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Abstract

We investigate conditions which ensure that systems of binomial polynomials with integer coefficients
are simultaneously free of large prime factors. In particular, for each positive number e, we show that
there are infinitely many strings of consecutive integers of size about n, free of prime factors exceeding
ne, with the length of the strings tending to infinity with speed log log log log n.
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1. Introduction

In the absence of local conditions imposed by congruential considerations, it seems
reasonable to expect that a set of integers having positive density should contain ar-
bitrarily long strings of consecutive integers. A celebrated theorem of Szemeredi [10]
shows that such a set must at least contain arbitrarily long arithmetic progressions.
Moreover, Hildebrand [8] has established that a set satisfying a certain 'stability' hy-
pothesis contains many strings of k consecutive integers provided only that the lower
density of the set exceeds (k — 2)/(k — 1). In this note we investigate the existence
of long strings of consecutive integers possessing only small prime factors. Integers
of the latter type, frequently referred to as 'smooth numbers', have found numerous
applications throughout number theory, and have been the subject of extensive invest-
igations by a host of authors (see, for example, Hildebrand and Tenenbaum [9] for an
illuminating survey). Thus far, however, it appears that little is known concerning the
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existence of strings of consecutive smooth numbers.
Our most general conclusions are somewhat complicated to state, and hence we

defer their enunciation to Section 2 below. At this point we content ourselves by
recording two direct consequences of our methods. Our first result shows that there
are arbitrarily long strings of consecutive smooth numbers. Here and henceforth we
write log^.* for the k-fo\d iterated logarithm, so that log, x = log*, and for each
positive integer k we define log^, x = logdog^. x).

THEOREM 1. Suppose that u is a fixed real number with u > 1. Let

t(n) = [log4n/log(3u)].

Then for infinitely many positive integers, n, none of the prime factors of any of the
string oft(n) consecutive integers, n + l,n +2,... ,n+ t(n), exceed n^".

It is convenient to refer to an integer whose prime factors are all at most v as being
v-smooth. Expressed in this language, Theorem 1 shows that for each positive number
e, there are infinitely many strings of consecutive «f-smooth numbers of size about
n, with the length of the strings tending to infinity with speed log4n. On the other
hand, in view of standard conjectures concerning the distribution of prime numbers, it
seems inconceivable that permissible values of t (n) could increase with n faster than
(log n)2, and indeed density considerations lead one to believe that growth faster than
log n is unlikely. Any upper bound on permissible t{n) smaller than log n, conditional
or not, would therefore appear to be of interest. By way of comparison with Theorem
1, the conclusion of Hildebrand [8] alluded to above shows that for each fixed k,
there are infinitely many strings of k consecutive n"k -smooth numbers of size about
n whenever ak > exp(— \/(k — 1)). Although considerably weaker with respect to
the smoothness parameter, this consequence of Hildebrand's work has the merit of
exhibiting strings of integers, the set of whose elements has positive lower density.
By contrast, the integers arising from our methods belong to an exceedingly thin set.

We note that the conclusions of Eggleton and Selfridge [3, § 2] provide a conclusion
similar to Theorem 1, save that t (n) is replaced by any fixed number not exceeding 5,
and the smoothness parameter n1/u is replaced by exp(c log « / log3 n) when t = 2, 3,
and by exp(c logn/yiog, n) when t = 4, 5, for a suitable positive constant c. (Here
we have corrected a minor oversight in the argument of [3] which arises because
primes of half density are used to construct the integers Po and P\.) Moreover, Balog,
Erdos and Tenenbaum [1, Theorem 3] have used a construction of Heath-Brown [5]
(see Heath-Brown [6] for an important correction to the latter) to show that there are
many pairs of integers n,n + I having no prime factors exceeding
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Although we are unable to improve on the smoothness parameters occurring in these
results, we are able to provide similar conclusions for arbitrary numbers of general
linear forms.

THEOREM 2. Let t be a fixed integer with t > 2, and let a, and b,(1 < i < t)
be non-zero integers. Then there are infinitely many integers nfor which the linear
polynomials n and a^n ± bt (1 < / < /) are simultaneously y-smooth, where

/ 61ogn \

The set of integers n constructed in our proof of Theorem 2 is again very thin.
For comparison, Balog and Ruzsa [2, Corollary 2] show that whenever a > 0 and
c ^ 0 are fixed integers, and ft is a positive number, then there is a set of integers n of
positive density for which both n and an + c are n^-smooth. We note that the latter
conclusion generalises a similar earlier conclusion of Hildebrand [7, Corollary 2] for
consecutive integers.

The argument we employ to establish the above conclusions is elementary, and
can be viewed as a natural extension of that used in Eggleton and Selfridge [3, §2].
The key observation is that the binomial polynomial xd — 1 factors as a product of
cyclotomic polynomials of degree at most <j>(d). When a is a positive integer and d is
a product of small prime numbers, therefore, it follows that the largest prime factor of
ad — 1 is at most (a + \)Ad^°iid^ for a suitable fixed A > 0. On choosing an increasing
sequence of such numbers d, we find that the integers ad — 1 become increasingly
smooth. In order to apply this observation to obtain the above conclusions, one
has only to develop a strategy for choosing integers for which the required linear
or binomial polynomials simultaneously assume the desired smooth shape. This we
achieve through a simple application of the Chinese Remainder Theorem. The details
will be found in the proof of Lemma 2.2 below. We deduce Theorems 1 and 2 from
Lemma 2.2 in Section 3 in routine manner.

