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1. Introduction. A compact bordered Klein surface of genus g ^ 2 has maximal
symmetry [4] if its automorphism group is of order I2(g - 1), the largest possible. An
M*-group [8] acts on a bordered surface with maximal symmetry. The first important
result about these groups was that they must have a certain partial presentation [8, p. 5].
However, research has tended to focus more on the surfaces with maximal symmetry than
on the M*-groups, and results about these groups typically deal with existence.

There is certainly no shortage of M*-groups. One of the earliest results is that there
are infinitely many M*-groups [8, p. 6]. Many well-known groups are M*-groups. For
example, PSL2(q) is an M*-group if q is a power of 2 [2, p. 537] or if q is a prime and
q = \ mod 4 [4, p. 277]. In [11] there is the construction of a new infinite family of
M*-groups that contains some familiar groups that act on a torus.

There can easily be more than one M*-group of a particular order. In fact, for any
positive integer n, there is a positive integer k such that there are at least n
non-isomorphic M*-groups of order k [11, Th. 9]. Part of the reason for this abundance of
M*-groups is that these groups may be solvable as well as non-solvable. Indeed, the
classification of M*-groups may well be an enormous problem.

Some small M*-groups, e.g., C2 x 53 and 53 x 53) are in fact supersolvable. Here we
study the especially tractable supersolvable M*-groups. Our main result is that among the
M*-groups the supersolvable ones are completely determined by their order. In
particular, an M*-group G is supersolvable if and only if o(G) = 4-3r for some positive
integer r. We give numerous examples of supersolvable M*-groups from the family of
groups in [11]. There is a supersolvable M*-group of order 4-3r for each positive integer r.
We also establish some properties of supersolvable M*-groups and the bordered surfaces
on which they act. Finally we classify the topological types of bordered Klein surfaces
with maximal symmetry that have a supersolvable automorphism group.

2. M*-groups. We assume that all surfaces are compact and of genus g s= 2. For any
Klein surface X, let A{X) denote the group of automorphisms of X.

An M*-group [8,9] is a finite group G generated by three distinct non-trivial elements
x, u, and z which satisfy the relations

M2 = jC2 = ( l « ) 2 = (WZ)2 = (jCZ)3 = l . (2.1)

A group G of order 12(g — 1) is an M*-group if and only if G acts on a bordered Klein
surface X of genus g [8, p. 5]. The order of z is called an index of G[4], and there is a nice
connection between the index and the action of G on X [4, p. 282]. If X has k boundary
components and q = o(z), then

o(G) = 2qk. (2.2)
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Each distinct topological type of bordered surface of genus g is called a species of the
genus. An M*-group may well act on more than one species. Note that the index alone
does not determine the orientability of the surface on which the M*-group acts. In this
regard, also see [2, p. 534].

M*-groups may be solvable as well as non-solvable. Infinitely many examples of each
type are known. Many of these examples are presented as an extension of an abelian
group by an M*-group (see especially [4, p. 276] and [11]). In this case, then, the larger
M*-group has an M*-quotient group.

In general, if G is an M*-group and N is a normal subgroup of G with [G: N] > 6, then
G/N is also an M*-group [4, p. 271]. An M*-group is said to be M*-simple [4] if it has no
proper M*-quotient groups. The solvable M*-simple groups have already been classified;
the only ones are C2 x 53 and S4 [4, p. 278]. Thus a solvable M*-group must have one of
these two groups as a quotient. For more on M*-simple groups and the associated
surfaces with maximal symmetry, see [4, pp. 272, 277, 278] and [9, p. 28].

3. Supersolvable groups. Now we show that among the (solvable) M*-groups, the
supersolvable ones are completely determined by their order. We also establish some
properties of supersolvable M*-groups.

By the way, none of the supersolvable M*-groups can be nilpotent, because in a
nilpotent group each Sylow subgroup is normal. But an M*-group is generated by
elements of order two (see [8, p. 5] and (2.1)) so that the Sylow 2-subgroup is not normal.

As usual, we denote the Frattini and Fitting subgroups of a group G by <5(G) and
F(G) respectively.

THEOREM 1. Let G be an M*-group. Then G is supersolvable if and only if
o(G) = 4-3r for some positive integer r.

