

DESIGN METHODS AND TOOLS 593

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2024
https://doi.org/10.1017/pds.2024.62

From tears to tiers – architectural principles for federated PLM
landscapes

Erik Herzog , Johan Tingström, Johanna Wallén Axehill, Åsa Nordling Larsson and
Christopher Jouannet

Saab AB, Sweden

 herzog.erik@gmail.com

Abstract

PLM systems are key enabling systems in the development of today’s products. Introduction of a new PLM

capability is an expensive and risky undertaking. Many implementation projects end in tears in the sense that

they are frequently late or even cancelled. In this paper, a federated PLM architecture pattern – Genesis – is

introduced and evaluated against prevalent PLM approaches. From an architecture perspective, Genesis with

its two distinct integration tiers decrease the number of integration points and thus cost and complexity.

Keywords: product lifecycle management (PLM), integration, systems engineering (SE), OSLC

1. Introduction
Product Lifecycle Management (PLM) systems are key enabling systems in organisations developing

and maintaining cyber-physical systems. With increasing expectations comes the risk for not meeting

stated requirements and objectives when implementing and introducing a new PLM capability.

Moreover, as it takes time for realising an intended PLM capability, be it through implementation

activities alone or in combination with organisation alignment activities, there is the risk that the realised

capability will be a poor fit for the current challenges facing the organisation. Publications of PLM

implementation failures are rare, as noted by Singh (2020). Still, we are aware of a large number of

implementation projects which has been less than successful, even outright failures. Based on verbal

feedback among business colleagues, we conclude that PLM implementation projects often end in

disappointments and even tears in the sense that developed solutions are never taken to live operation.

In its simplicity, the Cynefin framework (Snowden and Boone, 2007) is an invaluable tool for helping

to understand the best approach for problem solving, see Figure 1. This tool could also be very useful

in the context of PLM, when analysing organisational needs and perspectives of the PLM capability.

The model identifies four classes of problems, and suggests a solution pattern for each class:

• Simple – Characterised by stability and clear cause-and-effect relationships that are easily

discernible by everyone. Often, the right solution is self-evident and undisputed. In this realm

of “known knowns”, decisions are unquestioned because all parties share a joint understanding

of the ideal solution. The analysis pattern for this class of problems is sense–categorise–respond.

• Complicated – May contain multiple right answers, and although there is a clear relationship

between cause and effect, not everyone can see it. This is the realm of “known unknowns". The

analysis pattern for this class of problems is sense–analyse–respond.

• Complex – Cause and effect can only be deduced in retrospect, and there are no right solutions,

each solution proposal will have its strengths and weaknesses. This represents "unknown

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

594 DESIGN METHODS AND TOOLS

unknowns". The analysis pattern for this class of problems is probe–sense–respond, i.e., for the

complex domain there is a risk that the context will change based on the intervention made.

• Chaotic – Representing situations where the relationships between cause and effect are unclear,

i.e., "unknowable unknowns". At a development program level, Chaotic situations cannot be

allowed to be the norm. Still, leadership need always be prepared to manage chaos when it

arises. The analysis pattern in Chaotic situations is act–sense–respond.

Figure 1. Cynefin decision framework (Snowden and Boone, 2007)

Over the past few years, we have realised that prevalent PLM strategies suffer from applying solution

patterns which are poorly aligned with the problem class. They offer an elegant solution pattern for

enterprises facing Simple and Complicated environments, while most organisations today are embedded

in Complex and occasionally even Chaotic environments. Perhaps, it should not come as a surprise that

many PLM system introduction and migration projects are late and grossly over budget? In the rest of

this paper an overview of PLM, different PLM solution patterns and the challenges encountered by an

organisation implementing a modern PLM capability are presented. This is followed by the introduction

of a novel architecture pattern for realising a federated PLM capability and a discussion on

implementation experiences and on the potential advantages of such a pattern over prevailing approaches.

2. Tensions when implementing PLM
This section outlines our understanding of PLM, prevailing solution patterns and identifies a number of

tension areas for consideration, where an organisation have to make strategic choices related to their

PLM realisation when introducing a new PLM capability.

