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From two-dimensional solitons to
four-dimensional magnetic monopoles

21.1 Introduction

Solitons play an important role in non-perturbative two-dimensional fields as
we have seen in the first part of this book. They are intimately related to non-
trivial topology, they are an essential ingredient in integrable models, and they
enable the phenomenon of fermion boson duality-bosonization. When passing
to four-dimensional field theories the topology may be even richer and thus
we would anticipate having topological solitons as static solutions also in four-
dimensional space-time. As we have seen in Section 5.3, Derrik’s theorem does
not permit the existence of solitons of scalar field theory in space dimensions
higher than one, however, they are not prohibited in theories that include higher
spin fields, in particular in theories of scalar fields coupled to non-abelian gauge
fields. Indeed as we will see in this section certain theories of this type that admit
spontaneous symmetry breaking, admit soliton solutions. These configurations
carry a conserved topological charge which guarantees their stability against
decay to the vacuum. As it will turn out this charge is in fact a magnetic charge
and hence these solitons are magnetic monopoles, or in the more general case
dyons with both magnetic and electric charge. The construction of dyons from
static solutions will be the analog process of building up breathers from two-
dimensional solitons.

In the next section we present the basics of the Yang–Mills Higgs theory. We
then show the relation between magnetic monopoles and topological solitons both
for the simplest case of SU(2) (and SO(3)) as well as for a general non-abelian
gauge group. The next topic is the seminal solution of ’t Hooft and Polyakov.
Then we discuss zero modes, time-dependent solutions and dyons. In the follow-
ing section we discuss the very important limit of BPS. We then describe the
construction of multi-monopole solutions that was proposed by Nahm. We show
its application to the construction of BPS monopoles of charge one and two. The
next topic is the moduli space of monopoles. We determine the metric on this
space for the case of widely separated monopoles.

The topic of magnetic monopoles and dyons has been covered by several review
papers, proceedings of meetings and books, for instance [21], [214], [67], [7], [182]
and [193], respectively. Here in this chapter we made use of mainly the former
two references.

https://doi.org/10.1017/9781009401654.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.022


372 From two-dimensional solitons to four-dimensional magnetic monopoles

Monopoles and dyons play an important role in N = 2 SYM. They admit a
mathematical non-perturbative structure that can be determined exactly. Since
we do not discuss supersymmetry in this book the monopoles and dyons of that
theory will not be addressed in this chapter. We refer the reader to [191] and
[192].

21.2 The Yang–Mills Higgs theory – basics

Consider the Yang–Mills Higgs system described by the following Lagrangian
density,

L = −1
2
Tr[Fμν Fμν ] + Tr[DμΦDμΦ]− V (Φ), (21.1)

where the (non-abelian) gauge group is G, Φ is in the adjoint representation of
the group, namely,

Aμ = TaAa
μ Φ = TaΦa , (21.2)

where Ta are the generators of G (see Section 3.1), the covariant derivative reads,

Dμ = ∂μΦ + ie[Aμ,Φ], (21.3)

and V (Φ) is given by,

V (Φ) = −μ2Tr[Φ2] + λ(Tr[Φ2])2 , (21.4)

where λ is taken to be positive so that the energy is bounded from below, and
we also take μ2 > 0. In general one can discuss a similar system where Φ is
in any representation of G but here we consider only the case of the adjoint
representation.

