PAIRS OF ADDITIVE CONGRUENCES TO A LARGE PRIME MODULUS

O. D. ATKINSON AND R. J. COOK

(Received 13 October 1987; revised 11 May 1988)

Communicated by J. H. Loxton

Abstract

This paper is concerned with non-trivial solvability in *p*-adic integers, for relatively large primes p, of a pair of additive equations of degree k > 1:

$$f(\mathbf{x}) = a_1 x_1^k + \dots + a_n x_n^k = 0,$$

$$g(\mathbf{x}) = b_1 x_1^k + \dots + b_n x_n^k = 0.$$

where the coefficients $a_1, \ldots, a_n, b_1, \ldots, b_n$ are rational integers.

Our first theorem shows that the above equations have a non-trivial solution in *p*-adic integers if n > 4k and $p > k^6$. The condition on *n* is best possible.

The later part of the paper obtains further information for the particular case k = 5. Specifically we show that when k = 5 the above equations have a non-trivial solution in *p*-adic integers (a) for all p > 3061 if $n \ge 21$; (b) for all *p* except p = 5, 11 if $n \ge 26$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 D 88.

1. Introduction

It is well known (see, for example, Chapter 1 of Borevich and Shafarevich [3]) that the number of solutions of a polynomial congruence

$$F(x_1,\ldots,x_n)\equiv 0 \mod p$$

may be estimated using exponential sums. For an additive form

(1)
$$a_1 x_1^k + \dots + a_n x_n^k \equiv 0 \mod p$$

© 1989 Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

438

where $p \nmid a_1 \cdots a_n$, it follows from Theorem B of Borevich and Shafarevich [3, page 15] that the number N of solutions of (1) satisfies

(2)
$$|N-p^{n-1}| \leq Cp^{(n/2)-1}$$
,

with $C = (k - 1)^n$. Therefore a congruence

(3)
$$ax^k + by^k + cz^k \equiv 0 \mod p, p \nmid abc,$$

has a non-trivial solution for all $p > k^6$. The condition on p may be improved to $p > k^4$ (see Theorem 1 of Chowla [4] or Lemma 2.4.1 of Dodson [17]).

Before considering pairs of additive equations we recall some of the results on the p-adic solvability of a single additive equation

(4)
$$f(\mathbf{x}) = a_1 x_1^k + \dots + a_n x_n^k = 0,$$

with coefficients in Z. For quadratic forms (k = 2) the equation has a nontrivial solution in *p*-adic integers for every prime *p* provided that $n \ge 5 =$ 2.2 + 1. This result is best possible since when n = 4 and $p \equiv 3 \mod 4$ the equation

(5)
$$x_1^2 + x_2^2 + p(x_3^2 + x_4^2) = 0$$

has no non-trivial solution in *p*-adic integers.

For k = 3 Lewis [20] showed that (4) has a non-trivial solution in *p*-adic integers for every prime provided that $n \ge 7 = 2.3 + 1$. In order to see that the condition $n \ge 7$ is best possible, let *p* be any prime with $p \equiv 1 \mod 3$ and let *q* be a cubic non-residue mod *p*. Then the equation

(6)
$$(x_1^3 - qy_1^3) + p(x_2^3 - qy_2^3) + p^2(x_3^3 - qy_3^3) = 0$$

has no non-trivial solution in *p*-adic integers.

For k = 5, Gray [19] showed that (4) has a solution in every *p*-adic field provided that $n \ge 16 = 3.5 + 1$. This is best possible since the equation

(7)
$$\sum_{i=1}^{5} 11^{i-1} (x_i^5 + 2y_i^5 + 4z_i^5) = 0$$

has no non-trivial solution in 11-adic integers.

Davenport and Lewis [11] showed that for any k > 1 the equation (4) has a non-trivial solution in *p*-adic integers provided that $n \ge k^2 + 1$. This is best possible for any exponent k such that k = p - 1 for some prime p, as can be seen from a generalization of the example (5); see [11, page 454].

The next theorem is a "folklore" result, which does not seem to appear explicitly in the literature. It follows on combining the arguments of Davenport and Lewis [11] with the result for congruence (3), and the proof is left to the reader. THEOREM A. Let $n \ge 2k+1$. A single additive equation (4) has a non-trivial solution in p-adic integers for all $p > k^4$.

A generalization of the example (6) shows that the condition $n \ge 2k + 1$ is best possible. The interest of the result is that the problem of *p*-adic solvability is reduced to a finite, and explicit, question; for a given equation the remaining primes can be dealt with by a computer.

Our aim here is to produce an analogue of Theorem A for pairs of additive equations and to exploit this further in the case k = 5. To gain some idea of what may be feasible for given k and large primes p we consider a generalization of the example (6). For any exponent k and any prime $p \equiv 1$ mod k, let q be a kth power non-residue mod p. Then the equation

(8)
$$\sum_{i=1}^{k} p^{i-1} (x_i^k - q y_i^k) = 0$$

has no non-trivial solution in *p*-adic integers. We consider (8) together with a "disjoint copy" of (8) (the equation obtained by replacing x_i , y_i with new variables x'_i , y'_i for i = 1, ..., k). This gives a pair of equations in 4k variables which have no non-trivial solution in *p*-adic integers, no matter how large *p* is. Thus in order to generalize Theorem A to a pair of additive equations we must at least assume that $n \ge 4k + 1$.

