Correspondence

DEAR EDITOR,

$$
2+2=5
$$

Note 106.20 quotes these words of George Orwell from an essay of 1939:-
' It is quite possible that we are descending into an age in which two plus two will make five when the Leader says so.'
Here is a proof of this fact, taken from my book Comic Sections Plus.
Addition can be performed with any objects. For example, you can add a number of spoons to a number of spoons and wind up with a number of spoons.

What happens if you add plus signs together? What, for example, is two plus signs added to two plus signs? Perhaps it should be

$$
(++)+(++)=+++++,
$$

or, in other words, $2+2=5$?
I would be interested to see how readers would refute this demonstration if a pupil were to offer it.
10.1017/mag.2023.31 © The Authors, 2023

Published by Cambridge University Press on behalf of The Mathematical Association

DES MACHALE
School of Mathematics, Applied Mathematics and Statistics
University College Cork, Cork, Ireland e-mail: d.machale@ucc.ie

Feedback

On 106.12: Martin Lukarevski writes: Tran Quang Hung gives a proof of the Pythagorean theorem in n-dimensions. The three-dimensional case for a tetrahedron is of course the most interesting and is known as de Gua's theorem. It was published by J. P. de Gua de Malves in 1783, in [1] but it was already known to Descartes 1619-1621.

Recently de Gua's theorem was used for a derivation of Heron's formula [2], so a direct proof is desirable and we give one here. Let $O A B C$ be a tetrahedron with right corner at vertex O and let $l=O A, m=O B$ and $n=O C$. Let the perpendicular from A to B meet $B C$ at L. Then $O L$ is also perpendicular to $B C$. From the right triangle $O B C$ it follows that $C L=\frac{O C^{2}}{C B}$. Hence

$$
\begin{aligned}
\operatorname{Area}(A B C)^{2} & =\frac{1}{4} B C^{2} A L^{2}=\frac{1}{4}\left(O B^{2}+O C^{2}\right)\left(A C^{2}-C L^{2}\right) \\
& =\frac{1}{4}\left(m^{2}+n^{2}\right)\left(l^{2}+n^{2}-\frac{n^{4}}{m^{2}+n^{2}}\right) \\
& =\frac{1}{4}\left(l^{2} m^{2}+m^{2} n^{2}+n^{2} l^{2}\right) \\
& =\operatorname{Area}(A B O)^{2}+\operatorname{Area}(B C O)^{2}+\operatorname{Area}(C A O)^{2} .
\end{aligned}
$$