2.1. What is PLM?

Product Data Management (PDM) and its gradual evolution to PLM has its root in mechanical

engineering in the 1980’ies and the need to keep a digital trail representing the evolution of a product,

firstly in the design phase and now over the complete lifecycle. What a few decades ago was systems

for managing coarse-grained objects (such as drawing documents) has evolved into integrated

development environments where fine-grained objects (such as an individual requirement) is managed.

The front-end applications where fine-grained data is consumed and manipulated is getting tightly

integrated into the PLM capability.

Today, a PLM environment typically supports managing information in multiple areas, such as:

• Requirements management

• Functional and logical systems design

• Verification and validation management

• Mechanical and electrical engineering design, production and maintenance data

PLM suppliers are also making inroads into other engineering disciplines, e.g., software engineering.

In addition to the engineering discipline support, there is also support for, e.g., multi-user collaboration,

configuration and change management, declaration of conformity to requirements, approvals, roles and

credential management.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

DESIGN METHODS AND TOOLS 595

In short, modern PLM systems provide extensive support for almost all technical processes of

organisations developing, producing and maintaining modern cyber-physical systems. Recently,

engineering discipline specific integrated development environments providing an integrated PLM

capability have emerged, such as IBM ELM (2023) for Systems Engineering. Such environments open

up for organisations realising federated PLM capabilities built on multiple integrated engineering

discipline specific ones.

2.2. PLM solution patterns

To our understanding, there are four dominating solution patterns for establishing a PLM capability, as

outlined below:

1. Loosely integrated front-end applications with a Coarse-Grained Monolithic PLM

Under this pattern, the PLM capability operates on coarse-grained objects exported from stand-

alone front-end applications. The front-end application provides the product data, while the

back-end PLM capability provides the mechanisms for managing product structures, baselining

and approvals. Under this approach an organisation, has the freedom to choose front-end

applications freely, as long as documents can be generated, but traceability between information

originating from different front-end applications is weak.

2. Fine-grained Monolithic PLM

The fine-grained monolith is characterised by a tight integration between front-end applications

and the PLM capability. The front-end applications may be integrated directly in the PLM

capability. This allows for fine-granular traceability between information elements, but limits

the range of front-end applications available to the ones supported by the supplier of the PLM

capability, either directly or through partnerships. Consequently, there is frequently a time

penalty for the supplier to integrate state-of-the-art components.

3. PLM Backbone

A PLM Backbone is characterised by a dedicated database or service layer that mediate

information between discrete PLM capabilities. The backbone typically does not offer any

front-end application services, its sole purpose is to connect and mediate information. The

objective is to enable fine-grained traceability between otherwise stand-alone PLM capabilities.

With the PLM backbone being supplied by a dedicated supplier, the end result is a high

dependence on that supplier. Examples of this pattern can be found in Banaj et al. (2016) and

Chadzynski et al. (2018).

4. Service-Oriented Federated PLM

This pattern is characterised by the existence of a large number of stand-alone applications

offering a single or small number of services with the capabilities normally associated with

PLM systems, e.g., the ability to create versions, variants, baselines, change requests and

approvals. Fine-grained traceability is enabled via the use of standard representation stateful

transfer (REST) type Application Programming Interface (API). In this pattern there is neither

a centralised database nor a main supplier. The members of the federation may change over

time. One example of this pattern is discussed in Hooshmand et al. (2022).