Proof. Since G is an M*-group, we know that [G: G'] divides 4 and [G': G"] divides
9 [4, p. 278]. It is basic that 12 divides o(G).

First assume that G is supersolvable. Write o(G') = 3r-b, where b and 3 are relatively
prime. We know r 5= 1. Suppose that b ¥= 1. Let p be a prime dividing b, and let 5 be the
Sylow p-subgroup of G'. Since G is supersolvable, G' is nilpotent [5, p. 159]. Thus G' is
the direct product of its Sylow subgroups [5, p. 155]. Then G' would have S and hence a
non-trivial abelian p-group as quotients. But then p would divide [G':G"], a contradic-
tion. Therefore b = \ and o(G') = 3r. Finally we have o(G) = 4-3r, since 12 divides o(G).

Next assume that G is an M*-group of order 4-3r. The only M*-group of order 12 is
C2xSi,, and it is supersolvable. Suppose then that r5=2. The group G is solvable by a
theorem of Burnside [5, p. 143]. Then G has a solvable M*-simple group as a quotient,
and it must be C2 x 53 since 24 = o(54) does not divide o(G). Since C2 x 53 has C2 x C2 as
a quotient, so does G. Hence [G: G'j = 4.

Now o(G') = 3r so that G' is a nilpotent normal subgroup of G. Set F = F{G) and
O = $(G). We have G' c F, and F + G since G is not nilpotent. Suppose G' # F. Then
we must have o(F) = 2 • 3r, and the nilpotent group F would have a characteristic
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subgroup H of order 2. But H would be normal in G with o{GlH) = 2 • 3r > 6, a
contradiction, since G/H could not be an NT-group. Therefore G' -F and o(F) = 3r.

We know F ' c $ c f and F/® = F(G/<&) [3, p. 219]. Then since G/<& is solvable,
F(G/Q>) =£ 1 so that $ =£ F. Also, [F: F'] divides 9, because F = G'. Thus [G: 4>] is equal
to 12 or 36. Suppose [G:*] = 12. Then G/4>sC2x 53, the only NT-group of order 12.
But F(C2x53) = C2xC3, so that this is not possible. Therefore [G:3>] = 36 and
G/<J> = 53 x S3, the only NT-group of order 36. Now, since G/<5 is supersolvable, so is G,
by a theorem of Huppert [7].

We collect some facts about supersolvable NT-groups from the proof of the theorem.

COROLLARY 1. Let G be a supersolvable M* -group with order 4-3r, r s= 2. Then
(a)o(G') = 3'
(b) G' = F(G)
(c) G" = HG)
(d) G'/G" = C3xC3

We can also say something about the indices of a supersolvable NT-group and the
surfaces on which it acts.

COROLLARY 2. Let G be a supersolvable M*'-group with order 4-3r, r^2. If q is an
index of G, then q = 2-3' for some positive integer t.

Proof. Let G act on the bordered surface X with index q. Then the NT-group G / * acts
on A7O [4, p. 271] and the index of G/O (with this action) divides q [10, p. 376]. But
from the proof of the theorem, G/<3> = S3 X S3, and the only index of 53 x S3 is 6 [10, p.
392]. Now q is a multiple of 6, and by (2.2) 2qk = A-3r, where k is the number of
boundary components of X. Thus q = 2-3' for some 13= 1.

COROLLARY 3. Lef G be a supersolvable M*-group with order 4-3r, r 2= 2. If G acts on
the bordered surface X that has k boundary components, then X is orientable and k = 3' for
some positive integer I. If r & 3, then further 1^2.

Proof. Immediately from the previous proof k = 3' for some / & 1. Also A' is a full
covering of the surface A'/O [4, p. 271], a surface of genus 4 with maximal symmetry.
Topologically A7O is a torus with three holes [10, p. 392]. Hence the surface X is
orientable [10, p. 375].

If r > 3, then k ¥= 3 by the theorem that classifies the surfaces with maximal symmetry
with A:« 5 [10, Th.l, p. 379].

The only NT-group of order 12 is C2 x 53, and its actions are well-known. C2 x 53 has
indices 2 and 6 and acts on a sphere with three holes and a torus with one [4, p. 270].

