
Canad. Math. Bull. Vol. 18 (5), 1975 

THE RANGE OF A GAP SERIES 

BY 

J. S. HWANGf 

THEOREM. Let /(z)=2£Li (anj_vz
nk~p+.. .+an]z

nk) be a function holomorphic 
in the disk, wherep is a natural number andnk+1lnk>A>l (fc=l, 2 , . . . ) . i / l i n v ^ 
sup Itf^-J = a, 0<<z<oo, thenf(z) assumes every complex value infinitely often 
in every sector A (a, /?)= {z:a<arg z</?, | z |< l} . 

The purpose of this note is to prove the above result. To do this, we first observe 
that from the condition a<oo, we can easily show that the derivative/'(z) satis
fying 

| / ' ( z ) | < C(A)/(l-r), for \z\ = r < 1, 

where C{X) is a positive constant depending only on A. 
It follows that the function/is normal [2, p. 87]. 

Next, we want to show that /has no finite radial limit. To see this, we need only 
apply a theorem of Hardy and Littlewood [4, Theorem 1]. 

According to a theorem of Bagemihl and Seidel [1, Theorem 3 ] , /mus t have 
the Fatou value oo on a dense subset of the unit circle. We then can choose two 
numbers a' and /?' with a < a'</?'</? such that 

(*) lim \f(r exp(îa'))| = lim \f(r exp(/^'))I = oo. 

Now, suppose that /assumes a value v only finitely often in À (a, /}), then there 
is an r > 0 such that the function g(z)=l/(/(z)—t;) is holomorphic in Ar(a, /?), 
where Ar(a, /?)={z:a<argz</3, r < | z | < l } . Thus g is also holomorphic in 
Ar(a', j8'). If g is bounded in Ar(a', /?')> then by virtue of the extension of Fatou's 
theorem [1, Theorem 2], g will have radial limits almost everywhere on the arc 
A(OL\ j8 /)={exp(/0):a /<0^/3 /} and so will / . This however is impossible. Hence g 
must be unbounded in Ar(a', /?')• 

From equation (*) we can see that g is bounded on these two segments R= 
{zrarg z = a ' , r < | z | < l } and i^'={z:arg z=/?', r<\z\<\}. Moreover, g is also 
bounded on the circular part Cr(oc', / ^ ^ { r e x p ^ i a ' ^ f l ^ / ? ' } - Hence g is bounded 
on the union R U R' U Cr(a', p'). 

Since g is unbounded in Ar(a', /?'), it follows from a theorem of Gross and 
Iversen [2, Theorem 5.8] that g(z) tends to infinity along a curve T lying in 
Ar(a', /?')• By the normality of/, we can see the curve V must end at a boundary 
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point, say, at z = l [1, Theorem 1], It then follows from a theorem of Lehto and 
Virtanen [5, Theorem 5] that g has the angular limit oo at z = l . This in turn im
plies that / h a s the radial limit v at z = l , which is a contradiction. The proof is 
complete. 

REMARK. 1. The result of ours is similar to that of Fuchs [3], We restrict the 
coefficients to be bounded while we generalize the single gap series to be a union 
of finite number of them. 

2. The same method can give an alternative proof of a theorem of Pommerenke 
[6], provided the coefficients are bounded. 
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