Let us start with the simplest case where G = SU(2) and Φ is in the triplet
(adjoint) representation. For such a case the vacuum solution can be put in the
form,

Φ(x) = v
σ3

2
≡ Φ0 v ≡

√
μ2

λ
Aμ(x) = 0. (21.5)

In this case the vacuum expectation value of the Higgs field breaks the SU(2)
symmetry down spontaneously to a U(1) symmetry along the a = 3 direction.
The physical fields will be denoted as follows,

Aμ = A3
μ Wμ =

A1
μ + iA2

μ√
2

ϕ = Φ3 , (21.6)

which associate with the massless “photon”, pair of mesons W,W ∗ with a mass of
eV and charges±e and an electrically neutral scalar boson with mass mH =

√
2μ,

respectively.

https://doi.org/10.1017/9781009401654.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.022


21.3 Topological solitons and magnetic monopoles 373

For a general group G which we take to be a simple Lie group of rank r (for
the basic definitions see Section 3.1). In this case the expectation value of φ = Φ0

can be taken to lie in the Cartan subalgebra of the group G. Using the notation
�H for the r-dimensional vector of the elements of the Cartan subalgebra, Φ0 is
characterized by a vector �h such that,

Φ0 = �h · �H. (21.7)

The generators of the unbroken subgroup are those generators of G that commute
with Φ0. These are all the generators of the Cartan subalgebra together with
ladder operators associated with roots orthogonal to �h. If none of the �γ are
orthogonal to h the unbroken symmetry is U(1)r , whereas if there are some
roots �γ such that �γ · �h = 0 then the unbroken symmetry is U(1)r−r ′ ×K where
K is of rank r′ and it has �γ as its root diagram.

21.3 Topological solitons and magnetic monopoles

In Section 5.2 when discussing two dimensional solitons, we identified a topolog-
ical conserved current and an associated topological charge. Configurations that
carry a non-trivial value with respect to this charge cannot, due to charge conser-
vation, decay to vacuum. These configurations were shown to be stable solutions
of the equations of motion and to have finite energy. Thus we anticipate that
also in four-dimensional field theories, and in particular in the Yang–Mills Higgs
theory we discuss here, there should be solutions of the equations of motion that
associate with non-trivial topological charges and one can determine their exis-
tence even without solving the equations of motion. It is easy to verify that for
G = SU(2) the following current,

kμ =
1
8π

εμνρσ εabc∂ν Φ̂a∂ρΦ̂b∂σ Φ̂c , (21.8)

where Φ̂a = Φa

|Φ| , is conserved for any configuration whether it solves the equations
of motion or not. It follows trivially from the total anti-symmetry of εμνρσ that
∂μkμ = 0. The corresponding charge is,

Q =
∫

d3xk0 =
1
8π

∫
d3xεijk εabc∂iΦ̂a∂j Φ̂b∂k Φ̂c

=
1
8π

∫
d3xεijk εabc∂i(Φ̂a∂j Φ̂b∂k Φ̂c) =

1
8π

∫
d2Sixεijk εabcΦ̂a∂j Φ̂b∂k Φ̂c .

(21.9)

This topological charge is the winding number associated with the map,

Φ0(∞) : Sspace
2 → S

G/H
2 , (21.10)

where Sspace
2 is the boundary of the space at r =∞ and where the coset space

G/H is in our example G/H = SU(2)/U(1) = S2 . It is thus an integer charge
Q = n and as such it must be invariant under smooth deformations of the surface
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374 From two-dimensional solitons to four-dimensional magnetic monopoles

of integration that do not cross any of the zeros of Φ. In fact a configuration with
Q = n must have at least |n| zeros of the Higgs field. If we distinguish between
a + zero and a – anti-zero then the net number is precisely n. Obviously if
we consider Higgs configurations of Q = n = 1 there must be one with minimum
energy. This cannot be smoothly deformed to a vacuum since the winding number
is quantized. Hence such a configuration must be a local minimum of the energy
and therefore a static classical solution.