Suppose G is a supersolvable NT-group. Then the commutator subgroup G' is the
normal Sylow 3-subgroup of G, and further G' is a subgroup of small index in G. We can
exploit the fact that G' is a p-group to gain information about G. Especially useful is an
analysis of the lower central series of G' combined with the requirement that G have a
presentation of the form (2.1). The fundamental work of Blackburn on p-groups [1] is
quite helpful.
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We define the lower central series of a group G recursively, as usual, by

Yi(G) = G, y2(G) = [G, G), Yi(G) = [y,_,(G), G] for i > 2.

A group G is nilpotent if there is some integer m such that ym+i{G) = 1. If n is the least
such integer, then n is called the class of G; for brevity we write cl(G) = n.

The upper central series is also defined recursively. Let ZQ(G) = 1 and Z\{G) = Z(G).
Then for / > 1, Zt{G) is the subgroup of G such that

Then G is nilpotent if and only if Zm(G) = G for some integer m. If cl(G) = n, then n is
the least such integer. Also, if G is nilpotent of class n, then for i = 1, 2, . . . , n + 1,

y,cZB_/ + 1 but YitZn-,. (3.1)

Finite /^-groups are, of course, nilpotent. If o(G)=p", then the class of G is at most
n — 1. For the basic facts on upper and lower central series, see [12, pp. 151-153] and [1,
§1].

If we consider the lower central series of the Sylow 3-subgroup of a supersolvable
M*-group, then we immediately have the following.

PROPOSITION 1. Let P be the Sylow 3-subgroup of a supersolvable M*-group with
o(P)^33. Then

(a) P/y2(P) = C3xC3

(b) Y2(P)/Y3(P) = C3

(c) For i 3= 3, the exponent of the quotient group y,(P)/y,+1(P) is at most 3.

Proof. First (a) is just a restatement of Corollary l(d). Then (b) and (c) follow from
(a) and basic results on the lower central series of a p-group [1, Th.1.5, p. 49].

We obtain additional information by using the special presentation that an M*-group
must have. Let G be a supersolvable M*-group with index q and generators u, x, and z
that satisfy the relations (2.1). Write a =xz~3 and b = zaz~l (This notation is suggested
by [11].). Let P be the Sylow 3-subgroup of G.

PROPOSITION 2. P = (a, z2).

Proof. Since G is supersolvable, we have P = G'. Generators for G' have already
been established; G' = (xz,zx) [4, p. 278]. Set H=(a,z2). Then z2 = zx-xz and
a=xz{z2)~2, so that//c=G'. Also xz = az\ zx = z\xz)~\ and G'czH. Thus P = G' =
(a,z2).

We need some calculations involving commutators. Let [u, v] = uvu xv ' be the
commutator of u and v, and let y,•. = yt(P). Clearly b = zaz~l eP. It is an exercise to
check that the relations (2.1) imply b~lab = z6a (See the proof of Theorem 1 in [11].).
Thus

z6 = [b~l,a] (3.2)

and z6eP'. It is also easy to see that abz6 = [a, z~2]eP'. Now ab eP' as well. Then
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z6 = [b~l, a] = [b~\ ab] e [P, y2], that is,

z6ey3. (3.3)

We note a few consequences of these calculations. In many cases, it is not hard to see
that the class of P cannot be too small.

PROPOSITION 3. Suppose o(G) = 4-3r, rs=3, and the index 4 = 2-3', f3=2. Then

Proof. For j 3= 3, the exponent of y,/yy+i is at most 3, by Proposition 1. Now z6 e y3

by (3.3), so that z18ey4 and in general for i>0, if n = 3', then (z6)" e y3+/. Since
q = o(z) = 2-3', z"'3 =£ 1. Hence yr+1 * 1 and cl(P) ss f +1 .

If the index q = 6, then G acts on a torus with holes [11, §3]. We briefly consider this
important special case. A group H is called metabelian if its commutator subgroup H' is
abelian.

PROPOSITION 4. If G is a supersolvable M*-group with index 6, then G' = P is a
metabelian 3-group.

