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Abstract

In an earlier paper the author investigated the properties of a class of multivariable polynomial
vectors which generalise the multivariable Chebyshev polynomial vectors. In this paper the be-
haviour of these polynomials over rings of the type Z/(m) is investigated, and conditions are
determined for such an n-variable polynomial vector to induce a permutation of <Z/(m)y. More
detailed results on the Chebyshev polynomial vectors follow. The composition properties of these
vectors imply that the permutations induced by certain subsets of them form groups under
composition of mappings, and the structure of these groups is investigated.

1980 Mathematics subject classification (Amer. Math. Soc.): 12 C 05, 12 C 30.

1. Introduction

We begin by describing a class of multivariable polynomials whose properties
are investigated in this paper. Let R denote the ring Z/(m), m G Z . Suppose
that/(z) G R[z], and let

/ < « „ ...,un,z) = z » - Ulz"~l + . . . + ( - l ) \ , u, e R.

In some extension ring of R, r(z) splits into linear factors

/•(«„ . . . , un, z) = (z - a,) . . . (z - an).

1 Copyright Australian Mathematical Society 1982

https://doi.org/10.1017/S1446788700024435 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024435


[2] Chebyshev polynomial vectors 89

Define

- z" -

Each g/^ is a symmetric function of a,, . . . , an, which is a polynomial in the
elementary symmetric functions of a,, . . . , an, and so gf^ depends only on
«„ . . . , un, and not on the particular factorisation of r. When /(z) = zk, the
vector (g{^, . . . , g^P) is called a Chebyshev polynomial vector, as defined by Lidl
and Wells [3]. When m is prime, or more generally when R is any finite field Fq

of prime power order, the properties of the vectors ( g ^ , • • •»g f̂) have been
investigated by the author [9]. In particular it was shown there that gjp =
(g{^\. . . , gfp) induces a permutation of F£ (in this case we say that gff* is a
permutation polynomial vector over ¥q) if an only if /(z) is a permutation
polynomial over ¥q,, 1 < r < n. In the first part of this paper we extend these
results to the rings Z/(«i). Since the general case reduces to that of m = pe, we
shall study the case m = pe, wherep is prime, in detail.

We also consider a similar construction, where the constant term of r(z) is
fixed. Thus over R let

/•(«„ . . . ,«„, z) = zn+i - Ulz
n + . . . + ( - i ) v + (-ir+ 16

= (z - a,) . . . (z - an+i).

Let

- a,*). . . ( z - a * + 1 )

- z"- z" + 1 -

This defines a polynomial vector

«(#!, *, b) = («{*>(«„ . . . , Un, b), . . . , g<*>(M,, . . . , *„, b)).

When b = 0, we essentially obtain g^ i , with/(z) = z*. In case /? is a finite field
¥q, it was shown by Lidl and Wells [3] that the set { g(n, k, b); k G. Z} is closed
under polynomial composition if and only if b = 0, + 1 or - 1 . The structure of
the group of permutations of F£ induced by {g(n, k, b)} was determined by
Nobauer ([II]) for « = 1, Lidl ([4] and [5]) for n = 2, and by the author [9] for
arbitrary n. For rings of the type Z/(pe), (and more generally for Z/(w),
m G Z) the corresponding group structure has been determined by Lausch,
Miiller and Nobauer [1] for n = 1. The main result of this paper is to extend this
to an arbitrary number n of variables.
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2. The Jacobian of gU)

The following result reduces the study of polynomials over R = Z/(pe) to
questions concerning finite fields. (See Lausch and Nobauer, [2], Proposition
4.34, p. 165.) Let T be the ring of integers of an algebraic number field.

PROPOSITION 1. Let Q be a primary ideal of T with associated prime ideal P,
P ¥= Q, and T/ Q finite. Then a polynomial vector h = (h{, . . . , hn), h, G
T[xly . . . , xn], is a permutation polynomial vector over T/Q if and only if

(i) h is a permutation polynomial vector over T/P, and
(ii) the Jacobian of h, dh, is non-zero on T/P.

A polynomial vector h over F ? ( ^ T/P) satisfying (i) and (ii) is called a
regular polynomial vector over F^. We proceed to determine the regular poly-
nomial vectors amongst the vectors g(f), and the g(n, k, b).

