
J. Functional Programming 10 (3): 305–317, May 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

305

F U N C T I O N A L P E A R L

Perfect trees and bit-reversal permutations

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

(e-mail: ralf@informatik.uni-bonn.de)

Abstract

One well known algorithm is the Fast Fourier Transform (FFT). An efficient iterative version

of the FFT algorithm performs as a first step a bit-reversal permutation of the input list. The

bit-reversal permutation swaps elements whose indices have binary representations that are

the reverse of each other. Using an amortized approach, this operation can be made to run

in linear time on a random-access machine. An intriguing question is whether a linear-time

implementation is also feasible on a pointer machine, that is, in a purely functional setting. We

show that the answer to this question is in the affirmative. In deriving a solution, we employ

several advanced programming language concepts such as nested datatypes, associated fold

and unfold operators, rank-2 types and polymorphic recursion.

1 Introduction

A bit-reversal permutation operates on lists whose length is n = 2k for some natural

number k, and swaps elements whose indices have binary representations that are

the reverse of each other. The bit-reversal permutation of a list of length 8 = 23, for

instance, is given by

brp3 [a0, a1, a2, a3, a4, a5, a6, a7 ] = [a0, a4, a2, a6, a1, a5, a3, a7 ].

In this case, the elements at positions 1 = (001)2 and 4 = (100)2 and the elements at

positions 3 = (011)2 and 6 = (110)2 are swapped. Formally, we may define brpk as

the unique function that satisfies

at i · brpk = at (revk i ), (1)

for all i ∈ {0, . . . , n−1}. The function at denotes list indexing and revk computes the

bit-reversal of a natural number. Assuming that list indexing takes a constant time,

and given a function revk that runs in Θ(k) time, it is straightforward to implement

brpk such that it takes Θ(nk) time to permute a list of length n = 2k . Some extra

cleverness is necessary to make brpk run in linear time – see Cormen et al. (1991,

Problem 18.1). Now, the question is whether brpk can be implemented to run in linear

time without assuming a constant time indexing function. Again, it is straightforward

to design an implementation that takes Θ(nk) time. The main idea is to represent the

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


306 R. Hinze

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Fig. 1. The bit reversal permutation of the list [0 . . 15].

input list by a perfectly balanced, binary leaf tree (Dielissen and Kaldewaij, 1995),

and to use tree instead of list indexing. In the rest of this Functional Pearl, we show

how to develop this idea into a linear-time implementation.

To begin, let us assume that the length of the input list is fixed and known

in advance. The algorithmic part of the solution will be developed under this

assumption. Once the algorithmic details have been settled, we discuss the extensions

necessary to make the program work for inputs of unknown lengths.

2 Perfect trees

This section introduces perfectly balanced, binary leaf trees – perfect trees for short

– and recursion operators for folding and unfolding them. To represent perfect trees

we employ the simplest scheme conceivable, namely, pairs of pairs of . . . of elements.

Formally, a perfect tree of rank n is an element of ∆na , where ∆ is given by

type ∆ a = a × a ,

and F n is defined by F 0 a = a and F n+1 a = F n (F a). Members of ∆a are also

called nodes. The tree depicted in figure 1, for instance, is represented by the term

((((0, 8), (4, 12)), ((2, 10), (6, 14))), (((1, 9), (5, 13)), ((3, 11), (7, 15))))

of type ∆4 Int . To manipulate trees we will make frequent use of the mapping

function on nodes defined by

∆ :: (a → b)→ (∆ a → ∆ b)

∆ ϕ (a0, a1) = (ϕ a0, ϕ a1).

Following common practice, we use the same name both for the type constructor

and for the corresponding map on functions. Accordingly, the mapping function

for perfect trees of rank n is given by ∆n , where f 0 a = a and f n+1 a = f n (f a).

The combination of type constructor and mapping function is often referred to as a

functor. Every mapping function satisfies the following so-called functor laws, which

will prove useful in the calculations to follow.

∆ id = id

∆ (ϕ · ψ) = ∆ ϕ · ∆ ψ.