2.3. PLM realisation tensions

A number of trade-offs – tensions – must be considered when introducing a new PLM capability. The

areas listed below should not be interpreted as binary choices, but rather a greyscale where different

solutions will provide value depending on the approach. These areas will be used to evaluate the long-

term consequences for introducing a PLM capability in accordance with the solution patterns above.

a) Traceability – Coarse vs. fine grain. Traditionally, PLM has offered traceability on a coarse

scale, between large information elements enclosed in documents. Modern PLM systems

offer fine-grained traceability, i.e., linking between individual requirement elements or

linking between an individual requirement and a verification case.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

596 DESIGN METHODS AND TOOLS

b) Integration – Loose vs. tight. An application is loosely integrated with the PLM capability

if it comes with its own data management capability. Conversely, a tightly integrated

application uses the data management capability of the PLM environment.

c) Operational strategy – Out of the box or custom made. With the increased capability and

scope provided by PLM suppliers, an overarching question is whether to adapt the PLM

capability to the current or envisioned organisational practices, or the other way around.

d) Lifecycle – PLM system life vs. the product life. An organisation’s approach to PLM is

fundamentally different if the life of a PLM system is assumed to be longer than the life of

products being developed, or the other way around. Also, older systems dependence on

legacy IT environment needs to be incorporated in the lifecycle perspective.

e) Business environment – Flexibility vs. stability. An organisation having a stable

environment may optimise its PLM capability on stability, where one engaging in multiple

collaborative product development activities may benefit from flexibility optimisation.

f) Supplier selection – Decision simplicity vs. productivity. For an organisation introducing

a new PLM capability, it might be appealing to select a single supplier for the complete

capability. Alternatively, the focus may be on ensuring maximum engineering productivity

by introducing loosely integrated applications from multiple suppliers.

3. Analysis
The PLM solution patterns in Section 2.2 are evaluated against the tension areas identified above.

Table 1. PLM solution patterns against tension areas

 Coarse-grained

monolith

Fine-grained

monolith

Backbone Service-oriented

federated

Traceability Coarse grained Fine grained Fine grained Fine grained

Integration Loose integration,

freedom of choice

Tight integration,

based on supplier

offer

Tight integration,

based on backbone

supplier offer

Loose integration,

based on integrator

preference

Operational

strategy

Freedom to

choose

methodology

based on end-user

priorities

Based on supplier

defined

methodology and

flexibility

Freedom to choose,

limited by

integrated

applications

Freedom to choose

individual

tools/services,

based on integrator

priorities

Lifecycle Front-end tools

and PLM can be

exchanged

independent of

each other. Need

to consider

lifecycle of

integrations of

front-end tools.

Dependency on

lifecycle of fine-

grained monolith

supplier.

Need to consider

lifecycle of own

additions and

customisations.

Front-end tooling

can be

complemented with

new ones, but high

reliance on back-

bone supplier

Tools/services can

be replaced

individually

Business

environment

Flexible, as long

as document

granularity is

sufficient

Stable, dependence

on supplier offers

Stable, dependence

on supplier offers

Flexible, selection

is depending on

interface

compliance

Supplier

selection

Freedom to select

front-end

applications

independently of

PLM supplier

Supplier selection

implies constraints

on the supply of

tools. Supplier

integrated tools is

assumed to be best

fit for all users

Supplier selection

implies constraints

on the supply of

tools. Supplier

integrated tools is

assumed to be best

fit for all users

Freedom to select

based on

compliance to

architectural

principles

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

DESIGN METHODS AND TOOLS 597

3.1. Evaluation

This section outlines the strengths and weaknesses of the respective PLM solution pattern and discusses

in particular the conditions for making service-oriented federated PLM an attractive solution. Referring

to Table 1, it can be seen that:

• For an organisation where fine-grain traceability is not beneficial or adding little value, it

appears that a Coarse-grained PLM monolith would suffice. Such a solution provides the

freedom to select and switch front-end applications at little extra overhead. However, the lack

of fine-grained traceability makes solutions in this class non-ideal for supporting development

of Complex (and safety critical) systems.

• For solutions based on a Fine-grained monolith or a dedicated Backbone, the ability to maintain

fine-grained traceability is very attractive and a clear driver for improving data quality and

engineering productivity. The ability to adapt an organisation to the services offered by a

supplier is attractive and cost efficient in the short term. However, these solutions come with a

strong alignment with the capabilities integrated in the respective solution. Beyond lock-in

effects, there is a risk that the PLM capability, or parts thereof, will not age with grace,

potentially leading to a desire to replace individual parts. It has also been noted by Hooshmand

et al. (2022) that PLM capability development velocity decrease with increased size of the PLM

core. It appears that the larger the supplier, the slower the integration velocity of new

capabilities.