For k = 2, two quadratic equations (not necessarily additive) have a nontrivial solution in *p*-adic integers for all primes *p* provided that $n \ge 9$ (see Demyanov [16]), and this result is best possible. For k = 3, Davenport and Lewis [12] showed that two additive equations

(9)
$$f(\mathbf{x}) = a_1 x_1^k + \dots + a_n x_n^k = 0, \qquad a_i \in \mathbb{Z}, \\ g(\mathbf{x}) = b_1 x_1^k + \dots + b_n x_n^k = 0, \qquad b_i \in \mathbb{Z},$$

have a non-trivial solution in *p*-adic integers for every prime *p* provided that $n \ge 16$. They also gave a counterexample with n = 15 and p = 7 showing that this is best possible. More recently, Cook [7] has shown that for all $p \ne 7$ a sufficient condition is $n \ge 13 = 4.3 + 1$. In view of the example (8), and the remarks following it, this result is best possible; if we reduce *n* to 12 there are infinitely many primes p ($p \equiv 1 \mod 3$) for which we have counterexamples.

Davenport and Lewis [14] studied the case of two additive equations (9) with an exponent k > 1, obtaining sufficient conditions for the equations to have a non-trivial solution in *p*-adic integers for every prime *p*. For odd k they showed that $n \ge 2k^2 + 1$ variables are sufficient, but for even k they were only able to prove that $n \ge 7k^3$ variables would suffice.

THEOREM 1. Let n > 4k. Any two additive equations (9) of degree k with integer coefficients a_i , b_i have a non-trivial solution in p-adic integers for all

primes $p > k^6$. Further this result is best possible in the sense that it fails to hold when n = 4k.

The last sentence of Theorem 1 follows from the remarks following the example (8). We also note that Theorem 1 follows from the results of Demyanov [16] when k = 2 and Cook [7] when k = 3, so we may suppose that k > 3. The case k = 5 has already been investigated in some detail by Cook [8,9] who showed that $n \ge 31$ variables will suffice expect possibly when p = 11. Moreover, consideration of two disjoint copies of the equation (7), in a total of 30 variables, shows that the best possible condition for such a result covering all primes p would be $n \ge 31$. However, for p = 11 Cook [9] was only able to show that $n \ge 41$ variables will suffice.

We investigate those primes p for which the condition $n \ge 21 = 4.5 + 1$ is sufficient. Theorem 1 deals with those primes $p > 5^6 = 15625$. Some primes $p < 5^6$ may be dealt with by explicitly calculating exponential sums, and appropriate computer investigation deals with other cases. The primes p for which $n \ge 26 = 5.5 + 1$ is sufficient were also investigated by similar methods. The results are summarized in the following theorem.

THEOREM 2. In the case k = 5 the equations (9) have a non-trivial solution in p-adic integers

(a) for all p > 3061 when $n \ge 21$;

(b) for all p except p = 5, 11 if $n \ge 26$.

When p = 11 we have already constructed an example in 30 variables having no non-trivial solutions. Computer searches have revealed examples which may be used to construct similar counterexamples in 25 variables for p = 31 and 41. These are listed at the end of this paper.

Apart from their intrinsic interest, p-adic solutions are an essential preliminary to any application of the Hardy-Littlewood method. In the case k = 3, Davenport and Lewis [12] showed that two additive cubic equations have a non-trivial simultaneous solution in rational integers provided that $n \ge 18$. Subsequently '18' was reduced to '17' by Cook [6] and '16' by Vaughan [24]. In view of the counterexample of Davenport and Lewis [12] with n = 15and p = 7 this is the best that could be done without making some 7-adic assumption. More recently, Baker and Brüdern [2] have shown, using the p-adic results of Cook [7], that 15 variables are sufficient if we assume the existence of non-singular 7-adic solutions. Atkinson [1] has classified those pairs of additive cubic equations in n = 13, 14 or 15 variables which do not have 7-adic solutions. The Hardy-Littlewood method requires the existence of non-singular (not just non-trivial) p-adic solutions. In view of the recent advances in this method, see for example Vaughan [25], we state (without proof) an appropriate version of Theorem 1. The point here being that this reduces any p-adic assumptions to a finite (and explicit) set of primes.

THEOREM 3. Let $p > k^4$ and suppose that the equations (10) have a nontrivial p-adic solution. If every form $\lambda f + \mu g$, $(\lambda, \mu \neq 0, 0)$ in the pencil of f and g has at least 2k + 1 variables with non-zero coefficients then the equations have a non-singular p-adic solution.

The proof mimics the proofs of Theorem 2 of Davenport and Lewis [14] except that we appeal to Theorem A instead of their result [11] on additive forms in $k^2 + 1$ variables.

One question which naturally arises is how these results generalize to R > 2 simultaneous equations. An example given by Davenport and Lewis [13, Section 4] shows that the generalization is not straightforward. The *p*-adic results obtained by Davenport and Lewis [15] for R simultaneous equations required $[9R^{2}k \log 3Rk]$ variables when k is odd, and $[48R^{2}k^{3} \log 3Rk^{2}]$ variables when k is even. These results have recently been improved upon by Schmidt [22] and Low, Pitman and Wolff [21].