We adopt the convention throughout that any variable denoted by the letter p is
implicitly assumed to be a prime number.

2. The polynomial construction

Before establishing the lemma fundamental to our proof of Theorems 1 and 2, we
require a preliminary result needed to partition the prime numbers equitably into a
number of classes.

LEMMA 2.1. Let y be a large real number, and let t and k be positive integers. Then
one can partition the prime numbers not exceeding y, and coprime with k, into sets,
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&\, ...,&*,, with the property that for each i,

K(p(k)logy/

and

(2.2)

PROOF. Let y be a large real number. Then the trivial observation that

combined with Mertens' Theorem (see, for example, [4, Theorem 429]), reveals that

n ( i -
p<y

(j)(k)logy'

Also, as a consequence of the Prime Number Theorem (see, for example, [4, Theorem
434]), one has

(2.4)
psy

Let the primes p with 2 < p < y and (p, k) = 1 be px < p2 < • • • < pn- When
1 < / < t we take ^ to be the set of prime numbers Pj with 1 < j < n for which
j = i (mod t). Thus for each / with 1 < i < t, and each j with 0 < j < (n — i)/t,
one has

Pjt+\ 5 Pjt+i

where we adopt the convention that pr = y when r > n. It follows that

\ \ ( l - l / p ; l + I ) < f 7 0 - i/Pyz-H/) <
0<j<{n-i)/l 0<y<(n-i)/' l<

whence

- n ( i - iip> ^2 n
We therefore deduce from (2.3) that

i/'
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whence (2.1) follows from the second inequality of (2.5). Meanwhile, by a similar
argument,

(2.6) y-
[ n p < n p - y n

Thus we deduce from (2.4) that

^ (fin')'"
V ' = 1

and (2.2) follows from the second inequality of (2.6). This completes the proof of the
lemma.

We are now in a position to establish a rather general conclusion concerning
simultaneous smooth values of binomial polynomials. We note that although the
conclusions stated in Lemma 2.2 below are restricted to two or more polynomials,
such is a matter more of convenience than necessity. One may easily convince oneself
that a slight modification of the method presented below will establish the desired
conclusion also for a single binomial polynomial.

LEMMA 2.2. Let (tn) be an increasing (possibly constant) sequence of integers
satisfying the property that when n is sufficiently large, one has tn > 2. Also, when
i G N, let kj, <2,, b, be positive integers. When n e N, write

/o -7\ A i FT L. f TT i i a<
(2.7) An = 2 ajbj, Kn = I \ k,, Kn = max k:, an = max —,

._

and

(2.8) vn = |

Then there is an absolute constant C such that for each natural number nfor which
yn > C log(2A"n), there is an integer x with

(2.9) exp(A:~1(logn)1/11) < x < n,

which satisfies the property that the largest prime factor of the integer

(2.10) x\\(a,xk'- b,)
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is at most

max < 2, max {a,, b,},
[ l<S

where

PROOF. Let /,•, k,•, a,•, b, (i e N) satisfy the hypotheses of the statement of the
lemma, let n be a large natural number, and define An, Kn, Kn, an and yn as in (2.7)
and (2.8). For the sake of concision we henceforth omit subscripts n, and write,
further, k for Kn. Provided that 3; is larger than a certain absolute constant yQ, as we
now suppose, it follows from Lemma 2.1 that we can partition the prime numbers not
exceeding y, and coprime with k, into sets, &x,... ,3?,, with the property that for
each / the inequalities (2.1) and (2.2) are satisfied. When 1 < / < t we define

(2.11) Yi= ]\P and T, = \ \ Yj,

and write F = yx ... y,. Thus it follows from the Prime Number Theorem that

(2.12) ArV-v/4 < r < e5y/4.

The definitions of the ys ensure that (kjFj, yj) = I (I < j < t), and so for each j one
may find integers Xy, jlj satisfying

(2.13) \<lj,iJLj<YJ,

with the property that

kjTjkj = —1 (mod y,) and kjTjjij = 1 (mod y7).

Let

(2.14) h = Tih ^ ^ = rjtj d < 7 < 0,

and when 1 < i, j < t and i ^ j , define the integers A,y and M,y by

(2.15) A,j = kJX,/yj and M,7 = fcy/*,-//;,

and when i = j , by

(2.16) Ajj = (kjkj + l)/Yj and MJ} = (kj/ij - l)/yj.
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We define the integer* satisfying the assertions made in the statement of the lemma
by putting

(2.17) x = 2

Then on recalling (2.12H2.14) and (2.8), we deduce that

t

x <2rY\(ctjbj)r < A*3"4 <n,
; = i

and so we obtain the upper bound on x claimed in (2.9). Meanwhile (2.14) and (2.17)
together imply that

where y = max,<;<, y,, and hence from (2.2), (2.11) and (2.12) we deduce that

log* > (£;y2rVv/4-5v /4 ' logA.