• The Service-oriented federated pattern is the one offering the highest level of freedom to end-

users, but on the other hand it also places the whole integration cost solidly on the end-users.

An organisation electing a federated solution must be prepared to shoulder the costs over the

life of a system.

Overall, the Service-oriented federated patterns appear to be appropriate for an organisation developing

Complex products and operating in a dynamic (Complex) environment. However, the integration cost

must be addressed for making the pattern attractive.

4. Mechanisms for enabling federated PLM
In previous sections, we have reviewed and analysed architectures for realising a PLM capability. In

this section we introduce an architecture pattern for federated PLM, named Genesis (Herzog et al.,

2022), and the OSLC family of standards for linking across application boundaries.

4.1. Genesis – A 2 tier architecture for federated PLM

The Genesis architecture pattern exploits the emergence of engineering discipline development

environments, providing support for all engineering and management activities within an engineering

discipline. An enterprise-wide capability can be established by integrating multiple such environments,

as illustrated in Figure 2. The basic idea is that all activities related to an engineering process, e.g.,

systems engineering, software engineering or mechanical engineering is performed within its dedicated

environment. Tier 1 in the patterns are the individual engineering discipline-oriented environments,

whereas the individual components within a Tier 1 environment belong to Tier 2. Obviously, the

engineering discipline development environment supporting mechanical engineering will need to

include support for production engineering, production, operations and maintenance.

A consequence of the architecture is that project managers, configuration managers and engineers active

in a particular process will all be working in the same environment (the horizontal component in Figure

2). Another consequence of the pattern is the acceptance of dedicated development tool capabilities per

process, e.g., different requirements management capabilities in the systems and software engineering

environment.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

598 DESIGN METHODS AND TOOLS

Figure 2. Genesis architectural pattern

4.1.1. Traceability between Tier 1 environments

As noted above, the attractiveness of the Service-oriented federated PLM pattern depends on minimising

the number of interfaces that must be maintained over time. For Tier 1, the focus is on traceability

between information elements of different engineering disciplines, see Figure 3 (left). Based on Saab's

internal processes there are four traceability dimensions that have to be maintained across engineering

discipline boundaries, i.e., via linking information elements:

• Requirements traceability – Capturing the justification for the existence of each individual

requirement. Requirements traceability is typically captured bottom-up, i.e., from the child

requirement to its parent(s).

• Configuration item structure traceability – Capturing the product structure of a system. In a

federated environment, parts of such a structure will be maintained in the respective discipline

specific environment and traceability between product structure nodes must be maintained. This

traceability dimension is typically maintained top-down, i.e., the parent configuration item node

identifies its children.

• Issue management traceability – Capturing development planning and problem reporting

traceability over development environment boundaries. This traceability dimension is top-down

for forward looking development planning activities and bottom-up for capturing problems that

arise during development.

• Realisation item structure traceability – Capturing how realised items are assembled. This

structure is maintained to keep track of what has actually been realised. Traceability in this

dimension is established bottom-up, i.e., realised parts are integrated to form assemblies. For a

product there may be multiple realisation structures. Beyond the actual realisation there could

be any number of virtual ones created with a wide range of purposes and realisation fidelities.

4.1.2. Traceability between Tier 2 components within an engineering discipline

Here, there is a need for extensive traceability between information elements created within the

engineering discipline process. This could be traceability from requirements over architecture to design

and analyses, production engineering, production to usage of realised items, or from requirements to

verification and validation of realised system elements. The engineering artifacts and traceability

patterns will most likely be unique for each engineering discipline and may evolve individually over

time. Tier 2 in the pattern concerns the individual components within a horisontal element, see Figure 3

(right).