When R = 3 the "Artin question" is whether $3k^2 + 1$ variables are sufficient to ensure non-trivial *p*-adic solutions for every prime *p*. In the case k = 2this was proved by Ellison [19]. When k = 3 Stevenson [23] showed that, except possibly for p = 3 or 7, $n \ge 28$ variables are sufficient. More recently Atkinson [1] has shown that 25 variables are sufficient to ensure non trivial *p*-adic solutions of three additive cubics in every *p*-adic field, except possibly p = 3 or 7.

We are indebted to the referee for many useful comments which have improved the exposition of our results.

2. Preliminaries to Theorem 1

We begin by recalling a normalisation procedure introduced by Davenport and Lewis [12, 14, 15]. With a pair (9) of additive forms f, g we associate the parameter

(10)
$$\theta = \theta(f, g) = \prod_{i \neq j} (a_i b_j - a_j b_i).$$

For a given pair of forms with $\theta(f, g) \neq 0$ and a fixed prime p, there is a related p-normalized pair of forms (f^*, g^*) . Further the equations f = g = 0

have a non-trivial *p*-adic solution if and only if the equations $f^* = g^* = 0$ do. Also, by the *p*-adic compactness argument in Davenport and Lewis [14, Section 5], it is sufficient to prove Theorem 1 with the additional assumption that $\theta \neq 0$. We may now suppose that the forms f, g are *p*-normalized, with $\theta \neq 0$, and use the following property which is essentially Lemma 2 of Davenport and Lewis [12].

LEMMA 1. Let f and g be a p-normalized pair of forms. Then we may write

(11)
$$f = f_0 + pf_1, g = g_0 + pg_1.$$

Here f_0, g_0 are forms in $m \ge n/k$ variables, each of which occurs in one at least of f_0, g_0 with a coefficient not divisible by p. Further, if q denotes the minimum number of variables occuring explicitly in any form $\lambda f_0 + \mu g_0 (\lambda, \mu$ not both divisible by p) with a coefficient not divisible by p, then $q \ge n/2k$.

Our next lemma is a version of Hensel's Lemma; it is Lemma 7 of Davenport and Lewis [14].

LEMMA 2. If $p \nmid k$ and the congruences

(12)
$$f_0 = a_1 x_1^k + \dots + a_m x_m^k \equiv 0 \mod p,$$
$$g_0 = b_1 x_1^k + \dots + b_m x_m^k \equiv 0 \mod p$$

have a solution $\boldsymbol{\xi} = (\xi_1, \dots, \xi_m)$ for which the matrix

(13)
$$\begin{pmatrix} a_1\xi_1\cdots a_m\xi_m\\ b_1\xi_1\cdots b_m\xi_m \end{pmatrix}$$

has rank 2 (mod p) then the equations $f_0 = g_0 = 0$ have a non-trivial solution in p-adic integers.

In the proof of Theorem 1 we have $p > k^6$ so $p \nmid k$. It is therefore sufficient to show that the congruences (12) have a solution of rank 2 (mod p). We may also suppose that $p \equiv 1 \mod k$, see Lemma 3 of Davenport and Lewis [9]; similarly we may suppose that $p \equiv 1 \mod 5$ for Theorem 2.

Since n > 4k, Lemma 1 gives the bounds $m \ge 5$, $q \ge 3$. We partition the variables x_1, \ldots, x_m into blocks such that in each block the ratios a_i/b_i are equal (mod p). Let r be the length of the longest block of common ratios a_i/b_i . We note that replacing f_0, g_0 by suitable linear combinations we may take $a_i/b_i = "1/0"$ for these r variables. Further, let t be the length of the second longest block of common ratios. We may take the ratios in this block to be "0/1".

444

We assert that if $t \ge 3$ then the congruences (12) have a common solution of rank 2. This follows from our remarks on the single congruence (3) since the congruences (12) contain two disjoint congruences in 3 variables. Now we assume that $t \le 2$ and reduce *m* from its initial value to 5 by discarding variables from the longest block of common ratios. We end up with a pair of congruences (12) satisfying

(14)
$$m = 5, \quad q \ge 3 \text{ and } r \le 2$$

since r = m - q.

3. Exponential sums

Since $r \le 2$ we may renumber the variables in (12) so that $\{a_1/b_1, a_2/b_2\}$ and $\{a_3/b_3, a_4/b_4, a_5/b_5\}$ are sets of unequal ratios mod p. We count the number N of solutions of the congruences (12) using exponential sums:

(15)
$$N = p^{-2} \sum_{u_1, u_2 \mod p} T(\Lambda_1) \cdots T(\Lambda_5)$$

where

(16)
$$\Lambda_j = u_1 a_j + u_2 b_j, \qquad j = 1, \dots, 5,$$

(17)
$$T(\Lambda) = \sum_{x \mod p} e(\Lambda x^5/p),$$

and $e(\theta) = \exp(2\pi i\theta)$.

Separating out the term $u_1 = u_2 = 0$ in (15) we find that

(18)
$$N - p^3 = p^{-2} \sum_{i=1}^{\prime} T(\Lambda_1) \cdots T(\Lambda_5)$$

(19)
$$= p^{-2} \left(\sum_{1} + \sum_{2} \right)$$

where \sum' denotes the omission of the term $u_1 = u_2 = 0$, \sum_1 is the sum over those terms for which no $\Lambda_i \equiv 0$ and \sum_2 is the sum over those terms $(u_1, u_2) \neq (0, 0)$ for which some $\Lambda_i \equiv 0$.