If <jj, . . . , on e ¥q, where ¥q is an algebraic closure of ¥q, define

(1) 5 : ( a , , . . . , o n ) ^ ( S , ( a 1 ; . . . , a n ) , . . . , S n ( a t , . . . , a n ) )

where Sj is the 7 th elementary symmetric function in CT , , . . . , an. The map

«">: 5(a, , . . . , on) » (S,( / (a , ) , . . . , / (an)) , . . . , Sn(f(°i\ • • • , X O ) )
is a well defined map of F£ -» F^. If ^ denotes the Jacobian of S with respect to
<r = ( a , , . . . , an) and if Jg^ is the Jacobian of j»(/>, then

(2) ££
where/(«T) = (/(a,), . . . , / (aJ) , since gw(5(a)) = S(/(«r)), and

))
) j da 9(S(a)) 3a

The composition law for Jacobians yields

where ^(/(<r)) is the vector ^ , with /(a,) replacing a,. An explicit calculation
shows that

(3) -V=i

(/()) 6
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PROPOSITION 2. The value of the Jacobian Jg(f) at (ux, . . . , «„) is given by

Jg«\ux, . . . , « „ ) = n
where a,, . . . , an are the roots of

/ • ( « „ • . . , « „ , z ) = z" - u . z " - 1 + . . . + ( - l ) \ .

If a, = Oj, i ¥=j, then the term (/(<r,) — Aaj))/(°i ~ aj) 's to be interpreted as

PROOF. Only the last statement remains to be proved. There exists an alge-
braic number field K, with ring of integers A, and a prime ideal Q, with
A/Q — F?. Continuity in C shows that the formula of Proposition 2 should be
interpreted as indicated when a, = Oj.

3. The Jacobian of g{n, k, b)

When b = 0, taking /(z) = z* in Proposition 2 yields the Jacobian of
g(n, k, 0). We now assume that b ¥= 0.

PROPOSITION 3. Let Jx be the Jacobian of the map

regarded as a form in a,, . . . , an+, a/w/ /e/ / 2 6e f/te Jacobian of the map

Sb: (a,, . . . , a j h

M>/u?re a, . . . an+1 = A, ft ?t 0.
n+l

y2 = ^ y , = - ^ n

PROOF. Consider the determinant

bJ• = detl Oj~r-^
I do

Every entry of the last row of this determinant is b. Thus

Since a, . . . an + 1 = b, dan+1/doj = -on+x/ar Thus

J\ = Of . . . an dst(dSj/doj + 3on+i/doj • dSj/don+x) ^ \P/an+\)Jv
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PROPOSITION 4. The Jacobian J of g{n, k, b), b =5* 0, is given by

"TV / «*
\ a

where J is evaluated at (u,, . . . , « „ ) with

r { u x , . . . , « „ , z ) = ( z - a , ) . . . ( z - a n + 1 ) .

/ / a , = Oj, then the corresponding term in the expression for J is ka,k~l.

PROOF. Since (dS/da)J = (dS/da)(A<r))df/fo, we have

n+1 k n+1 n

II (a, - a,)y = - ^ 1 1 («,* ~ a/̂ A:'1 II a*"1a. " + 1

J j i - l
' ,7-1 ' J - l

or

n + i ^*

'•,7-1

4. Regular polynomial vectors over finite fields

THEOREM 1. g^ is a regular polynomial vector over ¥q if and only if f(z) is a
regular polynomial over Fq,, 1 < r < n.

PROOF. It was shown in [9] that the condition of the theorem was equivalent to
g(f) being a permutation polynomial vector over Tq, with the regularity condi-
tion omitted. If /(z) is regular over ¥qr, 1 < / • < « , then /'(<*,-) ¥= 0, and /(a,) —
f{oj) ¥= 0, as / is a permutation polynomial over Fq,, 1 < r < n. If a, = a,, the
remark following Proposition 2 shows that in all cases Jg^ ¥= 0. If /(z) is not
regular over Fqr, 1 < r < n, then either/'(o) = 0 for some a G F,,, or/(z) is not
a permutation polynomial over Fqr. In the first case take r(z) G FJz] to be
monic of degree n with a a root of r(z) and take u,, . . . , un to be the coefficients
of g(z) with appropriate signs. Then from Proposition 2, Jg^(ult . . . , un) = 0.
In the second case, gif) is not a permutation polynomial vector over F^ by
Theorem 1 of [9].