Now, to build and to flatten perfect trees we employ variants of recursion schemes

widely known as cata- and anamorphisms (Meijer et al., 1991). The catamorphism

on ∆n , denoted ([-])n , takes a function of type ∆a → a and replaces each node in its

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 307

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0 8

4 12

4 12

2 6 10 14

2 10

2 10

6 14

6 14

1 3 5 7 9 11 13 15

1 5 9 13

1 9

1 9

5 13

5 13

3 7 11 15

3 11

3 11

7 15

7 15

Fig. 2. Constructing the bit reversal permutation of [0 . . 15].

input with this function:

([-])n :: (∆ a → a)→ (∆n a → a)

([ϕ])0 = id

([ϕ])n+1 = ϕ · ∆ ([ϕ])n .

Since the recursion operator is indexed by the rank of its input, we should rather

speak of a ranked catamorphism. The converse of a ranked catamorphism is a ranked

anamorphism, denoted db(-)ecn , which takes a function of type a → ∆a and builds a

perfect tree from a given seed of type a:

db(-)ecn :: (a → ∆ a)→ (a → ∆n a)

db(ψ)ec0 = id

db(ψ)ecn+1 = ∆ db(ψ)ecn · ψ.

Ranked cata- and anamorphisms satisfy a variety of properties. We will make use

of the following laws:

([ϕ])n = ∆0 ϕ · . . . · ∆n−1 ϕ (2)

db(ψ)ecn = ∆n−1 ψ · . . . · ∆0 ψ (3)

([ϕ])n ·db(ψ)ecn = id ⇐= ϕ · ψ = id (4)

db(ψ)ecn · ([ϕ])n = id ⇐= ψ · ϕ = id . (5)

The first two laws show that ranked cata- and anamorphisms can be expressed as

compositions of mapping functions. The third and fourth laws state that ranked

cata- and anamorphisms are inverse to each other if the base functions are.

3 Two recursive solutions

Recall the main idea of implementing brpk sketched in the introduction: the input

list is transformed into a perfect tree, which is then repeatedly indexed to build the

bit-reversal permutation. An alternative approach that avoids the use of an indexing

operation works by building a perfect tree, and then flattening it into a list. During

either the first or second phases, the elements are shuffled to obtain the desired

bit-reversal permutation. Figure 2 illustrates the building of a perfect tree that has

the bit-reversal permutation of the input list as a frontier.

Building a perfect tree is probably a matter of routine: the input list is split

into two equal halves; trees are built recursively for each half, and the results are

finally combined. Here, and in what follows, we assume that the input list has a

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


308 R. Hinze

length n = 2k . Now, there are essentially two methods for splitting a list of length

2k into two equal halves. The first, called uncat , partitions a list according to the

most significant bit of the indices; the second, called uninterleave, partitions a list

according to the least significant bit:

uncat [a0, . . . , am−1 ] = ([a0, . . . , am/2−1 ], [am/2, . . . , am−1 ])

uninterleave [a0, a1, a2, a3, . . .] = ([a0, a2, . . .], [a1, a3, . . .]).

Both functions have natural inverses, termed cat and interleave, i.e. cat · uncat = id

and interleave · uninterleave = id . Since we consider only lists of length 2k , the dual

properties uncat · cat = id and uninterleave · interleave = id hold, as well. Building

upon uncat and uninterleave we obtain two functions for constructing a perfect tree

of rank k . The first, unflattenk , builds a tree that has the input list as a frontier,

while the second, unshufflek , builds a tree that has the bit-reversal permutation as a

frontier:

unflattenk , unshufflek :: [a ]→ ∆k a

unflattenk = ∆k unwrap ·db(uncat)eck
unshufflek = ∆k unwrap ·db(uninterleave)eck

The function unwrap is given by unwrap [a ] = a; we will also require its converse,

wrap, which is accordingly defined by wrap a = [a ]. As an aside, note that the trees

generated by unflattenk and unshufflek may be considered as radix trees: unflattenk x

represents the finite map i 7→ at i x , while unshufflek x represents i 7→ at (revk i ) x .

From unflattenk and unshufflek , we can easily derive two functions for flattening

a tree. The derivation of unflattenk ’s inverse proceeds as follows:

flattenk · unflattenk = id

⇐= { definition unflattenk }
flattenk · ∆k unwrap ·db(uncat )eck = id

⇐= { cat · uncat = id and (4) }
flattenk · ∆k unwrap = ([cat ])k

⇐= { ∆ functor and wrap · unwrap = id }
flattenk = ([cat ])k · ∆k wrap .