Now

(20)
$$\left|\sum_{1}\right|^{2} \leq \sum_{1} |T(\Lambda_{1})T(\Lambda_{2})|^{2} \cdot \sum_{1} |T(\Lambda_{3})T(\Lambda_{4})T(\Lambda_{5})|^{2}.$$

We put

(21)
$$S_r = \sum_{u=1}^{p-1} |T(u)|^r.$$

Since Λ_1, Λ_2 are independent linear forms the mapping $(\Lambda_1, \Lambda_2) \rightarrow (u_1, u_2)$ is a bijection and therefore

(22)
$$\sum_{1} |T(\Lambda_1)T(\Lambda_2)|^2 \leq \sum_{\Lambda_1\Lambda_2 \neq 0} |T(\Lambda_1)T(\Lambda_2)|^2 = \sum_{1} |T(u_1)T(u_2)|^2 = S_2^2.$$

Similarly, using Hölder's inequality, we have

(23)
$$\sum_{1} |T(\Lambda_{3})T(\Lambda_{4})T(\Lambda_{5})|^{2} \leq \max_{\Lambda_{i} \neq \Lambda_{j}} \sum_{1} |T(\Lambda_{i})T^{2}(\Lambda_{j})|^{2} \\ = \sum_{u_{1}} |T(u_{1})|^{2} \cdot \sum_{u_{2}} |T(u_{2})|^{4} = S_{2}S_{4}.$$

Thus

(24)
$$\left|\sum_{1}\right| \leq S_2^{3/2} S_4^{1/2}.$$

In order to estimate \sum_2 suppose first that the ratio $a_5/b_5 \mod p$ occurs only once amongst the a_i/b_i . Then the contribution of the points (u_1, u_2) with $\Lambda_5 \equiv 0$ to \sum_2 is at most

(25)
$$p \sum_{\Lambda_5 \equiv 0} |T(\Lambda_1) \cdots T(\Lambda_4)| \le p \max_{i \ne 5} \sum_{\Lambda_5 \equiv 0} |T(\Lambda_i)|^4$$
$$= p \sum_{u=1}^{p-1} |T(u)|^4 = pS_4,$$

since the mapping $(\Lambda_i, \Lambda_5) \rightarrow (u_1, u_2)$ is a bijection. If the ratio a_5/b_5 occurs twice amongst the a_i/b_i a similar argument shows that the contribution is at most p^2S_3 . Thus

(26)
$$\left|\sum_{2}\right| \leq \max(5pS_4, 3pS_4 + p^2S_3, pS_4 + 2p^2S_3).$$

Now (see Dodson [17, Lemma 2.5.1]),

(27)
$$S_2 = (k-1)p(p-1)$$

and (see Davenport [10, Lemma 12])

(28)
$$|T(u)| \le (k-1)\sqrt{p}, \quad u \not\equiv 0 \mod p$$

(29)
$$|S_3| < (k-1)^2 p^{5/2}$$

$$|S_4| < (k-1)^3 p^3.$$

Hence

(31)
$$p^{-2} \left| \sum_{1} + \sum_{2} \right| < p^{-2} \{ (k-1)^{3} p^{9/2} + 2(k-1)^{2} p^{9/2} + (k-1)^{3} p^{4} \} < k^{3} p^{5/2},$$

since $p > k^6$.

Any solution of rank 1 occurs in a pair of linearly dependent columns and since $r \le 2$ there are at most 2 such pairs of columns, each pair giving 5(p-1) solutions. Further there is one solution of rank 0 and so at most 10p-9 solutions of rank < 2. Thus we obtain the required solution of rank 2 provided that $p^3 - k^3 p^{5/2} \ge 10p$.

This is equivalent to

(32)
$$h(p,k) = p^2 - k^3 p^{3/2} - 10 \ge 0,$$

and, for fixed k, h(p,k) is an increasing function of p so it is enough to verify (32) when $p = k^6 + 1$:

$$k^{12} + 2k^6 - 9 - k^{12}(1 + k^{-6})^{3/2} \ge 0$$

or

$$(1+2k^{-6}-9k^{-12})^2 \ge (1+k^{-6})^3$$

Writing y for k^6 , we obtain $H(y) = y^3 - 17y^2 - 37y + 81 \ge 0$. Now $H' \ge 0$ for $y \ge 37/3$ and the inequality is easily verified for $y \ge 2^6 = 64$, which completes the proof of Theorem 1.

4. Preliminary remarks for Theorem 2

After Theorem 1, we only need to consider those primes $p < 5^6 = 15625$. The quintic residues mod p form a cyclic subgroup of the non-zero residue classes, and the value of the exponential sum T(u) depends only on the coset in which u lies. For each prime $p \equiv 1 \mod 5$ with $p \leq 15625$ we find the least quintic non-residue $q \mod p$, using a computer. Then $S = \{1, q, q^2, q^3, q^4\}$ is a set of representatives from the 5 cosets. Using double precision Fortran we calculate the absolute values of the exponential sums

ı

(33)
$$T_i = \left| \sum_{x \mod p} e(q^{i-1}x^5/p) \right|, \quad i = 1, \dots, 5,$$

and these values are checked using the identity

(34)
$$\sum_{i=1}^{5} T_i^2 = 20p.$$

ī

As u runs through 1, 2, ..., p-1 it falls into each coset exactly (p-1)/5 times and so

(35)
$$S_r = \left(\frac{p-1}{5}\right) \sum_{i=1}^5 T_i^r.$$

ences

In this way we calculate $S_2(=4p(p-1))$, S_3 and S_4 exactly, and compute the bound

(36)
$$B = S_2^{3/4} S_4^{1/2} + \max(5pS_4, 3pS_4 + p^2S_3, pS_4 + 2p^2S_3)$$

for $\sum_{1} + \sum_{2}$. Then, checking the primes up to 15625 we obtain

(37)
$$p^3 - p^{-2}B \ge 10p$$
 for 6800

which leads to the required solution of rank 2.