The next question we want to address is what is the connection between these
non trivial soliton solutions and magnetic monopoles? The field strength of the
abelian gauge field Aμ defined in (21.6), Fμν = ∂μAν − ∂νAμ is the outcome of,

F̃μν = Φ̂aF a
μν −

1
g
εabcΦ̂aDμ Φ̂bDν Φ̂c , (21.11)

when we take Φ̂ = (0, 0, 1), namely Φ = ϕ. What distinguishes F̃μν from an ordi-
nary abelian field strength is that it does not obey the Biachi identity,

∗dF̃ =
1
2
eμνρσ ∂ν F̃ρσ = ekμ =

4π

g
kμ , (21.12)

where g is the magnetic charge which will be shown to be equal to 4π/e. Defining
now the magnetic field Bi associated with F̃μν as usual as,

Bi ≡
1
2
εijk F̃ jk , (21.13)

we find that,

∇ · �B =
4π

g
k0 QM =

1
g

∫
d3xk0 =

4π

e
Q =

4π

e
n. (21.14)

We have thus realized that the non-trivial soliton configurations carry a magnetic
charge and hence are magnetic monopoles. We can further determine the classical
mass of the monopole since the total energy of such a solution is,

E =
∫

d3x
[
Tr[E2

i ] + Tr[(D0Φ)2] + Tr[B2
i ] + Tr[(DiΦ)2] + V (Φ)

]
. (21.15)

For a static configuration that does not carry electric charge, the first two terms
are expected to vanish. Then one can show that the form of the mass has to be,

M =
4πv

e
f

(
λ

e2

)
, (21.16)

where f( λ
e2 ) should be of order one.

So far we have discussed the topological charges of the group G = SU(2) case.
Let us now address the general case. Instead of the map (21.10), the asymptotic
Higgs field constitutes in the general case a map,

Φ(∞) : ∂M→ G

H
, (21.17)

where ∂M is the boundary of the space which for ordinary flat Minkowski space-
time is S2 and G/H is the coset of the unbroken symmetry group H and the
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21.3 Topological solitons and magnetic monopoles 375

original group G, which in the discussion above was SU(2)/U(1) = S2 . These
maps from the boundary of space to the coset, fall into equivalent classes which
form the homotopy group π2(G/H). For simply connected group G, namely with
π1(G) = 0 the classification of the maps is in fact done by π1(H) since for this
type of G,

π2(G/H) = π1(H). (21.18)

This follows from the following exact sequence1

. . .→ π2(G) → π2(G/H) → π1(H) → π1(G) → . . . . (21.19)

The image of a given homomorphism equals the kernel of the next one in the
sequence. It is well known that for any semi-simple group G, π2(G) = 0 and
hence,

π2(G/H) ∼= Ker[π1(H) → π1(G)]. (21.20)

Now since for a simply connected group π1(G) = 0 we find (21.18). Let us
describe now several cases of physical interest:

� The ’t Hooft–Polyakov solution that will be discussed in the next section, is
slightly different since in that case G = SO(3) which is not simply connected
π1(SO(3)) = Z2 and hence only the even elements of π1(H = U(1)) are in the
kernel of the homomorphism of (21.20). This is the source of the fact that
the quantization condition is twice the one given by Dirac (see (21.27)) even
though in both cases H = U(1).

� For a simply connected G of rank r and with H which is the full Cartan sub-
algebra, namely H = U(1)r , the homotopy group that classifies the magnetic
monopoles is π1(H = U(1)r ) = Zr .

� In the spontaneous symmetry breaking of the electro-weak theory we have
G = SU(2)× U(1) and H = U(1) such that G/H ∼= S3 . Since π2(S3) = 0 mag-
netic monopoles are excluded in this theory.

� On the other hand a wide class of grand unified theories do admit mag-
netic monopoles. The most prominent example is the G = SU(5) grand unified
model with H = SU(3)× SU(2)× U(1). This is an example of the case that
H = U(1)×K where K is a semi-simple and simply connected group. In this
case there is only a single component of the magnetic charge that is topologi-
cally conserved.

� Another interesting scenario is the case where the group G twice undergoes
a spontaneous symmetry breaking namely, G→ H1 ⊂ G→ H2 ⊂ H1 . This is
relevant to an evolution of the universe where at as early stage magnetic

1 The reader who is not familiar with the notion of an exact sequence can refer to any text
book on topology or alternatively to the book of Coleman [66] where an elegant proof of this
theorem is presented.
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376 From two-dimensional solitons to four-dimensional magnetic monopoles

monopoles associated with π2(G/H1) are being created and then the question
is what is their fate when the universe undergoes a second phase transition to
H2? This can be determined by an exact sequence similar to (21.19).