COROLLARY, g^ is regular over Fq if and only iff is a permutation polynomial
over Fq,, 1 < r < n, and f has no irreducible factor of degree < n.
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PROOF. If/' has an irreducible factor of degree < n, then it has a zero in Fq,,
1 < r < n, and s o / is not regular over Fqr. Thus g^ is not regular.

5. Regular Chebyshev polynomial vectors

The following theorem may be found in Lausch and Nobauer ([2], p. 209),
and Lidl ([6]), for the cases n = 1, 2, respectively.

THEOREM 2. g(n, k, b) is a regular polynomial vector over Fq, q = pe, if and
onlyifb = 0,k=lorb^Oand (k,p(qs - 1)) = 1, * = 1, . . . , n + 1.

PROOF. For b = 0, the theorem follows from the Corollary to Theorem 1. If
b =£ 0, and g(n, k, b) is regular, then Proposition 4 shows that (k,p) = 1. Lidl
and Wells [3] showed that g(n, k, b), b ^ 0 is a permutation polynomial vector
over ¥q if and only if (k, qs — 1) = 1 for s = 1, . . . , « + 1. Thus we need only
show that the conditions given ensure that the Jacobian of g{n, k, b) is non-zero.
Since ai; ¥= 0, /ca,*~' =/= 0. Further, the conditions given imply that xk is a
permutation polynomial over Fq,, 1 < s < n + 1. Thus xk permutes the set
U"*,' F, ' , which shows that 7 ^ 0 .

6. The structure of the group of permutations of ( Z / (p e))n

induced by the set { g(n, k, b), k e Z)

Theorem 2 immediately shows that the group G(n, b,pe) of permutations of
R" = (Z/pey induced by polynomial vectors g(n, k, b) with b = 0 is the one-
element group. Henceforth, we assume b = 1. We proceed to find an integer /
such that the maps induced on R" by g(n, k, 1) and g(n, k + I, 1) are identical.
We denote g(n, k, 1) by g{n, k) for convenience, and similarly G(n, b,pe) by
G(n) or G(n,pe). We have then a homomorphism \p: Zf -> G(ri), where Zf is the
group of reduced residues mod /, whose kernel is to be determined. Since each
polynomial of degree {n + 1) is a product of irreducible polynomials of degree
at most (n + 1), it is sufficient to show that Ax*/- = r (Ay as defined in section 1),
where r is an irreducible polynomial of degree < n + 1, which has constant
term (-1)"+1 if degree r = n + 1. Recalling that R = Z/(pe), e > 1, there is a
canonical homomorphism jti: R —*Z/(p). If ju(r) is irreducible over Z/(p), then
r is called a basic irreducible. All rings of the form R [x]/(f(x)), where f(x) is a
basic irreducible, of degree t, are isomorphic, and such a ring is known as a
Galois ring GR(pe, f), where t = deg/. In GR(pe, t), f(x) splits uniquely into
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linear factors. Results on Galois rings may be found in McDonald [8], Chapter
XVI. The group of units of GR(pe, t) is known and can be described as follows,
([8], P. 322).

PROPOSITION 5. Let T = GR(pe, i), and let T* be the group of units of T. Then
T* = G, X G2, where

(a) G, is a cyclic group of orderp' — 1,
(b) G2 is a group of order />(*~1)r, such that

(i) // p is odd, or p = 2 and e < 2, then G2 is a direct product of t cyclic
groups of order pe ~'.

(ii) If p = 2 and e > 3, G2 is a direct product of a cyclic group of order 2, a
cyclic group of order 2e~2 and (t — 1) cyclic groups of order 2e~x.

THEOREM 3. Let /? G Z be defined by pp~x < n + 1 < p". If

y = \cm(p - 1, . . . , / > " - 1, (pn + l - \)/{p - 1)),

and I — pe+P~2 y, then g(n, k) and g(n, k + /) induce the same map on R".

For the proof we shall need the following lemma.

LEMMA 1. There is a finite algebraic extension K of Q, with ring of integers O,
and a prime ideal P with P = pO, such that

O/Pe =± GR(pe, t).