We now take $p \equiv 1 \mod 5$ to be a fixed prime in the range

$$(38) 11$$

We find the least quintic non-residue $q \mod p$ and put

(39) $S = \{1, q, \dots, q^4\}.$

LEMMA 3. Let $p \equiv 1 \mod 5$, p > 11. If $abc \not\equiv 0 \mod p$ then

$$ax^5 + by^5 + cz^5 \equiv d \mod p$$

has a solution, which is non-trivial if $d \equiv 0 \mod p$.

PROOF. For $d \neq 0 \mod p$ this follows from Theorem 3 of Chowla, Mann and Straus [5]. Now $d \equiv 0 \mod p$ and for p > 625 the result follows from Theorem 1 of I Chowla [3] (or Lemma 2.4.1 of Dodson [17]).

For $11 , using substitutions <math>x \to \alpha x$, we may assume that $a, b, c \in S$. This result is obvious unless a, b, c are unequal and we may suppose that

$$(41) 1 = a < b < c.$$

Thus for each prime p there are only 6 cases to consider and the result is easily verified by computer.

5. Proof of Theorem 2(a)

The normalization process described in Section 2 results in a pair of forms with $m = 5, q \le 3$ and $r \le 2$, which we can write in the form

(42)
$$\begin{aligned} f_0 &= x_1^5 + a_2 x_2^5 + \cdots + a_4 x_4^5 &\equiv 0 \mod p, \\ g_0 &= b_3 x_3^5 + \cdots + x_5^5 \equiv 0 \mod p \end{aligned}$$

where possibly $a_4 \equiv 0 \mod p$ but $a_3 \not\equiv 0 \mod p$, and $a_2, b_3, b_4 \in S$. In this section we consider the case r = 2.

[11]

448

LEMMA 4. Let $p \equiv 1 \mod 5$, $p \ge 101$. If $abc \ne 0 \mod p$ then the congruence

(43)
$$ax^5 + by^5 + cz^5 \equiv d \mod p$$

has a solution with $xyz \not\equiv 0 \mod p$.

PROOF. We count the number N_1 of solutions of (43) using exponential sums:

(44)
$$|N_1 - p^2| \le p^{-1}S_3 \le 16(p-1)\sqrt{p},$$

using (27) and (28).

When $x \equiv 0$ the congruence (43) becomes

$$by^5 + cz^5 \equiv d \mod p.$$

For any given value y there are at most 5 solutions for z, so the number of solutions of (43) with $xyz \equiv 0 \mod p$ is at most 15p. We have

(46)
$$N_1 \ge p^2 - 16p^{3/2} > 15p$$

for $p \ge 291$.

For $101 \le p < 291$ we take $a, b, c \in S$ with

 $(47) 1 = a \le b \le c$

(after substitutions $x \rightarrow \alpha x$). The result is now easily verified by computer.

LEMMA 5. Let $p \equiv 1 \mod 5$, $p \ge 101$. If r = 2 then the congruences (42) have a solution of rank 2 mod p.

PROOF. We begin by solving

(48)
$$b_3 x_3^5 + b_4 x_4^5 + x_5^5 \equiv 0 \mod \mu$$

with $x_3x_4x_5 \neq 0 \mod p$. This solution involves 2 linearly independent columns of coefficients.

Let

(49)
$$A = a_3 x_3^5 + a_4 x_4^5$$

If $A \equiv 0$ we take $x_1 = x_2 = 0$ to give the required solution. Otherwise we multiply x_3, x_4, x_5 by ξ and solve

(50)
$$x_1^5 + a_2 x_2^5 + A \xi^5 \equiv 0 \mod p$$

with $x_1 x_2 \xi \neq 0 \mod p$ to give the required solution.

We now take t to be the length of the second longest block of common ratios $a_i/b_i \mod p$.

LEMMA 6. Let $p \equiv 1 \mod 5$, p > 11. If r = 2, t = 1 and a_2 is a quintic nonresidue mod p then the congruences (42) have a solution of rank 2 mod p.

PROOF. This is a repetition of Lemma 5 except that the solution of (48) is non-trivial, but still involves two linearly independent columns, and the solution of (50) has $\xi \neq 0$ since a_2 is a quintic non-residue.

We are now left with the cases

$$(51) p = 31, 41, 61 or 71;$$

either r = 2, t = 2, and then

(52)
$$f_0 = x_1^5 + a_2 x_2^5 + a_3 x_3^5,$$

(53)
$$g_0 = b_3 x_3^5 + b_4 x_4^5 + x_5^5$$

where $a_2, b_3, b_4 \in S, a_3 \not\equiv 0 \mod p$;

or
$$r = 2, t = 1, a_2 = 1$$
, and then

(54)
$$f_0 = x_1^5 + x_2^5 + a_3 x_3^5 + a_4 x_4^5$$

(55) $g_0 = b_3 x_3^5 + b_4 x_4^5 + x_5^5$,

where $b_3, b_4 \in S, a_3a_4 \not\equiv 0 \mod p$.