The derivation of unshufflek ’s inverse proceeds in an analogous fashion. To summa-

rize,

flattenk , shufflek :: ∆k a → [a ]

flattenk = ([cat ])k · ∆k wrap

shufflek = ([interleave])k · ∆k wrap.

Now, by composing unshufflek with flattenk or unflattenk with shufflek , we obtain

two Θ(nk) time implementations of brpk :

brpk = ([cat])k ·db(uninterleave)eck = ([interleave])k ·db(uncat)eck .

The proof that brpk satisfies the specification (1) is left as an exercise to the reader.

Note that both cata- and both anamorphisms take Θ(nk) time. It is well known

that the running time of unflattenk can be improved to Θ(n) using a technique

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 309

called tupling (Bird, 1998). The dual technique termed accumulation may be used

to improve the complexity of flattenk . However, the overall gain is only a constant

factor, since unshufflek and shufflek are not amenable to these techniques. The key

to a linear-time implementation of brpk is to build and to flatten perfect trees

iteratively.

4 Two iterative solutions

Rather than introducing the iterative versions in a single big ‘eureka’ step, we try to

derive them from the recursive functions defined in the previous section. In fact, we

present two different derivations: the first is based on algorithmic considerations,

while the second, which is more elegant but also more abstract, rests upon the

so-called naturality of brpk .

4.1 A derivation based on algorithmic considerations

Since flattening a tree is simpler than building one, we start by improving flattenk

and its colleague shufflek . To this end we try to express flatteni+1 in terms of flatteni :

flatteni+1 = step · flatteni . (6)

It is not entirely obvious that this approach works. However, if it works, then the

iterative variant of flattenk is given by stepk · wrap (note that flatten0 = wrap).

Now, the function step has type [∆a ] → [a ], i.e. it transforms a list of pairs of

elements into a list of elements. A moment’s reflection reveals that step takes the list

[(a0, b0), (a1, b1), . . .] to [a0, b0, a1, b1, . . .]. Thus, it can be defined by interleave · unzip,

where unzip is given by

unzip :: [∆ a ]→ ∆ [a ]

unzip = list fst M list snd .

Here list denotes the mapping function on lists and (M) is given by (ϕ0 M ϕ1) a =

(ϕ0 a , ϕ1 a). In the sequel we also require unzip’s inverse, denoted zip. The reason

for defining step in terms of unzip is simply to make the symmetry between flattenk

and shufflek explicit (see below). The crucial property of step = interleave · unzip is

that it distributes over cat , i.e.

step · cat = cat · ∆ step (7)

step · ([cat ])i = ([cat])i · ∆i step. (8)

Now, to prove (6) we reason

flatteni+1 = { definition flattenk }
([cat])i+1 · ∆i+1 wrap

= { (2) }
([cat])i · ∆i cat · ∆i+1 wrap

= { ∆ functor }

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


310 R. Hinze

([cat])i · ∆i (cat · ∆ wrap)

= { cat · ∆ wrap = step · wrap }
([cat])i · ∆i (step · wrap)

= { ∆ functor }
([cat])i · ∆i step · ∆i wrap

= { (8) }
step · ([cat ])i · ∆i wrap

= { definition flattenk }
step · flatteni .

The derivation for shufflek proceeds in an analogous fashion. It suffices, in fact, to

interchange the rôles of cat and interleave. To summarize,

flattenk = (interleave · unzip)k · wrap

shufflek = (cat · unzip)k · wrap.

Given these equations, it is almost trivial to derive iterative definitions for unflattenk

and unshufflek . We get

unflattenk = unwrap · (zip · uninterleave)k

unshufflek = unwrap · (zip · uncat )k .

Both zip · uninterleave and zip · uncat take time proportional to the size of the input

list. Since the length of the list is halved in each step, we have a total running time

of 2k + 2k−1 + · · ·+ 2 + 1 = Θ(n). Putting things together, we obtain two linear-time

implementations of brpk :

brpk = (interleave · unzip)k · (zip · uncat)k = (cat · unzip)k · (zip · uninterleave)k .

4.2 A derivation based on naturality

The bit-reversal permutation satisfies a very fundamental property:

list h · brpk = brpk · list h . (9)

This so-called naturality law holds for every polymorphic function of type [a ]→ [a ]

– see Wadler (1989). Basically, (9) captures the intuitive property that a polymorphic

list-processing function does not depend in any way upon the nature of the list

elements. All such a function can possibly do is to rearrange the input list. Thus,

applying h to each element of the input list and then rearranging yields the same

result as rearranging and then applying h to each element.