21.4 The ’t Hooft–Polyakov magnetic monopole solution

Equipped with knowledge based on the topological arguments of above, that
magnetic monopoles do exist for theories associated with non-trivial π2(G/H) we
want to proceed to the determination of explicit configurations of the non-trivial
topological solutions. It turns out that this is a non-trivial task and only for a
limited set of cases can it be accomplished analytically. We start with the simplest
case where G = SU(2), or G = SO(3) as was done in the original solution of
’t Hooft and Polyakov [123], [175]. We will see in the next section an explicit
solution using a special limit of the theory. Without this limit one can simplify
the procedure by searching for spherically symmetric solutions. This implies that
the fields must be invariant under a combination of rotations and a compensating
gauge transformation. The latter can be space independent by using the so called
“hedgehog” gauge where rotational invariance requires that the fields be invariant
under a combined rotation and global internal SU(2) transformation. Stating
it differently, one looks for a configuration which is symmetric under a mixed
angular momentum,

�J = �L + �I, (21.21)

where �L = −i�r × �∇ is the ordinary spatial part of the angular momentum and
�I are the generators of the SU(2) gauge group. With this definition of �J the
ansatz should obey,

[Ji,Φ] = 0 [Ji, Aj ] = iεijkAk . (21.22)

Using this gauge ’t Hooft and Polyakov suggested the following ansatz for the
fields,

Aa
i = εiam r̂m

[
1− u(r)

er

]
Φa = r̂ah(r). (21.23)

To write down the equations that determine u(r) and h(r) one can substitute
these expressions into the Lagrangian density (21.1) and vary with respect to
u(r) and h(r). This is easier than the usual procedure of substituting (21.23)
into the equations of motion derived from (21.1). The resulting equations are,

u′′ − (u2 − 1)u
r2 + e2uh2 = 0

h′′ +
2
r
h′ − 2u2h

r2 + λ(v2 − h2)h = 0. (21.24)
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21.5 Charge quantization 377

Fig. 21.1. The hedgehog configuration of the Higgs field. The orientation in
isospace is aligned with the position vector.

The primes denote derivatives with respect to r. Finiteness of the energy asso-
ciated with the solution requires that,

Φ0(∞) = 0 → u(∞) = 0

DiΦ0(∞) = 0 → h(∞) = v. (21.25)

Similarly requiring that the solutions are non-singular at the origin implies that,

u(0) = 1 h(0) = 0. (21.26)

Qualitatively, the profile of the Higgs field is that of a hedgehog, as can be seen
in Fig. 21.1. The orientation in isospace is aligned with the position vector.

Analytic solutions of these equations will be derived in the next section using
a special (BPS) limit. In general one has to solve these equations numerically.
The physical picture that comes out from these calculations is that there is a
central core of radius Rcore ∼ 1

ev , outside of which u(r) and |h− u|(r) decrease
exponentially. The mass of the monopole takes the form M = 4πv

e f( λ
e2 ) where

f(0) = 1 and f(∞) = 1.787.

21.5 Charge quantization

In his seminal paper on magnetic monopoles in quantum mechanics [78] Dirac
found out that the magnetic charge g and the electric charge e must be related
via the famous charge quantization condition,

eg = 2πn, (21.27)
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378 From two-dimensional solitons to four-dimensional magnetic monopoles

where n is an integer. This implies that the existence of a magnetic monopole
explains the observed quantization of all electric charges. He proposed a solution
of a magnetic potential of the following form,

e �A =
eg

4π

r̂ × n̂

r(1− r̂ · n̂)
, (21.28)

which has in addition to the singularity at the origin also a singularity extending
from the origin out along the n̂ direction. The quantization condition follows
from the requirement that physical charges should not be able to detect the
string.