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

DESIGN METHODS AND TOOLS 599

4.1.3. Discussion

The strengths of the proposed pattern are:

• The engineering discipline focus offers the opportunity to create integrated development

environments tailored for the needs of an engineering process within an organisation.

• The number of integration points between Tier 1 engineering discipline environments is low

and expected to be stable over time, limiting the integration cost between, e.g., a Systems

Engineering and a Mechanical Engineering environment.

• The architecture pattern is agnostic to the actual implementation architecture for an engineering

discipline environment. An individual environment may be realised using a Fine-grain

monolith, Backbone or a Service-oriented federation.

• Within an engineering discipline environment, there is the possibility to exchange individual

Tier 2 components as they become obsolete or when there are more suitable alternatives

available without upsetting the overall PLM capability.

Figure 3. Tier 1 traceability (left) and Tier 2 traceability (right)

The proposed pattern allows an organisation to focus first on transitioning to a federated solution

integrating Tier 1 engineering discipline environments, with the opportunity to transfer to a fully

Service-oriented PLM capability at a later stage. Moreover, the proposed tier structure allows for an

organisation to maintain a number of alternative engineering discipline development environment for

each engineering discipline. This enables product development projects to make a selection based on

their actual needs and collaboration context.

4.2. Enabling standards

Standards are a key element for realising a federated capability based on the Genesis architecture pattern.

The OASIS Open Services for Lifecycle Collaboration (OSLC) standard framework provides the

capability to capture links across tool boundaries. A technical overview and commercial status of OSLC

is available in El-khoury (2020) and is summarised below.

Figure 4. OSLC architecture overview (left) and an example of delegated UI (right)

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

600 DESIGN METHODS AND TOOLS

Information-wise, OSLC adopts the Resource Description Framework (RDF) and accompanying

standards to represent the structure and semantics of the information being exchanged between

applications. See Figure 4 (left) for an architecture overview.

OSLC is built around a core specification with support for linking between version and variant aware

objects and has a number of domain specific extensions (OSLC, 2023). The dedicated domain

specifications for requirements and change management are perfect matches for the requirements

management and issue management traceability dimension within the Genesis architecture pattern. The

Configuration Management specification provide support for managing the configuration item and

realisation item structures. All OSLC domains are configuration management aware meaning that

linking can be made to a particular version of an object and not just the latest one.

Another interesting feature of OSLC is that of user interface delegation, which allows an application to

provide a user dialogue that can be used by other web applications for creation and selection of

resources, see Figure 4 (right). This feature allows end users to link information across tool boundaries

using a familiar user interface. Of course, sufficient credentials are required to log in to the target tool

to create links or to follow a link.

5. Discussion
This paper has provided an expose over the challenges in deploying a PLM capability within an

organisation. Based mainly on anecdotal evidence, we postulate that a fair share of PLM implementation

run into troubles or are cancelled. In many cases, such failures can be traced to the long implementation

times required to field a PLM system. By the time a capability is ready for introduction within an

organisation, the needs of the organisation may very well have changed.

For organisations existing in dynamic environments in terms of collaborations and/or technology

development, a federated approach to PLM appears more appealing. However, an unstructured federated

PLM architecture will come with high costs for implementation and maintenance, even though it offers

the desired flexibility. In this respect, the proposed Genesis architecture pattern offers the following

characteristics in the areas defined in Section 2.3.

• Traceability – Fine grain, with a restricted set of integration points between engineering

disciplines (Tier 1).

• Integration – Loose integration in two tiers, firstly at the inter-engineering discipline tier (Tier

1) and secondly at the intra-discipline tier (Tier 2).

• Operational strategy – In this area the Genesis pattern offers flexibility in that different

strategies can be applied for different engineering disciplines.

• Lifecycle – Also in this area the Genesis pattern offers flexibility as individual Tier 1 and Tier

2 components can be exchanged independently over time. This flexibility allows for the

application of different PLM federations for different products or systems. In fact, during a

transition period it is plausible that the replaced PLM component can be used in parallel with

the replacing component.