Building upon the naturality law, we can give an alternative, more elegant deriva-

tion of the linear-time brpk implementations. To this end let us unfold the first

recursive solution:

brpk+1 = { first definition of brpk in section 3 }
([cat])k+1 ·db(uninterleave)eck+1

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 311

= { definition ([-])k and db(-)eck }
cat · ∆ ([cat])k · ∆ db(uninterleave)eck · uninterleave

= { ∆ functor and definition brpk }
cat · ∆ brpk · uninterleave.

Note that the second iterative solution also depends upon cat and uninterleave.

Unfolding its definition, we obtain

brpk+1 = { second definition of brpk in section 4.1 }
(cat · unzip)k+1 · (zip · uninterleave)k+1

= { definition -k and definition brpk }
cat · unzip · brpk · zip · uninterleave.

Now, in order to join the loose ends we require

unzip · brpk = ∆ brpk · unzip.

So, unzipping a list of pairs and then independently rearranging the two output lists

should yield the same result as rearranging a list of pairs and then unzipping. In

fact, this proves to be true for every polymorphic function of type [a ]→ [a ]. Here

is a simple calculational proof.

unzip · ϕ = { definition unzip }
(list fst M list snd ) · ϕ

= { (ϕ0 M ϕ1) · ϕ = (ϕ0 · ϕ) M (ϕ1 · ϕ) }
(list fst · ϕ) M (list snd · ϕ)

= { ϕ satisfies list h · ϕ = ϕ · list h }
(ϕ · list fst ) M (ϕ · list snd )

= { (ϕ · ϕ0) M (ϕ · ϕ1) = ∆ ϕ · (ϕ0 M ϕ1) }
∆ ϕ · (list fst M list snd )

= { definition unzip }
∆ ϕ · unzip

Using an analogous argument we can also give an alternative derivation of the first

iterative solution.

5 A Haskell program

Up to now we have assumed that the length of the input list is fixed and known

in advance. Let us finally get rid of this assumption. For concreteness, the final

program will be given in the functional programming language Haskell 98 (Peyton

Jones and Hughes,1999). The main reason for choosing Haskell is that we require a

fairly advanced type system.

We must first seek a suitable datatype for representing perfect trees. Since the

type should encompass perfect trees of arbitrary rank, we are, in fact, looking for

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


312 R. Hinze

a representation of ∆0 + ∆1 + ∆2 + · · ·. Here, ‘+’ denotes the disjoint sum raised to

the level of functors, (F0 + F1) a = F0 a + F1 a . Recall that F n is given by F 0 a = a

and F n+1 a = F n (F a). Alternatively, we may define F 0 = Id and F n+1 = F n · F

where Id is the identity functor, Id a = a , and ‘·’ denotes functor composition,

(F · G) a = F (G a). Now, using the fact that functor composition distributes

leftward through sums, (G0 + G1) · F = G0 · F + G1 · F , we obtain

∆0 + ∆1 + ∆2 + · · · = Id + (∆0 + ∆1 + ∆2 + · · ·) · ∆.

Replacing ∆0 + ∆1 + ∆2 + · · · by an unknown we arrive at the following fixpoint

equation for perfect trees:

Perfect = Id + Perfect · ∆.

Rewriting the functor equation in an applicative style and introducing constructor

names yields the desired Haskell datatype definition:

data Perfect a = Zero a | Succ (Perfect (∆ a)).

This definition is somewhat unusual in that the recursive component, Perfect (∆ a),

is not identical to the left-hand side of the equation. The type recursion is nested

which is why datatype definitions with this property are called nested datatypes

(Birdland Meertens, 1998). Abbreviating the constructor names to their first letter

the tree of figure 1 is represented by the following term:

S (S (S (S (Z ((((0, 8), (4, 12)), ((2, 10), (6, 14))),

(((1, 9), (5, 13)), ((3, 11), (7, 15)))))))).

Note that the ‘prefix’ S n Z encodes the tree’s rank in unary representation.

It is interesting to contrast Perfect to the ‘usual’ definition of binary leaf trees,

which in fact corresponds to the following fixpoint equation:

Tree = Id + ∆ · Tree.

