider. For each go w e begin by

forming a list of all solutions of go = 0 mod p. We then run through 5(p - 1)
forms /o of the first type (52) and (p - I)2 forms /o of the second type (54).
The computer then runs through the list of solutions of go = 0 mod p until
it finds one which is also a solution of /o = 0 mod p and which has rank 2.
In this way a computer search revealed the counterexample listed in Section
8.

6. Theorem 2(a): the case r = 1

In this case any non-trivial solution has rank 2 mod p. We begin by writing
the congruences as

/ o = x\+a2x\ + ••• + a5xl = 0 m o d p ,

go = b2x\ + ••• + b5xl = 0 m o d p ,

where b2,... ,65 e S.
Suppose first that b2,..., b$ consist of two pairs of equal values, say b2 = b^

and 64 = b$. We take x2 - -X3 = u,x* — -x$ = v and the non-trivial
solution of

(57) x,5 + (a2 - a3)w
5 + (a4 - a5)v

5 = 0 mod p
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gives the required solution of rank 2. (The coefficients are non-zero since
r = 1.) Now we may assume that for any form g* in the pencil generated by
/o, go and having one zero coefficient, the 4 non-zero coefficients do not all
lie in the same coset.

We count the number Ni of solutions of (56) using exponential sums.
Since the ratios a,/fe, are distinct mod p we have, as in Section 3,

(58)

Here £), is the contribution coming from those points [u\, 1/2) for which
no A, = 0 mod p. Now

^ E, \T(A3)T(A4)T(A5)\
2.

Since Ai and A2 are linearly independent the first sum on the right factorizes
to give Sj. The second sum is majorized by

(60)

Hence

(61)

The term £)2 in (58) is the contribution coming from those points («i, uj)
for which some A, = 0 mod p.

LEMMA 7. We have

(62)

PROOF. Since Ai = u\ the contribution to ^ 2 coming from the terms with
i = 0 mod p is at most

(63)
M=l

5 f , - l

</>IIEi
1=2 i«=i

As u runs through 1,2,...,p — 1 so does bjii. Thus each of these sums

(64) £
u=\ u=\

so this contribution to £ 2 *s rnajorized by

(65) pS4.
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We assert that the same bound applies to the contribution arising from the
points {u\, u2) with Ay = 0 mod p for each j = 2,..., 5. If Ay = 0 mod p
then, interpreting bjl mod p, u2 = -ajUi/bj mod p and so for / ^ j

A, = ux{aibj - ajbi)/bj mod p
(66) _

say. Thus the contribution of these terms is

P-\
(67) p J2 Y[ T(auj).

M=1 ijtj

Now we can replace /o, go m (56) by any 2 independent forms in the pencil,
for example by / * = /o and

(68) g* = (bjfo - ajgo)/bj mod p.

The coefficients c, are just the coefficients of g* and therefore (67) is also
bounded by (65), which gives the lemma.

The estimates (58), (61) and (63) give

(69) N2>p3- S2S3 - 5pS4.

For 11 < p < 6800 we calculate the bound on the right of (69) and find that
N2 > I (implying a non-trivial solution, which will have rank 2) for p > 3061.

7. Proof of Theorem 2(b)

Now n > 26 so

(70) m > 6, q > 3.

Discarding excess variables we may take m = 6 and still have q > 3, so r < 3.
We suppose first that r = 1, and therefore any non-trivial solution of the
congruences (14) has rank 2. We begin by rewriting the congruences in the
form

/ o = x\+a2x\ + ••• + a 6 x | = 0 m o d p,

gO = &2*2 "• •" ̂ 6*6 = 0 m ° d P

where b2>... ,b$ e S.

Suppose first that some value is repeated amongst b2,...,be; then we may
take b2 = b(, = 1. Replacing / 0 by b^fo - as go we may also take a6 - 0.
Consider any non-trivial solution of the congruence

(72) biX% + 64X4 + 65X5 = 0 mod p.
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If

(73) A = 03X3 + CI4X4 + #5X5 = 0 mod p

then we have the required solution. Otherwise we multiply X3.X4.X5 by £,,
take X2 = -X6 = u and solve

(74) mod/?

to give the required solution.
We may now suppose that b2t... ,b(, lie one in each of the distinct cosets.