On recalling that y is large, it therefore follows from (2.8) that

log* > O t / r 'Oogn / log A)1/10log A > k-\\ogn)l/u,

and the lower bound on x claimed in (2.9) follows immediately.
In order to complete the proof of the lemma we have now only to show that the

desired polynomials are simultaneously smooth when evaluated at x. We start by
observing that when 1 < j < t, one has

(2.18) a j x k ' - bj = b j ( z j ' - I ) ,

where, on recalling (2.15)-(2.17),

(2.19)

But when d is a positive integer, the polynomial zd — 1 factors as a product of
cyclotomic polynomials, the degrees of which are each at most <p(d). Moreover,
plainly, the roots of the latter cyclotomic polynomials all lie on the unit circle. We
therefore deduce from (2.15)—(2.17) and (2.19) that the largest prime divisor of zJJ - 1
is at most

z*we*W:< < e*'z> ((aj/bj)xk'fYl)/y' .
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Then in view of (2.17) and (2.18), the expression (2.10) is n-smooth, where

(2.20) n = max j 2, max{a,, &,}, e

and

(2.21) V = max ( ^ M iOg(a**) + - ] .
i<;<'\ Yj ZJ

( ^ M iOg(a**) + -
\ Yj ZJ

Next, on recalling (2.11) and (2.1) we deduce that when 1 < j < t,

(2.22)
Yj

Moreover, from (2.2), (2.11), (2.12) and (2.19) one has for 1 < j < t,

Zj > 2T> > exp((ky2r'eiy/4'5y/4'log2) > exp((2*j2)-V/ 8) ,

and hence from (2.2) and (2.11),

When y/ \og(2k) is sufficiently large we may therefore conclude that Yj/Zj < 1.
thus the proof of the lemma is completed by collecting together (2.20)-(2.22).

3. Simultaneous smooth values of linear polynomials

It is now a simple matter, by inserting suitable choices for the parameters, to deduce
Theorems 1 and 2 from Lemma 2.2.

PROOF OF THEOREM 1. Let u be a fixed real number with u > 1, and let t(n) be
defined as in the statement of Theorem 1. We note, in particular, that when « is
sufficiently large in terms of u, one has t (n) > 2. We apply Lemma 2.2 with tn = t{n)
(n e N), and with

ki = \, a,: = 1, bi = i (i e N).

In the notation defined by (2.7), we then have

A n =2( r j ) , Kn = l, *„ = !, <*„ = ! (neN) .
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In particular, when n is sufficiently large in terms of u one has

An < 2t'n" < log2n,

whence, in the notation defined by (2.8),

yn >

It follows that yn satisfies the hypothesis necessary to apply Lemma 2.2 provided only
that n is sufficiently large in terms of u. Under such conditions, therefore, we may
conclude from the latter lemma that there is an integer x with

exp((log«)l / u) <x<n,

satisfying the condition that the largest prime factor of (x — l)(x — 2) • • • (x — tn) is
at most max{2, tn, ex^}, where

= 2 e x p ( - - l o g 2 y , , ) < - .

Consequently there is a strictly increasing sequence (n^) of positive integers satisfying
the property that for each k, the integers nk + 1, nk + 2 , . . . ,nk + t(nk) are all nk

u-
smooth. This completes the proof of the theorem.

As it stands, Theorem 1 is stated in such a way that the parameter u is assumed to
be a fixed real number with u > 1. At the cost of complicating the statement of our
result, this assumption in the statement of Theorem 1 may be somewhat weakened.
For example, one may establish through an almost identical argument that with v(n) =
[log4 n/ log5 n], there are infinitely many positive integers, n, for which none of the
prime factors of the string of v(n) consecutive integers n + l,n + 2,... ,n + v(n),
exceed

exp(31og«/log4n) .

PROOF OF THEOREM 2. Let / be a fixed integer with t > 2, and let At and B,
(1 < / < t) be non-zero integers. We apply Lemma 2.2 with tn = t (n e N), and with

*,- = 2, a, = A), b, = Bf (1 < i < /)•

In the notation defined by (2.7), we then have

An = 2 f j (AiBtf, Kn = 2', Kn = 2 , an = max £• (n € N).
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It follows, in the notation defined by (2.8), that yn satisfies the hypothesis necessary
to apply Lemma 2.2 provided only that n is sufficiently large in terms of t, A and B.
Under such conditions, therefore, we may conclude that there is an integer x with

exp(2-'(logn)'/n) <x <n,

satisfying the condition that the largest prime factor of x flLiO^?-*2 — Bf) is at most

max 12, max{aM /?,}, e{anx
2)p \ ,

where

= 2exp(—j-log^logyjj.

On recalling (2.8), we deduce that there is a strictly increasing sequence (nk) of
positive integers satisfying the property that for each k, the integers nk and Atnk ± B,
(1 < ' < 0 are simultaneously z-smooth, where

z = exp(61ognt/(log3nt)
1/').

This completes the proof of the theorem.
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