PROOF. Let f(x) be an irreducible monic polynomial of degree / over Z such
that nf(x) is irreducible over Z/(p). If a is a root of ju/ in Fg,, then \if\a) ^ 0.
Thus disc(jti/) =?*= 0 in Zp, and so p \ disc/ over Z. By the Kummer-Dedekind
theorem on ideal factorisation (see [10], p. 161) p remains inert in ^ =
QM/( / (*)) - ^ O is the ring of integers of K, let S = O/P', where P = pO.
Then char 5 = pe, or e lse^e~ ' £ i " , and s o ? ' " ' c P ' , a contradiction. Thus
S is an extension ring of Z/(pe). S is clearly a commutative local ring, [O/P:
Z/(p)] = t, and so S contains a subring T^ GR(pe, t), by McDonald [8],
Theorem XVII.1, p. 337. Since \S\ = pet = \T\, S = T, which completes the
proof of Lemma 1.

PROOF OF THEOREM 3. Let/(x) be a monic irreducible polynomial over R. If
f{x) is a basic irreducible, with deg/(x) = r, then/(x) splits into linear factors
over GR(pe, r). Each root is a unit, and so, if a is such a root, then a(p"1)p' ' =
1, by Proposition 5. If deg/(x) is (n + 1), then/(x) has constant term (-1)"+1.
In Fp.+i, fif has roots of order (p"+l — \)/(p — 1). From the structure of
GR(pe, n + 1) in Proposition 5, a is a product of an element of orderpe~l and
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an element of G,, and ju induces an isomorphism of G,. Hence a satisfies

If f(x) is irreducible over R, but nf is reducible, we construct a ring extension
of R in which f(x) splits into linear factors, f(x) = ]l(x — a,), with aj — 1. In
Z/(/>), /x/ is of the form (h(x))', where h(x) is irreducible over Z/(/>) ([8],
Theorem XIII.7, p. 260). If deg h(x) = s, then h(x) splits into hnear factors over
Fp,. Over Fp,, fif splits into factors of the form H*_ ,(JC — a,)*. By a form of
Hensel's lemma ([8], Theorem XIII.4, p. 256), over GR(pe,s)f(x) splits into
factors, say f(x) = /,(*) . . .fs(x), where /•(*) = (x - a,)' + /^(x) with /,(*) G
GR(pe, s)[x], and where mt{x) has coefficients in the maximal ideal M of
GR(pe, s). Using Lemma 1, let A" be an algebraic number field with ring of
integers O, and P be a prime ideal in O, P = />0, with 0: O /P e =± G/?(/?e, J). A/
is the image of P under 9. Let F(x) e O[x] be mapped onto/(x) by 9, where
F(x) is of the form (x - a)k + n(x), with 9: n(x) -» m,(x), ^: a -^ a,, and define
S as the splitting field of F(x) over X, T the ring of integers of S. Let TJ,, . . . , t]k

be the roots of F(x) in S. Let / be the ideal (PeT, Pe'\vi ~ <*)T, . . ., Pe~\vk

- a)T), and define We = T/I. We show that / n O = Pe, and so there is a
canonical embedding of /? into We. For certainly Pe <Z I n O, while if / n O
D Pe then there is a proper ideal J in O with ^ = ( 7 0 0 ) / . Thus / n O =
i", K e , s o P ' " ' c / n O , and

7>«-'r C (/ n O)T = / = PeT + Pe-1(Tj, - a)T + . . . + Pe~\vk ~ a)T-

Hence

(•) r c p r + (i», - <*)r + . . . + (ifc - «)r.

But (TJ, - a)* = -H(T);) e PT, so ((TJ,. - a)Tf C PT. If 0, is a prime ideal of T
dividing PT, then <2I(T), - a)7\ so Q divides the /?/fS of (•), and so Q\T, a
contradiction. Thus We is an extension ring of R. If TJ, is the image of TJ, in We,
then TJ, is a root of /(*) and/(x) = II*_1(x - T^). We show that rjj = 1. Firstly
assume e = 2. Then

( r « f = - ^ . ) 6 i T , and P T X t y - « ) £ / .

Thus (TJ} - a,)*+1 = 0. Now/»^ > A: + 1, unless A: = n + 1 = pp and so, except
in this case, (TJ,- — a,y = 0. Thus

V? = (Vj - «, + «,/ = (Vj ~ of + af = of".

Since a, e Gi?(/>2, s), af" = 1, and so rjf** = 1. (If k = n + 1, the same argu-
ment as used previously may be employed to show that y suffices). Thus in T,
for e = 2,

^ ' * - 2 T . i + X + (T,, - o)M, + . . . + (ifc - o ) ^ ,

where X G ? T , ^ G P ' - ' r .
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Arguing inductively, we raise this to the/rth power, to obtain

TUp'*"Xy - l e Pe+lT+ PeT(7ix - « ) + . . . + PeT(r,k - a ) .