• Business environment – The Genesis pattern contribute to flexibility in a dynamic business

environment as individual Tier 1 and 2 components can be replaced to adapt to a changing

business environment.

• Supplier selection – Also in this area, the Genesis pattern offers supplier selection flexibility

as components in both tiers can be replaced. Hence supplier selection is not a once in the life of

the PLM solution, but can be applied continuously as individual components evolve.

Moreover, the Genesis pattern offers advantages as it:

• Focuses on optimising performance per engineering discipline (from an overall perspective in

Tier 1 and for optimisation for a specific Tier 2 component).

• Minimises the number of integration points between Tier 1 components. The small number of

integration points implies a loose coupling, which simplifies upgrades, replacement and

migration of individual components.

• Provides a structure offering an opportunity for a stepwise transition towards federated PLM.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

DESIGN METHODS AND TOOLS 601

• Allows for an organisation to offer alternative engineering discipline environment for selection

by individual projects.

From a supplier perspective, Genesis opens up opportunities for smaller suppliers to provide Tier 1

environments without having to support the full range of engineering disciplines required to develop a

multi-disciplinary product. One can also foresee situations where an integration-oriented supplier selects

Tier 2 components for creating an integrated Tier 1 solution, or an integrated PLM capability consisting

of multiple Tier 1 solutions, creating a PLM solution as envisioned by Bleisinger et al. (2022).

The existence of validated and acknowledged standards is a clear prerequisite for widespread adoption

of federated PLM. To our best understanding, OSLC is the primary candidate in that there is an existing

standardisation community and a solid technical foundation. There are at least three third-party

suppliers, Lynxwork (2023), Sodius-Willert (2023) and MID (2023), providing services related to

interface generation. Services provided range from development of OSLC interface to provisioning of

tools and frameworks that automate large part of the interface development process, making the cost of

creating and maintenance of interfaces manageable. Within the Heliple-2 (2022) research project, the

authors have worked with the Lynx designer tool suite, focusing on developing interfaces for integration

between Tier 1 environments. We can confirm that OSLC interfaces can be created in a matter of hours

for attaining the basic functionality, with a week or so required to provide a professional service. End

user performance for creating and following OSLC links depend on the setup of the integrated

applications. Experience from interfaces generated is that there is a small but still acceptable

performance penalty compared to application internal operations.

The weakness in the case for OSLC is that the standardisation group need to be invigorated with new

members with a clear vision of where to take the application of the standard. Growing the existing

community with stakeholders committed to federated PLM would be an excellent step, ensuring the

opportunity to validate existing standard parts and prompt the definition of new ones.

We now return again to the title of this paper – from tears to tiers. Based on our experience in realising

complex systems, the reason for tears shed in PLM development projects stem from the following

factors:

• The team developing a new PLM capability is frequently not aware of the actual practises within

the different engineering disciplines in the organisation, making a designed solution a poor fit

for organisational needs. Often this is due to PLM developers providing solutions intended for

the Simple or Complicated domains, as defined in the Cynefin framework (Snowden and Boone,

2007), where the organisation operates in the Complex domain.

• The time required to implement a PLM capability means that by the time the capability is fielded

the organisational needs may have changed.

• Once fielded, traditional PLM implementations will meet the wear of time, meaning that parts,

if not the complete implementation will no longer be state-of-the-art.

• Vendor lock-in effects decrease the flexibility of an organisation. The investment in a PLM

solution is of such a magnitude that a decision to change to new suppliers are not taken easily.

The solution pattern advocated in this paper – federated PLM based on the two-tier Genesis architecture

pattern – appears to offer a number of advantages in that the PLM domain is broken down into Tier 1

modules with a small number of well-defined integration points. Individual Tier 1 modules are

interchangeable as long as they conform with the integration points. If the individual modules are

realised in accordance with federation principles, then their internal components can be exchanged with

no or little impact on the external functionality of the module. The two tiers of modularity increase

flexibility in terms of PLM capability selection, allowing for rapid replacement of individual

components be it for obsolescence or partner collaboration reasons. Overall, transitioning towards a

tiered approach to PLM has the potential to minimise the risk of implementations running into tearful

end results. This said, in should be underlined that while initial development and integration activities

are promising, integration performance appear acceptable, it should be noted that we have not yet

deployed an industry strength instance of the federated PLM environment envisioned in this paper.