Yang–Mills Higgs models with spontaneous symmetry breaking such that
π2(G/H) 	= 0, as we have seen above, admit magnetic monopole solutions asso-
ciated with each element of the Cartan subalgebra of the unbroken group H. For
large distance the corresponding magnetic fields take the form,

eAi =
eg

4π
(1 + cosθ)∂iφ +O

(
1
r2

)
. (21.29)

The generalization of the quantization argument of Dirac to the non-abelian case
is straightforward. This follows from the demand that the electrically charged
fields of the theory are single valued if acted upon by a group element eeg .
This quantization condition can be solved in terms of the simple roots �γi where
i = 1, . . . , r where r is the rank of H, of the root system of H. From the simple
roots one constructs a convenient basis (Hi) for the elements of the Cartan
subalgebra with the property that each element has half-integer eigenvalues when
acting on the basis vector of any representation. This is achieved by taking,

Hi ≡
�γi

|�γi |2
�H. (21.30)

In this basis the solution of the quantization condition is,

eg

4π
=

r∑
i=1

niHi. (21.31)

This solution can be represented as an r-dimensional lattice dual to the weight
lattice of the group (see Section 3.1). For the simple example of SO(3) the rank
is one and thus one gets eg = 4πn twice as the condition of Dirac due, as was
explained above, to the fact that SO(3) is not simply connected. For the group
SU(3) which is of rank r = 2 the charge lattice is drawn in Fig. 21.2. In general
it was shown that the charge lattice is the weight lattice of the dual gauge group.

21.6 Zero modes, time-dependent solutions and dyons

From the static SU(2) monopole solution discussed above we can generate obvi-
ously (infinitely) more solutions by applying gauge transformations. This of
course will be avoided by fixing a gauge. However even in that case there is
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γ
2

γ
1

Fig. 21.2. The charge lattice of the SU (3) monopole.

one unfixed global gauge U(1) phase. This adds up to the parameters associated
with the translation of the monopole. Infinitesimal transformations of this set of
four parameters generate field variations δAi and δΦ that preserve the equations
of motion and leave the energy unchanged. These variations in general will be
referred to as zero modes.

Time-dependent excitations of the translational zero modes can be derived by
substituting �r → �r − �vt into the static solution. This has to be done together
with ensuring the Gauss law constraint,

DiE
i = ie[Φ, D0Φ], (21.32)

which also implies that for most choices of gauge A0 	= 0. Substituting the solu-
tions of the Gauss law into the expression of the energy (21.15) one can show
that the change of energy for non-relativistic velocities is as one expects, given
by,

ΔE =
1
2
M |�v|2 . (21.33)

Next we want to describe the excitation of the zero mode associated with the
fourth parameter, that of the global gauge phase. The Noether charge associated
with this transformation is the electric charge that corresponds to the unbroken
U(1) gauge symmetry. In terms of the physical variables defined in (21.6) this
takes the form,

QE = −ie

∫
d3x[Wj ∗D0(Wj −DjW0)−WjD0(W ∗

j −DjW
∗
0 )], (21.34)

where the U(1) covariant derivative is defined by DμWν = (∂μ − ieAμ)Wν and
where a string gauge is used where the Higgs field direction is uniform.
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A dyon [134] is defined to be a configuration that carries both magnetic as well
as electric charges. To construct such a solution we start with a static solution
in the string gauge and multiply the W field by a uniformly varying U(1) phase
factor eiwt . In analogy to the magnetic charge found above, the electric charge
has the form,

QE =
∫

d2SiF̃0i =
∫

d2SiΦ̂iEa
i . (21.35)

The time-dependent configuration can be transformed into a static solution
by a U(1) transformation of the form,

Wi → e−iw tWi Ai → Ai A0 → Ā0 = A0 −
w

e
. (21.36)