In We+X we have then, TJ/" ' y = 1.
Now suppose k = n + 1 = p&. The roots rjt have order/»^+e"1y, by the above

argument. In fact pfi+e~2y suffices. Let S" again denote the rth elementary
symmetric function in n variables. Then O = Z, P = pZ,, and/(x) = (x — af'
+ pg(x). Assume firstly that e = 2. Then in We,

(Vi - af = -pg(vi)
since^(rj, - a) = 0,/7g(T/,) = pg(a). Hence

rjf" = (tj, - « + of' = (ifc - af + a"' = a"' - pg(a).

For e > 2, lift to 7\ and raise to pth powers successively to obtain

) V

Since a G Z/(/>e), ap^+'"2Y = 1, and so

Modulo /J, /(x) has the form (x - af , and so the transformed polynomial is
(x — aky , whose coefficients are zero mod/?, except for the final and initial
terms. Thus

and so
pn + U-/+/l n l + k \ = <Zn+1(rik rik \ tnnH ne

2>r \V\ > • • • iVn+l) — ^r {Vl y • • -> Vn+l) Taoa P •

7. Determination of the kernel of \p

As shown in Section 6, there is a homomorphism \p: Zf -^ G(n), where Z,* is
the multiplicative group of reduced residues mod /, where / is defined in
Theorem 3, and \p is defined by

\p: k \-> {permutation induced on R" by g{n, k, 1), where (k, /) = 1}.
We assume e > 2, and since the case n = 1 was solved in [1], we assume n > 2.
In the case e = 1, the kernel of \p is non-trivial (see [9]) and if e = 2, n = 1, the
kernel is {± 1}, as shown in [1]. For n > 2, e > 2, we shall show in this section
that ker \p = {1}, and so i|/ is an isomorphism.
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LEMMA 2. If k G ker \p, then k = 1 mod y, where

y =

PROOF. Suppose k G ker \p. Then

g(n, *)(«„ . . . , « „ ) = («„ . . . , « „ ) for all u, G Z / (/><)•

From Taylor's formula ([2], p. 268), if g, denotes the t th component of g(n, k),
then

& ( « 1 > • • • . " , - 1 , ", + P ° ~ \ « , + !> • • • > " „ )

= g,(uu . . . , « „ ) + />'"1-g^(«i» • • •» "«)•

Thus I^C"], . . . , « „ ) = 8^ mod/?. Hence, if 7 is the Jacobian matrix of g(/j, A:),
then

J(uu . . . ,un) = In modp for all M, G Z / (/>).

Replacing / by /„ in the identity J • [du,/dat] = [9g//3o,-], we obtain

9M, = 9&
9a, 9a,'

Taking / = 1, a,, — an+l = A:(a,* - an*+1), so that Aca;* - a, takes the same value
for i = 1,. . . , n + 1. If a,, . . . , aB+, are chosen not all equal, then we have
p | k. If p — 2, this shows k = 1 mod/?. If/> ^ 2, choose a, = -a 2 = o ( ^ 0, a G
Z/(pJ). Then /ca* = a. If a = 1, then k = 1 mod/7. If a = w, a primitive root
mod/?, then A: = 1 mod (p - 1). Thus (a,* - a,) takes the same value, for
/ = 1, . . . , « + 1. Now let u be a primitive element of Fp,, 2 < r < n, and let
g(x) be its minimal polynomial over F^. If the constant term of g(x) is (-1/X,
define f(x) = g(x)(x - A " 1 ) ^ - l )"" r . Take an+l = \~\ Then uk - u =
(X"1)* - (X"1) = 0, since A"1 G Fp. Thus A: = 1 mod (pr - 1), 1 < r < n. If
r = « + 1, take a = up~\ to obtain

k = 1 mod
/? - 1

Combining the congruences, we obtain

k = 1 mod y.

Recall that y3 G Z is defined b y / ^ ~ ' < n + 1 < pp.

LEMMA 3. If fi = 1, /Ae« k G ker i// o«fy if k = 1 mod/?, « - l
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PROOF. Let f(x) have degree two, and constant term 1. We assume n > 2.
Then g(x) = (x - l)"~lf(x) has degree {n + 1). If k G ker i//, then A: =
± 1 mod/?*"^^-1), by [1], Theorem 3.6, p. 91, since p is odd (n + 1 < />).