Proof. Let M = {a, b). Then MczP, and it is easy to check that M is normal in
P = (a, z2). Since z6 = 1, the order of P/M is at most 3. Thus P' c M. But from (3.2),
[b~l, a] = 1 so that M is abelian. Now P' is abelian as well, and P is metabelian.

Among the supersolvable M*-groups with index larger than 6, some of the more
interesting groups are those in which xz6 = z6x. Such a group acts on a bordered surface
that is a fully wound covering [9] of a torus with holes.

PROPOSITION 5. / / xz6 = z6x, then z18eP". Thus P is not metabelian if the index
q>18.

Proof. Obviously z6 commutes with a and b. Since z6 = [b~\ ab], z18 = [b~\ abf =
[b~3, ab] [3, p. 19]. But b e P and PIP' has exponent 3, so that b3 e P'. We have already
seen that ab e P'. Thus z18 e [Pr, P'] = P".

4. Examples. Here we give some examples of supersolvable M*-groups. There is in
fact a group of each possible order given in Theorem 1.

Some members of the family of groups constructed in [11] are supersolvable. The
general construction there forms larger groups from groups that admit an action of
D6 = C2xS3, the smallest M*-group. In particular the following groups were obtained.
For simplicity we present the results only for an odd integer n.

THEOREM A [11, §5]. Let n be an odd positive integer, and let m divide n. Let Kn>m be
the group with generators u, x, and z and defining relations

u2 = x2 = z6m = (ux)2 = (uzf = (xz)3 = 1, xz6 = z6x, a" = 1, a=xz~3. (4.1)

Then the order of Knm is 12n2m, and Knm is an M*-group with index 6m.
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THEOREM B [11, §5]. Let n be an odd positive integer, and let m divide n. Let Lnm be
the group with generators u, x, and z and defining relations

u
2 = x2 = z6m = {uxf = (uz)2 = {xzf = 1, xz6 = z6x,

a3n = (ba)n = 1, a = xz'3, b = zaz~\

Then the order of Lnm is 36n2m, and Lnm is an M*-group with index 6m.

By Theorem 1 the groups Kn,m and Lnm are supersolvable if and only if n is a power
of 3. Thus we have a wealth of examples of supersolvable M*-groups.

THEOREM 2. For each positive integer i there is a supersolvable M*-group of order
4-3'.

Proof. If i = 2k is even, then set n = 3k~\ and LnX has order 36(3*-1)2 = 4-3'. If
i = 2k + 1, then let n = 3k, and KnA has order 12(3*)2 = 4:3'.

The Sylow 3-subgroup is a large, important part of each of these groups. Examining
this subgroup is a convenient way to distinguish among them.

First let / s= 0, n = 3', and G be the group KnA or LnX. Then G has index 6 and acts
on a torus with holes that has maximal symmetry [11, §§3,5]. The Sylow 3-subgroup of G
is metabelian by Proposition 4. This can also be determined by examining the
construction of G in [11]. The subgroup M = (a,b) is an abelian normal subgroup of G
and GIM s D6. If G = KnA, then M = Cnx Cn, while if G = LnA, M = Cnx C3n [11, §5].
In either case, it follows from Corollary 1 to Theorem 1 that G" c M (with [M: G") = 3 in
general), and consequently G' is a metabelian 3-group.

Now let i and j be integers such that i S5/ 5= 1, and set n = 3', m = 3'. For each value
of n the groups Knm act on bordered surfaces with maximal symmetry that are in a family
of fully wound coverings. Each surface is a fully wound covering of a torus with holes and
is therefore orientable [11, §5]. If y'5=2, then Proposition 5 guarantees that the Sylow
3-subgroup of Knm is not metabelian.

The case / = 1 is special. In fact the Sylow 3-subgroup P of Kn3 is metabelian with
P' = C3 x C o x Cn. This can be seen by analyzing the construction in [11, §5].

Similar comments hold for the groups Lnm and the surfaces on which they act.
All these groups are quite intimately related, of course. Some of the most important

relationships are in [11, §5]. It is quite natural to consider these groups as a single family.
There are, however, an abundance of supersolvable M*-groups outside this family.

The constructions of [4, §4] may be used to establish the existence of other supersolvable
M*-groups with metabelian Sylow 3-subgroups. One of these constructions is the
following.