In this static form we can transform the solution into the non-singular hedgehog
gauge with Aa

i and Φa given by (21.23) and,

Aa
0 = r̂a j(r) = r̂aĀ0 . (21.37)

For this case the static field equations, which are the analog of (21.24) become,

h′′ +
2
r
h′ − 2u2h

r2 + λ(v2 − h2)h = 0,

u′′ − (u2 − 1)u
r2 − e2u(h2 − j2) = 0,

j′′ +
2
r
j′ − 2u2j

r2 = 0, (21.38)

where the first equation is identical to the one in (21.24), in the second there is
a 2e2uj2 addition and the third equation is the Gauss law.

The dependence of QE on w can be determined by substituting the ansatz
into (21.34) and recalling that W0 = 0 we find,

QE =
8πw

e

∫
dru(r)2 j(r)

j(∞)
≡ Iw. (21.39)

The integral can be estimated since u(r) falls off exponentially outside a region
of radius ∼ 1/v so that,

I =
4π

e2v
Ī, (21.40)

where Ī is of order unity. In analogy to (21.33) one can show that the correction
to the energy is,

ΔE =
Q2

E

2eI
=
( e

4π

)2 Q2
E M

2Īf
∼ Q2

E

2Q2
M

M. (21.41)
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21.7 BPS monopoles and dyons

A special limit of the monopole configuration occurs when one takes the limit
of,

λ→ 0 μ2 → 0 v2 =
μ2

λ
fixed. (21.42)

In this limit the energy of the system,

E =
∫

d3xTr[ �E · �E + �B · �B + (D0Φ)2 + ( �DΦ)2]

=
∫

d3xTr[( �E ± sinα�DΦ)2 + ( �B ± cosα�DΦ)2 + (D0Φ)2]

±2
∫

d3x[cosαTr[ �B · �DΦ] + sinαTr[ �E · �D]]. (21.43)

The passage from the first line to the rest is of course an identity for arbitrary
α. Next we perform an integration by parts in the last line and use the Gauss
law �D · E − ie[Φ, D0Φ] = 0 and �D · �B = 0 we find,

E =
∫

d3xTr[( �E ± sinα�DΦ)2 + ( �B ± cosα�DΦ)2 + (D0Φ)2

± cos αQM ± sin αQE

E ≥ ± cos αQM ± sinαQE , (21.44)

where the magnetic and electric charges QM = vQM and QE = vQE are given
by (21.14) and (21.35)

QM = 2
∫

d2 �S · Tr[Φ �B] QE = 2
∫

d2 �S · Tr[Φ �E]. (21.45)

Recall that so far α is arbitrary. The most stringent bound is achieved when
one takes tan α = QE

QM
, for which the bound reads,

E ≥
√
Q2

M +Q2
E . (21.46)

It is easy to realize that the bound is saturated if,

�E = cos α�DΦ �B = sin α�DΦ D0Φ = 0. (21.47)

These first-order equations are referred to as the Bogomolny Prasad Sommerfeld
equations or BPS equations ([41] and [180]). The configurations that obey these
equations have the minimal value of energy,

E =
√
Q2

M +Q2
E , (21.48)

for given magnetic and electric charges QM ,QE respectively and hence are also
solutions of the (second-order) equations of motion of the system. In particular
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the magnetic monopole which carries no electric charge and is static and hence
QE = 0 and D0Φ = 0 (in the A0 = 0 gauge), obeys the Bogomolny equation,

�B = �DΦ. (21.49)

The BPS limit seems to be unnatural and artificial since we have introduced a
potential to give a non-trivial expectation value to the field Φ and then we tuned
the potential to zero keeping the expectation value. It turns out that in certain
suspersymmetric models the BPS equations follow from the requirement of the
invariance under supersymmetry. Since supersymmetry is not discussed in this
book we refer the reader to the literature, for instance [214].