Since /t = 1 mod (p2 — 1) by Lemma 2, the positive sign holds, and so k =
1 mod/?*"'.

LEMMA 4. / / £ > 2 anrf e = 2 die/j A: e ker \p only if k s 1 mod/?".

PROOF. We construct a sequence u,, . . . , un for which g(n, k)(uy,. . ., un) ¥"
g(n, l)(w,, . . . , un) for 1 < k <p0 + 1. It is sufficient to do this for the first
components of the vectors g(n, k), which we denote by gk. We show that
« „ . . . , « „ m a y b e c h o s e n s o t h a t gk(ux, . . . ,un) = gl(ul, ...,un)=*k=l

Consider/(x) = (x — 1)"+1 + pg{x), where deg g(x) < n, and where g{x) has
zero constant term. We choose the coefficients of g(x) to give us the required
sequence. When reduced mod p, the corresponding sequence of g*'s is constant
(Sk = n + 1)- If wf = C*"̂ ') + p\, then mod/?2 we obtain

for k < n. This follows from the recurrence relation for the gk's given in Lidl [7],
p. 183. Choose Xt ¥= 0 modp, and A2, . . . , \ ,_ , in turn such that gk(ux, . . . ,un)
= n + 1 modp2, 2 < k <n - 1. Since / J " " 1 < « + 1, n >pp~K If « >pp~\
choose \ in the same fashion. In this case, gk =£ g, if k < «. In particular, this
holds for k = 1 + />^~'. If « = />^~', then gn = n + \, independent of \,. The
coefficient of \ in gn + t is (-l)"+1(/i + /t)("+*). With k = 1, this gives

Thus \ , may be chosen to give gn+x(ux, . . . , un) = n + 1, and so if k =
1 + pp~x, then* ^ken//.

Now consider/(x) of the form

f(x) =[(x - iy""' +ph(x)](x - 1 ) " + I " ' ' " . (Note thaty3 > 2.)

The sequence corresponding to f(x) repeats with a period pp~l and by the
argument above applied to the bracketed expression, h{x) may be chosen so that

«t("i> • • - . " » ) ^ = g i ( " i . • • • , "„)> for/c < / J ^ " 1 .

Thus k = 1 mod/?^"1 is a necessary condition. If k = 1 + /p^~' modp^, 1 < r
</>, let ts = 1 mod/?. Then

A:J = 1 +/?^+lmod/>^ (/? > 2).

Since ker i/< is a subgroup of Z*, if A: G ker»// then ks G ker ^, which is false.
Thus the condition k = 1 mod/?^ is necessary if e = 2.
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We note that Lemma 4 immediately implies that the power of p occurring in
the period of {g{n, k)} is p& when e = 2. To extend this to e > 2 we need to
look at the case e = 2 more closely. For this purpose, define/(x) as follows: If
p\(n + 1), then

/(*) = (x - 1)"+' + pg(x), where (x - 1) \ g(x) modp, deg g < n, g(0) = 0.

If p\(n + 1), take

/(*) = (x - 1)"+1 + pg(x), where (x - 1) j g'(x) mod^, deg g < «, g(0) = 0.

LEMMA 5. If {uv . . . , «„ ) « //ie vector of coefficients of f(x) defined above, then
the period of the sequence {gk(u{, . . . , «„)} is pp over Z/(p2).

PROOF. For a fixed («,, . . . , «„), {gfc) is a linear recurring sequence. We apply
results from Ward [13] to {gk}. It should be noted that Theorem 7.1 of Ward's
earlier paper [12] on sequences of length three, and Theorem 11.1 of [13], imply
that the period of such a sequence modpN ispb\, where X is the period modp,
and where b < N. However, this is false, as shown by the sequences with which
we are dealing. One must assume the sequence to be non-singular for these
results to apply. We use Ward's fundamental theorem [13], p. 606, which states
that the period of a linear recurring sequence modpe is the least integer / such
that

(*' - \)U(x) = 0 mod (pe, F(x)),

where F(x) is the polynomial corresponding to the recurrence relation, and U(x)
depends on the initial terms. In the case of {gk}, F(x) is the generating
polynomial f(x) and U{x) is f'(x). The theorem also shows that the sequence is
purely periodic. We show that { gk) has the required power of p as a period for
suitable choice of « , , . . . , un. Take/(x) as defined above. Then

(x - l)f'(x) - (« + l)/(x) =/>[(* - l)g'(x) - (n + l)g(x)].