Clearly, Tree is not identical to Perfect , the formal reason being that functor

composition does not distribute rightward through sums. In general, we only have

F · (G0 + G1) ⊇ F · G0 + F · G1. Here is the Haskell datatype corresponding to the

functor equation above:

data Tree a = Leaf a | Fork (∆ (Tree a)).

Encoded as an element of Tree Int , the tree of figure 1 reads

F (F (F (F (L 0,L 8),F (L 4,L 12)),F (F (L 2,L 10),F (L 6,L 14))),

F (F (F (L 1,L 9),F (L 5,L 13)),F (F (L 3,L 11),F (L 7,L 15)))).

Comparing the two expressions, it is fairly obvious that the first representation is

more concise than the second. If we estimate the space usage of an k-ary constructor

at k + 1 cells, we have that a perfect tree of rank n consumes (2n − 1)3 + (n + 1)2

cells with the first and (2n − 1)3 + 2n2 with the second representation.1

1 We even assume that F (`, r) occupies only three cells.

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 313

There is one further difference. Since Haskell is a non-strict language, Tree a

comprises finite as well as partial and infinite trees. By contrast, Perfect a only

accommodates finite trees.2 Given this, and the fact that the nested datatype is more

space economical, we are led to conclude that Perfect a is the datatype of choice

when only perfectly balanced trees are required.

Next we tackle the question how to define recursion schemes for folding and

unfolding perfect trees. The presentation largely follows the approach taken by

Meijer and Hutton (1995), but as we shall see, at a higher level of abstraction. We

must first recast recursive type definitions as fixed points of so-called base functors.

Here is the base functor corresponding to Perfect:

data Base perfect a = Zero a | Succ (perfect (∆ a)).

The base functor is obtained by replacing the recursive occurrence of Perfect by a

type variable. The type Perfect can now be defined as the fixpoint of this functor:

newtype Perfect a = in (Base Perfect a).

The constructor in and its inverse out given by out (in a) = a establish an isomor-

phism between the functors Perfect and Base Perfect . Note that Base is not really a

functor but a higher-order functor as it takes type constructors to type constructors,

i.e. functors to functors. Its associated mapping function is even more unusual, since

it takes polymorphic functions of type ∀a .t a → u a to polymorphic functions of

type ∀b.Base t b → Base u b.

base :: (∀a .t a → u a)→ (∀b.Base t b → Base u b)

base ϕ = Zero O Succ · ϕ
(f O g) (Zero a) = f a

(f O g) (Succ t) = g t .

Note that the parameter ϕ is applied as a function of type t (∆ a)→ u (∆ a), which

explains why it must be polymorphic. The type of base is a so-called rank-2 type

(McCracken, 1984), which is not legal Haskell 98. A suitable extension, however,

has been implemented in GHC (Peyton Jones, 1998) and in Hugs 98 (Jones and

Peterson, 1999), both of which accept the definition if we change the type signature to

(∀a .t a → u a) → Base t b → Base u b. The definition of cata- and anamorphisms

is now entirely straightforward except perhaps for the types:

([-]) :: (∀a .Base t a → t a)→ (∀b.Perfect b → t b)

([ϕ]) = ϕ · base ([ϕ]) · out

db(-)ec :: (∀a .t a → Base t a)→ (∀b.t b → Perfect b)

db(ψ)ec = in · base db(ψ)ec · ψ.

Both ([-]) and db(-)ec map polymorphic functions to polymorphic functions. Catamor-

phisms on perfect trees usually take the form ([f O g]) with f :: a → t a and

2 Of course, Perfect a also contains partial elements such as Succ ⊥ and the infinite element let t =
Succ t in t but these elements hardly qualify as trees.

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


314 R. Hinze

g :: t (∆ a) → t a , which we will abbreviate to ([f , g]). Anamorphisms are typi-

cally written as db((p → Zero · f , Succ · g))ec with p :: t a → Bool , f :: t a → a , and

g::t a → t (∆ a). The expression (p → f , g), McCarthy’s conditional form, is given by

(p → f , g) a = if p a then f a else g a .

For better readability we abbreviate the unwieldy db((p → Zero · f , Succ · g))ec to

db(p, f , g)ec.
Now for the utterly revolting part. How do we flatten a perfect tree of type

Perfect a? The catamorphism ([f , g]) takes a tree of the form S n (Z t) to f n (g t).