Let X be an orientable Klein surface with topological genus p and k boundary
components, with k > 1. Let r and s be positive integers such that r divides s. Then there
is a full cover Yr

s(X) of X with covering group (Cs)
2p x (Cr)

k~l and boundary degree r.
Further the surface Yr

s(X) is orientable [4, Th.9, p. 274]. It is easy to determine the
topological type of Yr

s(X) [4, p. 273]. In addition, if X has maximal symmetry, then so
does the full cover Yr

s{X) [4, p. 271].
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Now let I be a torus with three holes that has maximal symmetry, so that
53x53. Let i and j be integers with jss /ss l , and set 5 = 3', r = 3J. Then the

surface Z = Yr
s(X) has maximal symmetry, and G =A(Z) is an M*-group of order 36s2r2.

Further G has a normal subgroup N = (Cs)
2 x (Cr)

2 such that G/N = S3x 53. Now G is
supersolvable, of course, and it follows from Corollary 1 to Theorem 1 that G" = N. Thus
C is a metabelian 3-group. This fact, combined with the structure of G", shows that G is
not isomorphic to one of the groups Knm, Lnm.

Hence this example alone shows that there are infinitely many supersolvable
M*-groups outside our family of groups. The constructions of [4, §4] could be used to
produce other examples as well. The problem of classifying the supersolvable M*-groups
[10, Problem 2, p. 392] may well be intractable.

5. Species with maximal symmetry. Nevertheless, we are able to classify the species
of bordered Klein surfaces with maximal symmetry that have a supersolvable automorph-
ism group [10, Problem 3, p. 393]. Perhaps the surprising thing here is that this problem is
not too difficult. We use the groups Knm and Lnm to produce all the species and then
apply results about supersolvable groups and full coverings to show that there are no
others.

First, we use a result from [9] to find a second index for each of these groups.

PROPOSITION 6. Let i and j be integers such that i^j^O, n = 3', and m = 3'. Then the
M*-group Knm has indices 6m and 2n. The M*-group Lnm has indices 6m and 6n.

Proof. Let G = Knm have the presentation (4.1). G has index 6m by Theorem A.
Let w=xuz. Then the order of w is an index of G [9, p. 24]. Let P be the Sylow
3-subgroup of G. We know P = (a, z2) and P is normal in G. Now w = xuz = (az3)uz =
az2(zuz) = az2u. If w were in P, then wePas well. But o(u) = 2. Hence w $P and o(w)
is not a power of 3.

Write b = zaz~x, as usual. Then o(b) = o(a) = n. (See (4.1) and the construction of G
in [11, §5].) Now w2 = (xuz)(xuz)=x(uzu)(uxu)z = (xz~ix)z = (zxz)z = z(xz~3)z~1z6 =
bz6, using (4.1). Since b and z6 commute and o(z6) = m divides n, o(w>2) = o(b) = n.
Therefore o(w) = 2n is an index of G.

The proof for Lnm is almost identical, the only difference being that o(b) = 3n.
The index of a supersolvable M*-group has the form 2-3', by Corollary 2 to Theorem

1. We now show that for each possible index q > 2, there are infinitely many M*-groups.

THEOREM 3. Let t be a positive integer and q = 2-3'. Then for each integer r 2= It, there
is a supersolvable M*-group of order 4-3r and index q.

Proof. First assume r 5= 3t — 2, and set j = t — I, m = 3'. Let l = r — j . If / is even,
then let i-{l- 2)/2 and n = 3'. It is easy to see that i 5=/ so that m divides n. The group
Ln m has order 36n2m = 4-3r and index 6m = 2-3'.

If on the other hand / is odd, let i = (l - l)/2 and n = 3'. Again i s=/. The group Knm

has order 12n2m = 4-3r and index 6m = 2-3'. Note that if t *s 2, then 2/ 5= 3/ - 2 and we
do not need to consider any additional cases.

Next assume that 3t-2>r>2t (and t>2). Let n = 3', j = r-2t-l, and m = 3'.
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Note that t>j^O. The group Knm has order 12w2m = 4-3r and index 2n = 2-3', using
Proposition 6.