Let / G Z. Then

- l)f'(x) - (n + ^ ^ i )

( ^ ^ ) x - l)g'(x) - (n + l)g(x)] =pk(x).

Modulo p, (x — \y'~l divides k(x) if />{(« + 1), and no higher power of
(x - 1) does so, and if p\(n + 1), k(x) is divisible by (x - iy ' and no higher
power. Thus^(x) = 0 mod (p2,f(x)) if and only if p' - I > n + 1, or p' >
n + 2, if p | (n + 1), or p' > n + 1 if p\(n + 1). Thus the period of
{gk(ut, . . . , «„)} modp2 is pp, where pfi~l <n + \ < p".
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LEMMA 6. The sequence {gk} of Lemma 5 has periodpe+p~2 over Z/(pe).

PROOF. It is known that/>^+1 is a period for {gk} with e = 3. Assume/?^ is
likewise. Since /? > 2,

pk(x)=pi *'', \)kl(x),
\ xp - 1 /

where k(x) is as in the proof of Lemma 5, and where kx(x) is divisible by
(x - iy*~'~' mod/7 ifp\(n + 1) and by (x - iy*"1 ifp\(n + 1).

1. Let« + 1 <pp -pp~

x>'-\

* ' ' " - 1
= (x - ir/(x> + P\(x),

where s > 1. If x = 1, p = p\(l), so A(l) = 1 modp, and so (x — l)fA(x)
mod/?.

P[ *'>-'- Y )kl(x) = p2X^k^x>> mod (P^fW-
If this is zero, then A(x)A:,(x) = 0 mod (/»,/(x)). But \(x)kl(x) is divisible by
(x - iy" ' or (x - l ) ^ ' 1 - ' ) and no higher power, and /(x) = (x - l ) n + 1

mod/?, where n + 1 >p f i ~ \ Thus X(x)kl(x) ^ 0 mod (/>,/(x)), and so {gk}
does not have period/*^.

Case 2. Let n + 1 >p*3 - pfi~\ Then

- ^ = (x - iy"-p' ' mod/7,
xp - 1

so x"' - l / (x '"~ ' - 1) = (x - i y * - * ' - +p\(x), \(x) e Z[x], and (x - l)f
A(x)mod/7. If s = (n + 1) - (pfi - p0'1), then 5 > 1, and

k\{x)= p(-pg(x) + p(x - l)*\(*))fci(-«

If p\(n + 1), then mod/7, this is divisible precisely by (x — Yf ~x. If
p\(n + 1), then .$ > 1, and since the greatest power of (x — 1) dividing g(x) is
one, as (x - 1)| g'(x), the highest power of (x — 1) occurring is (x — i y +1.
Thus in each case, the expression is not zero mod (/73,/(x)).

Case 3. n + 1 = pfi - pfi~K Choose g(x) with (x - l) |(g(x) - A(x)), where
A(x) is defined as in Case 2, and (x - l)|g'(.x)- Thus (x - l)|g(x), but
(x — I)2} g(x) would suffice if deg g(x) > 2, or n + 1 > 3, which is assumed.
Thus the highest power of (x — 1) occurring is (x — i y , and/7^~' < n + 1.

To extend to e > 3, multiply in turn by expressions of the form
(xp ' — l) /(xp — 1), where / > ft. As in Case 1, this is equal iop\{x) mod/(x)
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where (x — l)\\(x) modp. Thus for each higher powerpe of p, the power of p
occurring in the order of G(n) increases by one. If n + 1 = pp+l — pp, which
can occur only if p = 2, n + 1 = 2^, since n + 1 < p&, then choose g(x) as in
Case 3. The corresponding expression is

P\-g(x) + \(x))(-g(x) + (x- ly'-'xix))^),

and by the choice of g(x), {pp~x + 1) is the highest power of (x - 1) occurring.
Subsequent powers are dealt with as in Case 1.

THEOREM 4. If e > 2 and n > 1 then the group G(n,pe) of permutations of
(Z/(pe))n induced by polynomial vectors of the form g(n, k) is isomorphic to the
multiplicative group of reduced residues mod /, where I = pe+^~2y,p^~1 < n + 1
< pp, andy = \cm(p - 1, . . . ,p" - 1, (pn+i - \)/{p - 1)).