For a fixed prime p there 25 forms g_0 to consider. For each g_0 we begin by forming a list of all solutions of $g_0 \equiv 0 \mod p$. We then run through 5(p-1)forms f_0 of the first type (52) and $(p-1)^2$ forms f_0 of the second type (54). The computer then runs through the list of solutions of $g_0 \equiv 0 \mod p$ until it finds one which is also a solution of $f_0 \equiv 0 \mod p$ and which has rank 2. In this way a computer search revealed the counterexample listed in Section 8.

6. Theorem 2(a): the case r = 1

In this case any non-trivial solution has rank $2 \mod p$. We begin by writing the congruences as

(56)
$$\begin{aligned} f_0 &= x_1^5 + a_2 x_2^5 + \dots + a_5 x_5^5 \equiv 0 \mod p, \\ g_0 &= b_2 x_2^5 + \dots + b_5 x_5^5 \equiv 0 \mod p, \end{aligned}$$

where $b_2, \ldots, b_5 \in S$.

Suppose first that b_2, \ldots, b_5 consist of two pairs of equal values, say $b_2 = b_3$ and $b_4 = b_5$. We take $x_2 = -x_3 = u$, $x_4 = -x_5 = v$ and the non-trivial solution of

(57)
$$x_1^5 + (a_2 - a_3)u^5 + (a_4 - a_5)v^5 \equiv 0 \mod p$$

O. D. Atkinson and R. J. Cook

gives the required solution of rank 2. (The coefficients are non-zero since r = 1.) Now we may assume that for any form g^* in the pencil generated by f_0 , g_0 and having one zero coefficient, the 4 non-zero coefficients do not all lie in the same coset.

We count the number N_2 of solutions of (56) using exponential sums. Since the ratios a_i/b_i are distinct mod p we have, as in Section 3,

(58)
$$N_{2} - p^{3} = p^{-2} \sum_{u_{1}, u_{2}}' T(\Lambda_{1}) \cdots T(\Lambda_{5})$$
$$= p^{-2} \left(\sum_{1} + \sum_{2} \right).$$

Here $\sum_{i=1}^{n}$ is the contribution coming from those points (u_1, u_2) for which no $\Lambda_i \equiv 0 \mod p$. Now

(59)
$$\left|\sum_{1}\right|^{2} \leq \sum_{1} |T(\Lambda_{1})T(\Lambda_{2})|^{2} \cdot \sum_{1} |T(\Lambda_{3})T(\Lambda_{4})T(\Lambda_{5})|^{2}.$$

Since Λ_1 and Λ_2 are linearly independent the first sum on the right factorizes to give S_2^2 . The second sum is majorized by

(60)
$$\max_{i \neq j} \sum_{1} |T(\Lambda_i)T(\Lambda_j)|^3 = S_3^2$$

Hence

$$(61) \left|\sum_{1}\right| \leq S_2 S_3.$$

The term $\sum_{i=1}^{n} (58)$ is the contribution coming from those points (u_1, u_2) for which some $\Lambda_i \equiv 0 \mod p$.

LEMMA 7. We have

$$(62) $\left|\sum_{2}\right| \leq 5pS_4$$$

PROOF. Since $\Lambda_1 = u_1$ the contribution to \sum_2 coming from the terms with $\Lambda_1 \equiv 0 \mod p$ is at most

(63)
$$\left| p \sum_{u=1}^{p-1} T(b_2 u) \cdots T(b_5 u) \right| \le p \prod_{i=2}^{5} \left\{ \sum_{u=1}^{p-1} |T(b_i u)|^4 \right\}^{1/4}$$

As u runs through 1, 2, ..., p-1 so does $b_i u$. Thus each of these sums

(64)
$$\sum_{u=1}^{p-1} |T(b_i u)|^4 = \sum_{u=1}^{p-1} |T(u)|^4 = S_4$$

so this contribution to \sum_2 is majorized by

(65)
$$pS_4$$
.

We assert that the same bound applies to the contribution arising from the points (u_1, u_2) with $\Lambda_j \equiv 0 \mod p$ for each j = 2, ..., 5. If $\Lambda_j \equiv 0 \mod p$ then, interpreting $b_j^{-1} \mod p$, $u_2 \equiv -a_j u_1/b_j \mod p$ and so for $i \neq j$

(66)
$$\Lambda_i \equiv u_1(a_ib_j - a_jb_i)/b_j \mod p$$
$$= c_i u_i$$

say. Thus the contribution of these terms is

(67)
$$p \sum_{u=1}^{p-1} \prod_{i \neq j} T(c_i u_i).$$

Now we can replace f_0 , g_0 in (56) by any 2 independent forms in the pencil, for example by $f^* = f_0$ and

(68)
$$g^* \equiv (b_j f_0 - a_j g_0)/b_j \mod p$$

The coefficients c_i are just the coefficients of g^* and therefore (67) is also bounded by (65), which gives the lemma.

The estimates (58), (61) and (63) give

(69)
$$N_2 \ge p^3 - S_2 S_3 - 5p S_4.$$

For $11 we calculate the bound on the right of (69) and find that <math>N_2 > 1$ (implying a non-trivial solution, which will have rank 2) for p > 3061.