If we go back to the equations of motion and substitute λ = 0 the equations
take the form,

h′′ +
2
r
h′ − 2

u2h

r2 = 0,

u′′ − u(u2 − 1)
r2 − e2uh2 = 0. (21.50)

The solution of this set of equations is given by,

u(r) =
evr

sinh(evr)
h(r) = v coth(evr)− 1

er
(21.51)

The fact that Φ falls off as 1/r and not exponentially is due to the fact that in
the BPS limit it has a vanishing mass and hence associates with a long range
force.

The BPS equations can also be solved for the case of a dyon, namely a config-
uration that carries both a magnetic as well as an electric charge. In that case
the solution reads,

u(r) =
eṽr

sinh(eṽr)

h(r) =

√
Q2

M + Q2
E

QM

[
ṽ coth(eṽr)− 1

er

]
j(r) = −QM

QE

[
ṽ coth(eṽr)− 1

er

]
. (21.52)

21.8 Montonen Olive duality

In two dimensions we have seen an equivalence between a soliton configuration
and an elementary field. This was the essence of bosonization manifested for
instance in the equivalence between the sine-Gordon theory and the Thirring
model (see Section 6.2). Montonen and Olive [163] conjectured an analogous
duality between the spectrum of states created from the elementary field and
from those created by the solitons. Since the former are electrically charged
and the latter are magnetically charged, the duality is in a sense a non-abelian
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Table 21.1. The spectrum of the SU(2)
YM Higgs theory in the BPS limit

Mass QE QM

photon 0 0 0
φ 0 0 0
W ± ev ±e 0
Monopole 4πv

e
0 ± 4π

e

generalization of electric–magnetic duality of the Maxwell equations. To under-
stand this duality notice that under the following operation,

QE ↔ QM e↔ 4π

e
, (21.53)

the entries associated with the W mesons and those of the magnetic monopoles
in Table 21.1 are interchanged.

It turns out that on top of the self-duality of the spectrum, there is a similar
duality also in the low energy scattering. It is a well-known property of BPS
states in general and in particular the magnetic monopoles that there is no net
force between them. This follows up from an exact cancellation between the
magnetic repulsion and the attraction due to an exchange of a Higgs scalar. The
zero velocity limit of the scattering amplitude of two W bosons also admits a no
force behavior. The exchange of a single photon is cancelled out by the exchange
of a Higgs boson.

In the non-supersymmetric YM Higgs theory the duality of the spectrum and
the scattering amplitudes cannot be lifted to a duality of the full theory. A simple
indication of this is the fact that the W boson carries a spin one, whereas the
quantum state built from a spherical monopole carries spin 0. In supersymmetric
analogs of the YM Higgs theory this difficulty may be overcome since both the W

bosons as well as the magnetic monopoles are members of supersymmetric mul-
tiplets that contain states with several different spins. It turns out that the YM
theory with 16 supercharges, the so-called N = 4 SYM admits a complete invari-
ance under the Olive Montonen duality. Since we do not discuss supersymmetry
in the book we refer the interested reader to the review papers mentioned above,
for instance [214].

21.9 Nahm construction of multimonopole solutions

This construction [167] maps the Bogomolny equation in three variables into a
nonlinear equation in one variable. We present the construction for the SU(2)
case. To simplify the notations we set the coupling constant e = 1. It can be
restored when needed.
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384 From two-dimensional solitons to four-dimensional magnetic monopoles

The construction of an SU(2) k monopole is built from three steps:

1. We look for a quartet of Hermitian k × k matrices Tμ(s), where μ = 0, i =
1, 2, 3 which satisfy the Nahm equation,

dTi

ds
+ i[T0 , Ti ] +

i

2
εijk [Tj , Tk ] = 0, (21.54)

where s is an auxiliary variable that takes its value in the interval
−v/2 ≤ s ≤ v/2 and where v is the vacuum expectation value of the Higgs
field. For k = 1 since the commutators vanish we get that Ti are constants.
In fact due to the ordinary gauge invariance one can choose a gauge where
T0 = 0 and hence the equation reads,

dTi

ds
+

i

2
εijk [Tj , Tk ] = 0. (21.55)