Finally assume that r = 2t. Let i = t-l and n = 3'. The group L n l has order
36n2 = 4-3r and index 6n = 2-3', again using Proposition 6.

An immediate consequence of Theorem 3 is the existence of many species of
bordered surfaces with maximal symmetry and a supersolvable automorphism group.

THEOREM 4. Let s and I be positive integers such that s 3= / 3= (s + l)/2. / / g = 3J + 1
and k = 3', f/ien f/zere is an orientable Klein surface of genus g with k boundary
components that has maximal symmetry and supersolvable automorphism group.

Proof. Let t = s -1 + 1, so that t 3= 1. Since 2/ s* s + 1, we have s + 13= 2(J - / + 1).
Hence 5 + 13= 2f. Now by Theorem 3 there is a supersolvable M*-group G of order 4-3J+1

and index q = 2-3'. Then G acts on a bordered surface X of genus g with maximal
symmetry, where 12(g - 1) = o(G). Thus g = 3s + 1. Further, if X has A: boundary
components, then by (2.2) 4-3J+1 = 2(2-3')* so that Jfc = 3S~'+1 = 3'. Finally the surface X is
orientable by Corollary 3 to Theorem 1.

Surprisingly, all the species with maximal symmetry and supersolvable automorphism
group appear in Theorem 4, except of course those of genus 2. To establish this, we first
show that an index of a supersolvable M*-group must be within a certain range in terms
of the group's order.

Let G be a supersolvable M*-group with generators u, x, and z that satisfy the
relations (2.1), and write a = xz~3. Let P be the Sylow 3-subgroup of G, and let y, = /,-(/*)
be the terms of the lower central series of P. We need a rather technical result about this
series. The key is a general theorem of Philip Hall [6, Th. 2.81].

LEMMA 1. If for some integers d andj, j & 2, zd e yjt zd $ yj+x, and [y,: yJ+1] = 3, then
[yy+1:yy+2]«3.

Proof. By Proposition 2, P = (a, z2). Obviously y, is generated by yj+1 and zd. Then
by Hall's theorem, y;+1 is generated by y;+2 together with the commutators v = [a, zd]
and [z2, zd\ But [z2, zd\ - 1 of course. Hence y;+1 is generated by yy+2 and v. In other
words, the quotient group YJ+JYJ+2 is cyclic. Now [y; +i:y; +2]^3 by Proposition lc).

THEOREM 5. If G is a supersolvable M*-group with index q and order 4-3r, r 3= 2, then
q = 2-3' for some integer t such that 1 =s t =£ r/2.

Proof, (by induction on r). The result holds for 2 =£ r « 4 by the main classification
theorem of [10, p. 392]. Assume then that r 2= 5 and the result holds for all integers s such
that 2 =£$ < r. Let G be a supersolvable M*-group of order 4-3r and index q. By Corollary
2 to Theorem 1 we may write q = 2-3' for some f s* 1. We must prove f =s r/2.

Suppose to the contrary that t > r/2. Then let G act (with index q) on the surface X
with k boundary components. By (2.2) we have 4-3r = 2{2-3')k so that k = 3r~'. Also,
since r 3= 5, k 3= 9 by Corollary 3 to Theorem 1.

We are assuming that the index q is large (and q > k). In this situation the approach
in [9, §3] is quite useful. There is a positive integer n =£ k such that n divides q and
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xz" = znx. Further the subgroup N= (z") is normal in G and the quotient group G/N is
an M*-group with index n and order 2nk [9, p. 27]. G/N is supersolvable, of course, and
since k > 9, o(G/N) is not too small and 6 divides n, by Corollary 2 to Theorem 1 again.
We may write n = 2-3' for some i s= 1. But since n =£ k, we also have 2-3' =£ 3r~' so that
i =£ r - t - 1. But f > r/2, so i < (r/2) - 1< t - 1 and hence i^t-2. Thus N = (z") has
order g/n = 2-372-3'= 3'"'3= 9. In particular, let m = 2-3'"2 and M={zm). Then ms=6
and n divides m. Thus xzm = zmx and M is a normal subgroup of G of order 9. We rely
heavily on the subgroup M and the inductive hypothesis (IH). We consider two cases.