It is immediate that the latter expression realizes a simple loop, which leads us to

suspect that we must merely adapt the iterative variant of flattenk . Inspecting the

types of f :: a → [a ] and g :: [∆a ]→ [a ] confirms this suspicion:

flatten , shuffle :: Perfect a → [a ]

flatten = ([wrap, interleave · unzip])

shuffle = ([wrap, cat · unzip]).

Loosely speaking, Perfect a captures the recursion scheme of iterative tree algo-

rithms. Building a perfect tree is, of course, also done iteratively:

unflatten , unshuffle :: [a ]→ Perfect a

unflatten = db(single, unwrap , zip · uncat)ec
unshuffle = db(single, unwrap , zip · uninterleave)ec.

The function single, which tests a list for being a singleton, is defined by single x =

not (null x ) ∧ null (tail x ). The bit-reversal permutation can now be defined as

the composition of an ana- and a catamorphism. The question naturally arises as

to whether it is possible to remove the intermediate data structure built by the

anamorphism and consumed by the catamorphism. Let us see what we can obtain

by a little calculation. Setting

h = ([f , g]) ·db(p, f ′, g ′)ec

we argue

h = { specification }
([f , g]) ·db(p, f ′, g ′)ec

= { definition ([-, -]) and db(-, -, -)ec }
(f O g) · base ([f , g]) · out · in · base db(p, f ′, g ′)ec · (p → Z · f ′, S · g ′)

= { out · in = id , base functor, and specification }
(f O g) · base h · (p → Z · f ′, S · g ′)

= { h · (p → f , g) = (p → h · f , h · g)⇐= h strict }
(p → (f O g) · base h · Z · f ′, (f O g) · base h · S · g ′)

= { definition base, (f O g) · Z = f , and (f O g) · S = g }
(p → f · f ′, g · h · g ′).

Thus, we can express ([f , g]) ·db(p, f ′, g ′)ec as the least fixed point of the recursion

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 315

equation h = (p → f · f ′, g · h · g ′). It is interesting to take a closer look at h ’s

typing: assuming the following types for the ingredient functions

p :: t a → Bool

f ′ :: t a → a f :: a → u a

g ′ :: t a → t (∆ a) g :: u (∆ a)→ u a

we infer that h has type t a → u a while the recursive call is of type t (∆a)→ u (∆a).

In the i th level of recursion h has type t (∆i a) → u (∆i a). This means that h is

a so-called polymorphically recursive function (Mycroft, 1984). It should be noted

that the Hindley–Milner type system, which underlies most of today’s functional

programming languages, does not allow polymorphic recursion. Furthermore, a

suitable extension of the type system has been shown to be undecidable (Henglein,

1993). Haskell allows polymorphic recursion only if an explicit type signature is

provided for the respective function.

Now, by applying the fusion law to flatten · unshuffle, we obtain a surprisingly

concise implementation of the bit-reversal permutation:

brp :: [a ]→ [a ]

brp = (single → id , cat · unzip · brp · zip · uninterleave).

Note that brp accepts arbitrary non-empty lists. However, only the first 2blog2 nc

elements of the input list are actually used. The remaining elements are discarded

by the invocations of zip .

6 Final remarks

The nested datatype Perfect nicely incorporates the structural properties of perfectly

balanced, binary leaf trees. Its definition essentially proceeds bottom-up: a perfect

tree of rank n + 1 is defined as a perfect tree of rank n containing pairs of

elements. Consequently, the recursion operators for folding and unfolding perfect

trees capture iterative algorithms. By contrast, the regular datatype Tree proceeds in

a top-down manner; its associated recursion operators capture recursive algorithms.

Unsurprisingly, not every function on perfect trees can be expressed as an iteration.

For that reason, a generalization of the fold operator has been proposed (Bird and

Paterson, 1999), that allows us to implement iterative as well as recursive algorithms

or even mixtures of both styles.

The bit-reversal permutation is only defined for lists of length n = 2k . The con-

struction of binary leaf trees, however, makes sense for lists of arbitrary length. In the

general case, the recursive and the iterative versions of unflatten and unshuffle yield

differently shaped trees. The recursive version constructs a leaf-oriented Braun tree

(Braun and Rem, 1983), which is characterized by the following balance condition:

each node Fork (`, r) satisfies size r 6 size ` 6 size r +1. The iterative version yields

a leftist left-complete tree (Dielissen and Kaldewaij, 1995), where the offsprings of

the nodes on the right spine form a sequence of perfect trees of decreasing height.