Large-scale, industry-strength implementation and end-user and performance measures is a topic for

future work.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

602 DESIGN METHODS AND TOOLS

6. Conclusions
Formulating and implementing a PLM strategy within an organisation is a challenge given the size of

the investment and the reliance of an organisation on such a capability. In this paper we have argued

that the current predominant approach to establishing a PLM capability come with high risks. A two-

tier architecture pattern, called Genesis, is proposed to increase flexibility and in conjunction with the

OSLC standards minimise cost for establishing and maintaining a federated PLM capability over time.

Adopting the proposed pattern appears to offer advantages also for smaller suppliers in the sense that

their applications can make contributions to a larger PLM capability. All in all, we believe that the

proposed framework with its two architectural tiers minimises the risk for PLM implementations ending

up in tears.

References

Bajaj, M., Zwemer, D., Yntema, R., Phung, A., Kumar, A., Dwivedi, A. and Waikar, M. (2016), MBSE++ —

Foundations for Extended Model-Based Systems Engineering Across System Lifecycle. INCOSE

International Symposium, 26: 2429–2445. https://doi.org/10.1002/j.2334-5837.2016.00304.x

Bleisinger O., Psota T., Masior J., Pfenning M, Roth A., Reichwein A., Hooshmand Y., Muggeo C., Hutsch M.

(2022). Killing the PLM Monolith – the Emergence of cloud-native System Lifecycle Management (SysLM),

Fraunhofer IESE, Mat 2022, Downloaded from: https://publica-rest.fraunhofer.de/server/api/core/bitstreams/

a09d6709-63ad-48de-b819-efad5387c2ab/content

Chadzynski, P.Z., Brown, B. and Willemsen, P. (2018), Enhancing Automated Trade Studies using MBSE, SysML

and PLM. INCOSE International Symposium, 28: 1626–1635. https://doi.org/10.1002/j.2334-

5837.2018.00572.x

El-khoury J. (2020), An Analysis of the OASIS OSLC Integration Standard, for a Cross-disciplinary Integrated

Development Environment: Analysis of market penetration, performance and prospects, TRITA-ITM-RP,

978-91-7873-525-9, 2020.

Heliple-2 (2022), Heterogeneous Linked Product Lifecycle Environment – Iteration 2, Vinnova dnr 2022-03032,

2022

Herzog, E., Nordling Larsson, Å. and Tingström, J. (2022), Genesis – an Architectural Pattern for Federated PLM.

INCOSE International Symposium, 32: 782-791. https://doi.org/10.1002/iis2.12963

Hooshmand, Y., Resch, J., Wischnewski, P., and Patil, P. (2022). From a Monolithic PLM Landscape to a

Federated Domain and Data Mesh. Proceedings of the Design Society, 2, 713-722. https://dx.doi.org/10.1017/

pds.2022.73

IBM ELM, Engineering Lifecycle Management, https://www.ibm.com/products/engineering-lifecycle-management,

visited 2023-11-07.

Lynxwork (2023), https://lynxwork.com/, visited 2023-11-07.

MID (2023), https://mid.de/en/, visited 2023-11-07.

OSLC (2023), specification https://open-services.net/specifications/, visited 2023-11-04.

Singh S., Misra S. and Chan F. (2019). Establishment of critical success factors for implementation of product

lifecycle management systems, International Journal of Production Research, 58:4, 997-

1016, https://dx.doi.org/10.1080/00207543.2019.1605227

Snowden, D. J., and Boone, M. E. (2007). A leader's framework for decision making. Harvard business

review, 85(11), 68.

Sodius-Willert (2023), https://www.sodiuswillert.com/en/solutions/linking-data-oslc, visited 2023-11-07.

https://doi.org/10.1017/pds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.62