PROOF. By Theorem 3, the mapping \p: Zf -* G{n,pe) is a surjective homo-
morphism. We show that ker \p = {1}. By Lemma 2, if k G ker \p, then k =
1 mod y. Thus it suffices to show that k = 1 mod/>e+^~2. If /J = 1 this follows
from Lemma 3, and from Lemma 4 if ft > 2 and e = 2. If /? > 2, e > 2,
proceed by induction on e. If A: = 1 mod/>e+^~2 is a necessary condition for
k G ker \p mod />e, then mod/>e+1, the same condition is necessary for k (E
ker yp', where \p' corresponds to \p mod pe+1. Thus k = 1 +
tp'+P-2 modp*+P-\ We show that / = 0 mod/>. If there exists A: G ker i// with
/ 5* 0 mod^, and if st = 1 modp, then k* = 1 + pe+p~2 modpe+p~1. Thus
A;' = 1 + pe+fi~2 G ker i//, and so

A:" G ker »//' for aU/GZ.

Thus ker»|/ = {1 + «pe+^"2} = {k: k = l mod/»e+^-2}. Thus G(/i,/>')-
G(/J , /» ' + 1 ) . By assumption G(n,p") ^ Zf, and so there exists an isomorphism <f>:
Zf-+G(n,pe+l). Thus if a , ] 8 e Z , a = /3 modi, then g(n, a) and g(n, J3)
induce the same map. By Lemma 6, there is a sequence { gk) with periodpe+&~1

over Z/(pe+1). Thus the assumption / a* 0 mod/> has led to a contradiction,
and so / = 0 modp. Thus k = 1 modpe +^~' is a necessary condition, complet-
ing the induction.

8. The general case: R = Z / (m)

We assume n > 2. For /i = 1 see [1], Section 6. Let w = W^iP,^ be the prime
decomposition of m over Z, and let G(n, m) be the group of permutations of R
induced by {g(n, k): k G Z}. Let

A, = lcm(p, - 1, . . . ,p," - 1, (/»;"
+1 - 1)/ (/>,. - 1)).
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If a, = 1, set ft = \ . If a, > 1, set

M, =P,a'+fi'~2K wherepf'~l < n + 1 < />/*.

L e t L = lcm1 < 1 < r {/i,}.

LEMMA 1. If k = 1 mod L, f/ien the maps of R" induced by g(n, k) and g(n, I)
are equal.

PROOF. If k = / mod L then k = I mod ju,, 1 < i < r. Thus by Theorem 3 (in
the case a, > 2) and by the corollary to Theorem 4 of [9] (in the case a, = 1),
g(n, k) and g(n, I) induce the same map on Rf, where /?, = Z/(/?/*). By the
Chinese remainder theorem, R ~ II'_i /*,-, and so g("> A:) and g(n, I) induce the
same map on R".

LEMMA 8. The map xp: Z£ —» G(n, m) defined by \p(k) i-» (mqp o/ R" induced by

g(n, k)} is a homomorphism.

PROOF. g(n, k) is a permutation polynomial vector over Z/(m) if and only if
(A;, L) = 1. The rest follows from Lemma 7.

LEMMA 9. 77ie kernel of i/<, tv/iere i|/ is defined in Lemma 8, is a subgroup of the
direct product of t copies of the cyclic group Cn+l of order n + 1, where t is the
number of different prime factors of m with a,- = 1.

PROOF. If k e ker i|>, then g(n, k) induces the identity map on Z/(/>j°
v),

1 < i < r. If a, > 2, then k = 1 mod p,. If a, = 1, then k is an element of the
cyclic subgroup of order (n + 1) generated by p and ju,, as shown in the
corollary to Theorem 4 of [9]. The map k mod L —»(fc mod /i,, . . . , k mod /v) is
a monomorphism of ker ̂  into II' _i ker >//,., where <//, = '/'l^ and /?, = Z/(pp),
and the result follows.

In general the structure of G(n, m) depends on the interrelation of its prime
factors. However, if all a, > 2 then we have

THEOREM 5. If m = n '_ ,/>,"• and a, > 2/or 1 < i < r, and n > 2 then G(n, m),
the group of permutations of R" = (Z/(w))/l induced by {g(n, k)} is isomorphic to
the multiplicative group of reduced residues mod L, where

lcm(A. - 1, . . .,/,,« - 1, (/,;+• - 1)/ ( A - 1)),
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