Both algorithms are mentioned in Bird (1997). The two techniques of constructing

leaf trees are closely related to top-down and bottom-up versions of merge sort

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


316 R. Hinze

(Paulson, 1996). In fact, the different merge sort implementations may be obtained

by fusing unflatten with ([wrap,merge]), where ([–, –]) is the standard catamorphism

for Tree. Interestingly, an input which provokes the worst-case for the respective

merge sort is then constructed by applying flatten · unshuffle to an ordered list.

This permutation has the effect that each application of merge must interleave its

argument lists.

Acknowledgements

I am grateful to Richard Bird, Jeremy Gibbons and Geraint Jones for suggesting

the ‘higher-order’ naturality law for unzip, on which the development in section 4.2

is based.

References

Bird, R. (1998) Introduction to Functional Programming using Haskell. 2nd ed. Prentice Hall.

Bird, R. and Meertens, L. (1998) Nested datatypes. In: Jeuring, J. (editor), 4th Interna-

tional Conference on Mathematics of Program Construction, MPC’98, pp. 52–67. Marstrand,

Sweden. Lecture Notes in Computer Science 1422. Springer-Verlag.

Bird, R. and Paterson, R. (1999) Generalised folds for nested datatypes. Formal Aspects of

Computing. 11(2), 200–222, September 1999.

Bird, R. S. (1997) Functional Pearl: On building trees with minimum height. J. Functional

Programming, 7(4), 441–445.

Braun, W. and Rem, M. (1983) A logarithmic implementation of flexible arrays. Memorandum

MR83/4, Eindhoven University of Technology.

Dielissen, V. J. and Kaldewaij, A. (1995) A simple, efficient, and flexible implementation

of flexible arrays. 3rd International Conference on Mathematics of Program Construction,

MPC’95. Lecture Notes in Computer Science 947, pp. 232–241. Springer-Verlag.

Henglein, F. (1993). Type inference with polymorphic recursion. ACM Trans. Programming

Languages and Systems, 15(2), 253–289.

Jones, M. P. and Peterson, J. C. (1999) Hugs 98 user manual. Available from

http://www.haskell.org/hugs.

McCracken, N. J. (1984) The typechecking of programs with implicit type structure. In: Kahn,

G., MacQueen, D. B. and Plotkin, G. D. (editors), Semantics of Data Types: International

Symposium, Sophia-Antipolis, France. Lecture Notes in Computer Science 173, pp. 301–315.

Springer-Verlag.

Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,

lenses, envelopes and barbed wire. 5th ACM Conference on Functional Programming Lan-

guages and Computer Architecture, FPCA’91, pp. 124–144. Cambridge, MA, USA. Lecture

Notes in Computer Science 523. Springer-Verlag.

Meijer, E. and Hutton, G. (1995) Bananas in space: Extending fold and unfold to exponen-

tial types. 7th ACM SIGPLAN/SIGARCH and IFIP WG 2.8 International Conference on

Functional Programming Languages and Computer Architecture, FPCA’95, pp. 324–333. La

Jolla, San Diego, CA, USA. ACM-Press.

Mycroft, A. (1984) Polymorphic type schemes and recursive definitions. In: Paul, M. and

Robinet, B. (editors), Proceedings of the International Symposium on Programming, 6th Col-

loquium, pp. 217–228. Toulouse, France. Lecture Notes in Computer Science 167. Springer-

Verlag.

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701


Functional pearl 317

Paulson, L. C. (1996) ML for the Working Programmer. 2nd edn. Cambridge University Press.

Peyton Jones, Simon. (1998) Explicit quantification in Haskell. URL:

http://research.microsoft.com/Users/simonpj/Haskell/quantification.html.

Peyton Jones, S. and Hughes, J. (editors) (1999) Haskell 98—A non-strict, purely functional

language. URL: http://www.haskell.org/definition

Wadler, P. (1989) Theorems for free! 4th International Conference on Functional Programming

Languages and Computer Architecture, FPCA’89, pp. 347–359. London, UK. ACM-Press.

https://doi.org/10.1017/S0956796800003701 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003701