First suppose r is even. Then J = (z3m) is a normal subgroup of order 3. The
quotient group G/J is a supersolvable M*-group of order 4-3'"1 and index 3m = 2-3'"1.
By the IH, t - 1 «s (r - l)/2. Since r is even, we have t «s r/2, a contradiction.

Next assume that r = 21 + 1 is odd. Note that / s* 2. Since f > r/2, 12*1 + 1. Using the
IH and the subgroup J, it is easy to see that t cannot be larger than / + 1. Hence t = I + 1,
the difficult case.

Let c = cl(P). By Proposition 3, cs=f + l = / + 2»4 . The quotient group G/yc has
order at most 4-3'"1 = 4-32/ and hence index at most 2-3' = 2-3'"1 = 3m, using the IH
again. Therefore z3m e yc. However, zm $ yc, since yc has exponent 3, by Proposition l(c).
Now the IH shows that o(yc) cannot be larger than 3. Hence o(yc) = 3 and yc = (z3m).

Next the IH implies G/yc-x has index at most m, so that zm e yc-i- B u t xzm ~ z"** s o

that zmeZ(P), and yc_! <£. Z(P) by (3.1). Hence [yc-l:yc]^9. Now zm/3$yc_! by
Proposition l(c), and it follows from the IH that [yc-i: yc] = 9. At this point, we have

_, 9 3 9 3

P—Y2—Y3 Yc-i—Yc—1-

Note that c # 4 since o(P) ± 36. Hence c ^ 5. Also [y3: yc_x] = o(P)-3~6 = 32'"5.
Since cl(P) = c s* / + 2 is rather large, not all the factors y,7y,+i, i = 3, . . . , c - 2, can

have order 9 or more. If that were so, then [y3:yc_i]5:(32)c~4 but 2 ( c - 4 ) > 2 / - 5 .
Hence for some i such that 3 =s i« c — 2, we must have [y,: y,+i] = 3. Let /' be the largest
such integer, that is [yy: yy+1] = 3 and [y,: y,+1] 2* 9 if / + 1 =£ i ss c - 1. In particular, note
that [y/ + 1:y/ + 2]>9 (even if / = c - 2 ) . Now o(yy)3=3(32)c-°+1)-3 = 32c~2;. Let d =
2-3'~1~(c~/). A familiar argument with the IH shows that G/yj has index at most d. Thus
zd must be an element of y;. Note that since ; > 3, o(P)/27 = 3r~3 > o(y;), and it follows
that d^6. But o(zd) = q/d = 3c~'+1, and y,+1 has exponent at most 3C~' by Proposition
l(c). Therefore zd $ y;+1. Since [y/+1: y;+2] 5= 9, this now contradicts Lemma 1.

In each case, assuming t > r/2 leads to a contradiction. Hence t« r/2. This concludes
the proof of Theorem 5.

Now we can easily establish the converse to Theorem 4.

THEOREM 6. Let X be a bordered Klein surface of genus g with maximal symmetry and
k boundary components. If the automorphism group of X is supersolvable, then X is
orientable and there is an integer s^O such that the genus g = 3S + 1. If g > 2, then further
there is a positive integer I such that s^l^(s + l)/2 and k = 3'.

Proof. The surface Xis orientable by Corollary 3 to Theorem 1. Let G =^4^) have
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index q. By Theorem 1 o(G) = 4-3r for some positive integer r. But o(G) = 12(g - 1). Set
s = r - l . Then s 2* 0 and g = 3s + 1.

Now assume that g > 2 so that r3=2. We have o(G) = 2qk = 4-3r. By Theorem 5,
q = 2-3' for some integer t such that 1 =£ t =£ r/2. Now fc = 3r~', and r - 1 s= r - r 5= r/2. Set
l = r-t. Then it = 3' and s ss / 5= (5 + l)/2.

Together Theorems 4 and 6 neatly classify the species of bordered Klein surfaces
with maximal symmetry that have a supersolvable automorphism group. Still remaining is
the problem of classifying the supersolvable M*-groups. A piece of this problem seems
approachable and definitely interesting. We conclude by calling attention to the following.

PROBLEM. Classify the supersolvable M*-groups with partial presentation (2.1) and
the additional relation xz6 = z6x.
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