7. Proof of Theorem 2(b)

Now $n \ge 26$ so

$$(70) m \ge 6, q \ge 3.$$

Discarding excess variables we may take m = 6 and still have $q \ge 3$, so $r \le 3$. We suppose first that r = 1, and therefore any non-trivial solution of the congruences (14) has rank 2. We begin by rewriting the congruences in the form

(71)
$$f_0 = x_1^5 + a_2 x_2^5 + \dots + a_6 x_6^5 \equiv 0 \mod p, \\ g_0 = b_2 x_2^5 + \dots + b_6 x_6^5 \equiv 0 \mod p$$

where $b_2, \ldots, b_6 \in S$.

Suppose first that some value is repeated amongst b_2, \ldots, b_6 ; then we may take $b_2 = b_6 = 1$. Replacing f_0 by $b_6 f_0 - a_6 g_0$ we may also take $a_6 = 0$. Consider any non-trivial solution of the congruence

(72)
$$b_3x_3^5 + b_4x_4^5 + b_5x_5^5 \equiv 0 \mod p.$$

452

(73)
$$A = a_3 x_3^5 + a_4 x_4^5 + a_5 x_5^5 \equiv 0 \mod p$$

then we have the required solution. Otherwise we multiply x_3, x_4, x_5 by ξ , take $x_2 = -x_6 = u$ and solve

(74)
$$x_1^5 + a_2^5 u + A\xi^5 \equiv 0 \mod p$$

to give the required solution.

We may now suppose that b_2, \ldots, b_6 lie one in each of the distinct cosets. Similarly, for any form g^* in the pencil generated by f_0 and g_0 which has one zero coefficient, the other 5 coefficients must lie one in each coset. Counting the number N_2 of solutions of (71) using exponential sums we have

(75)
$$N_2 - p^4 = p^{-2} \sum_{1}^{\prime} T(\Lambda_1) \cdots T(\Lambda_6) = p^{-2} \left(\sum_{1} + \sum_{2} \right),$$

where \sum_{i} is the sum over those (u_1, u_2) for which no $\Lambda_i \equiv 0 \mod p$ and \sum_{i} is the sum over those (u_1, u_2) for which some $\Lambda_i \equiv 0 \mod p$.

Since r = 1 we have

$$(76) $\left|\sum_{1}\right| \leq S_3^2.$$$

The contribution to \sum_2 coming from the points (u_1, u_2) with $\Lambda_1 = u_1 \equiv 0 \mod p$ is at most

(77)
$$\left| p \sum_{u=1}^{p-1} T(b_2 u) \cdots T(b_6 u) \right| \le p(p-1)T_1 \cdots T_5.$$

As in Section 6 the same estimate holds on each line $\Lambda_j \equiv 0 \mod p$ so

(78)
$$\left|\sum_{2}\right| \leq 6p(p-1)T_{1}\cdots T_{5}$$

For 131 we find that

(79)
$$p^4 - S_3^3 - 6p(p-1)T_1 \cdots T_5 > 1$$

so $N_2 > 1$, and we have the required solution.

Each of the remaining primes has q = 2 so we may take

(80)
$$g_0 = x_2^5 + 2x_3^5 + 4x_4^5 + 8x_5^5 + 16x_6^5,$$

and we begin by forming a list of non-trivial solutions of $g_0 \equiv 0 \mod p$. We may take f_0 to be form with $a_6 = 0$, $a_1 = 1$ and the other coefficients lying one in each coset. If A, B, C, D are representatives of the cosets then a_2, \ldots, a_5 is of type A, B, C, D in some order, giving 24 different cases for f_0 . For each of these cases there are $((p-1)/5)^4$ individual forms f_0 to consider. The computer runs through each of these and then runs down the list of non-trivial solutions of $g_0 \equiv 0 \mod p$ until it finds a common solution (since r = 1 this solution must have rank 2).

If r = 3 the congruences become

(81)
$$f_0 = a_1 x_1^5 + a_2 x_2^5 + a_3 x_3^5 + \dots + a_6 x_6^5 \equiv 0 \mod p$$

(82)
$$g_0 = b_4 x_4^3 + \dots + b_6 x_6^3 \equiv 0 \mod p$$

where $a_1, a_2, a_3, b_4, b_5, b_6 \neq 0 \mod p$. We solve $g_0 \equiv 0$ with x_4, x_5, x_6 not all zero, and then solve $f_0 \equiv 0$ with x_1, x_2, x_3 not all zero. This solution has rank 2.

Now we are left with the case r = 2. We discard one of x_3, \ldots, x_6 to reduce the problem to the case

$$(83) m = 5, r = 2, q = 3$$

already contained in Section 5. The results of Section 5 provide the required solution when $p \ge 101$ and we are now left with the primes 31, 41, 61 and 71.

We repeat the argument used at the end of Section 5; either

(i) r = t = 2 and then

(84)
$$f_0 = x_1^5 + a_2 x_2^5 + a_3 x_3^5 + a_4 x_4^5,$$

$$(85) g_0 = b_3 x_3^5 + b_4 x_4^5 + b_5 x_5^5 + x_6^5$$

where $a_2, b_3, b_4, b_5 \in S_1, a_3a_4 \not\equiv 0 \mod p$; or

(ii) $r = 2, t = 1, a_2 = 1$ and then

(86)
$$f_0 = x_1^5 + x_2^5 + a_3 x_3^5 + a_4 x_4^5 + a_5 x_5^5,$$

$$(87) g_0 = b_3 x_3^5 + b_4 x_4^5 + b_5 x_5^5 + x_6^5$$

where b_3 , b_4 , $b_5 \in S$, $a_3a_4a_5 \not\equiv 0 \mod p$.