Similarly, for any form g* in the pencil generated by /o and go which has one
zero coefficient, the other 5 coefficients must lie one in each coset. Counting
the number N2 of solutions of (71) using exponential sums we have

(75)

where J2i is the sum over those (u\, u2) for which no A, = 0 mod p and
is the sum over those (wi, u2) for which some A, = 0 mod p.

Since r = 1 we have

(76)

The contribution to
mod p is at most

p-i

(77)

coming from the points (« i , 1/2) with Ai = U\ = 0

T(b6u)
u=\

<p{p-\)Tx-T5.

As in Section 6 the same estimate holds on each line A; = 0 mod p so

(78)

For 131 < p < 3061 we find that

(79) p4-S]-6p(p-l)Tl-T5>l

so N2 > 1, and we have the required solution.
Each of the remaining primes has q — 2 so we may take

(80) go = x\ + 2x1 + 4x1 + 8*5 + 16x|,

and we begin by forming a list of non-trivial solutions of go = 0 mod p.
We may take /o to be form with a$ = 0, a.\ = 1 and the other coefficients
lying one in each coset. If A,B, C,D are representatives of the cosets then
a2,..., as is of type A,B,C,D in some order, giving 24 different cases for
/o. For each of these cases there are ((p - l)/5)4 individual forms /o to
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consider. The computer runs through each of these and then runs down the
list of non-trivial solutions ofgo = 0 mod p until it finds a common solution
(since r = 1 this solution must have rank 2).

If r = 3 the congruences become

(81) /o = flix? + a2xl + a-ixl+• • • + a6xl = 0 mod p,

(82) #o = 64X4 + • • • + hxl = 0 mod p

where a\, a2.ai.b4, 65, &6 ̂  0 mod p. We solve go = O with x4, x^.x^ not all
zero, and then solve /o = 0 with X1.X2.X3 not all zero. This solution has
rank 2.

Now we are left with the case r = 2. We discard one of x 3 , . . . , Xe to reduce
the problem to the case

(83) m = 5. r = 2, q = 3

already contained in Section 5. The results of Section 5 provide the required
solution when p > 101 and we are now left with the primes 31, 41, 61 and
71.

We repeat the argument used at the end of Section 5; either
(i) r = t = 2 and then

(84) /o = x? + a2x|+a3x| + a&l,
(85) £o = hxl + bAx\ l |
where «2.63.64. £5 € S\, a^a* ^ 0 mod p; or

(ii) r = 2, t = 1, a2 = 1 and then

(86) /o = x? + x2
5+a3x| + a4*4 +

(87) g0 = hxl + b4x% + b5x
s
5 + x |

where b2.b4.bi e S, a^a^ ^ 0 mod p.
For a fixed prime p there are 125 forms go to consider. For each g0 we

begin by forming a list of solutions of go = 0 mod p. We then run through
5{p - I)2 forms of the first type (84) and (p - I)3 forms of the second type
(86). The computer then runs through the list of solutions of go = 0 mod p
until it finds one which is also a solution of /o = 0 mod p and which has
rank 2 mod p. In this way a compter (the IBM 3083 at Sheffield University)
completed the proof of Theorem 2.

8. Some counterexamples

The computer search described in Sections 5 and 6 produced the following
counterexamples with m — 5:
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(88) /o = x? + x f+ xf + 3x4
5,

(89) g o - 2xf

(90) /o = x,5 + xf+ x | + 2JC4
5,

(91) go = 2x2
5 + 4xf + 22x4

5

(iii) p = 61, when there are only singular solutions,

(92) /o = x?+xf+4xf
(93) go = 4x | + 2x4

5+x5
5.

It is well known that the p-adic fields with p = 5,11 are exceptional for
quintic equations. However the counterexamples above are of a different
character. The problem here is simply that the prime p is too small rather
than it being of any generic type (p — k or 2k + 1).
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