For a fixed prime p there are 125 forms g_0 to consider. For each g_0 we begin by forming a list of solutions of $g_0 \equiv 0 \mod p$. We then run through $5(p-1)^2$ forms of the first type (84) and $(p-1)^3$ forms of the second type (86). The computer then runs through the list of solutions of $g_0 \equiv 0 \mod p$ until it finds one which is also a solution of $f_0 \equiv 0 \mod p$ and which has rank 2 mod p. In this way a compter (the IBM 3083 at Sheffield University) completed the proof of Theorem 2.

8. Some counterexamples

The computer search described in Sections 5 and 6 produced the following counterexamples with m = 5:

(i) p = 31,

(88) $f_0 = x_1^5 + x_2^5 + x_3^5 + 3x_4^5,$ (89) $g_0 = -2x_2^5 + 4x_3^5 + 2x_4^5 + x_5^5;$

(ii) p = 41,

(90) $f_0 = x_1^5 + x_2^5 + x_3^5 + 2x_4^5,$ (91) $g_0 = 2x_2^5 + 4x_3^5 + 22x_4^5 + x_5^5;$

(iii) p = 61, when there are only singular solutions,

(92)
$$f_0 = x_1^5 + x_2^5 + 4x_3^5$$

(93) $g_0 = 4x_3^5 + 2x_4^5 + x_5^5.$

It is well known that the *p*-adic fields with p = 5, 11 are exceptional for quintic equations. However the counterexamples above are of a different character. The problem here is simply that the prime *p* is too small rather than it being of any generic type (p = k or 2k + 1).

References

- [1] O. D. Atkinson (PhD Dissertation, University of Sheffield, 1989).
- [2] R. C. Baker and J. Brüden, 'On pairs of additive cubic equations', J. Reine Angew. Math. 391 (1988), 157-180.
- [3] Z. I. Borevich and I. R. Shafarevich, Number theory (Academic Press, New York, 1966).
- [4] I. Chowla, 'On the number of solutions of some congruences in two variables', Proc. Nat. Acad. Sci. India Ser. A 5 (1937), 40-44.
- [5] S. Chowla, H. B. Mann and E. G. Straus, 'Some applications of the Cauchy-Davenport theorem', Norske Vid. Selsk. Forh. 32 (1959), 74-80.
- [6] R. J. Cook, 'Pairs of additive equations', Michigan Math. J. 19 (1972), 325-331.
- [7] R. J. Cook, 'Pairs of additive congruences: cubic congruences', Mathematika 32 (1985), 286-300.
- [8] R. J. Cook, 'Pairs of additive congruences: quintic congruences', Indian J. Pure Appl. Math. 17 (1986), 786-799.
- [9] R. J. Cook, 'Computations for additive Diophantine equations: quintic congruences II', Computers in Mathematical Research, edited by N. M. Stephens and M. P. Thorne, pp. 93-117 (Clarendon Press, Oxford, 1988).
- [10] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities (Campus Publishers, Ann Arbor, 1963).
- [11] H. Davenport and D. J. Lewis, 'Homogeneous additive equations', Proc. Roy. Soc. London Ser A 274 (1963), 443-460.
- [12] H. Davenport and D. J. Lewis, 'Cubic equations of additive type', Philos. Trans. Roy. Soc. London Ser. A 261 (1966), 97-136.
- [13] H. Davenport and D. J. Lewis, 'Notes on congruences III', Quart. J. Math. Oxford Ser (2), 17 (1966), 339-344.

454

- [14] H. Davenport and D. J. Lewis, 'Two additive equations', Proc. Sympos. Pure Math. 12 (1967), 74-98.
- [15] H. Davenport and D. J. Lewis, 'Simultaneous equations of additive type', Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 557-595.
- [16] V. B. Demyanov, 'Pairs of quadratic forms over a complete field with discrete norm with finite residue class field', *Izv. Akad. Nauk SSSR* 20 (1956), 307-324.
- [17] M. M. Dodson, 'Homogeneous additive congruences', Philos. Trans. Roy. Soc. London Ser A 261 (1966), 163-210.
- [18] F. Ellison, 'Three diagonal quadratic forms', Acta Arith. 23 (1973), 137-151.
- [19] J. F. Gray, Diagonal forms of prime degree (PhD thesis, University of Notre Dame, 1958).
- [20] D. J. Lewis, 'Cubic congruences', Michigan Math. J. 4 (1957), 85-95.
- [21] L. Low, J. Pitman and A. Wolff, 'Simultaneous diagonal congruences', J. Number Theory 29 (1988), 31-59.
- [22] W. M. Schmidt, 'The solubility of certain *p*-adic equations', J. Number Theory 19 (1984), 63-80.
- [23] E. Stevenson, 'The Artin conjecture for three diagonal cubic forms', J. Number Theory 14 (1982), 374-390.
- [24] R. C. Vaughan, 'On pairs of additive cubic equations', Proc. London Math. Soc. 34 (1977), 354-364.
- [25] R. C. Vaughan, 'On Waring's problem for smaller exponents', Proc. London Math. Soc. 52 (1986), 445-463.

Department of Pure Mathematics University of Sheffield Sheffield S3 7RH England