The boundary condition that one should impose for the multimonople case is
that the Ti(s) have poles at the boundaries of the form,

Ti(s) = − L±
i

s∓ v
2

+ O(1). (21.56)

The Nahm equations implies that the L±
i form a k-dimension representation

of the SU(2) algebra,

[L±
i , L±

j ] = iεijkL±
k . (21.57)

These representations should be irreducible, namely, must be equivalent to
the (k − 1)/2 representation.

2. The next step is to solve the construction equation for the 2k component
vector w(s, �r),

Δ†w(s, �r) ≡
[
− d

ds
− Ti ⊗ σi + riIk ⊗ σi

]
w(s, �r) = 0. (21.58)

We denote by wa(s, �r) a completely linearly independent set of normalizable
solutions that obey the orthonormality condition,∫ v/2

−v/2
dsw†

a(s, �r)wb(s, �r) = δab . (21.59)

3. It can be proved that for the SU(2) case there are only two normalizable
solutions wa(s, �r). The space-time fields are given in terms of these as follows,

Φab(�r) =
∫ v/2

−v/2
dsw†

a(s, �r)wb(s, �r),

Aab
j (�r) =

∫ v/2

−v/2
dsw†

a(s, �r)∂jwb(s, �r). (21.60)

We do not bring here the the details of the proof of this construction (see for
instance [71]) we just mention that it includes the following elements: (i) Using
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the expressions for Φab and Aab
i given above in (21.60) one can show that Bab

i and
DiΦab are identical and hence the Bogomolny equation is obeyed. (ii) Showing
that the solutions lie in SU(2) and (iii) computing the long-range behavior and
showing that the solutions indeed have a magnetic charge equal to k. We refer
the interested reader to, for instance, [214] for the detailed proof. Instead we pro-
ceed now to a demonstration of the application of the method both for k = 1 and
k = 2. As was mentioned above for the former case the Ti are constants indepen-
dent of s. In fact these constant values of �T enter the construction equation as
(�r − �T ) · �σ namely, they are the coordinates of the center of mass of the monopole
and thus by shifting to a frame of coordinates which is centered at the monopole
center �T = 0. The construction equation (21.58) takes the form,

dw

ds
= �r · �σw. (21.61)

The two normalizable solutions of this equation are,

wa(s, �r) = N (r)es�r ·σ ηa , (21.62)

whereN is a normalization factor and ηa are orthonormal constant vectors. From
the orthonormality condition we find that,

N (r) =
√

r

sinh(vr)
, (21.63)

where we have made use of the first of the following integrals,∫ v/2

−v/2
e2s�r ·�σds =

sinh(vr)
r

I2∫ v/2

−v/2
se2s�r ·�σds =

�r · �σ
r3 [vr cosh(vr)− sinh(vr)]. (21.64)

Using the integral we find that the Higgs field and the corresponding gauge field
are given by,

Φab =
1
2

(
v coth(vr)− 1

r

)
η†

a

�r · σ
r

ηb,

�Aab = −iη†
a∂iηb − iεijk r̂j ηaσkηb

(
1
2r
− v

2 sinh(vr)

)
. (21.65)

Upon setting ηt
1 = (1, 0) and ηt

2 = (0, 1) we retrieve the hedgehog solution of
21.51).

21.9.1 SU(2) two-monopole solutions

The k = 2 solutions are characterized by a priori eight parameters out of which
one corresponds to the U(1) phase and as for the case of k = 1 does not enter the
Nahm data. Three parameters relate to the translation and three to the rotations
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386 From two-dimensional solitons to four-dimensional magnetic monopoles

of the solution. Thus we end up with one non-trivial parameter. Intuitively this
parameter should relate to the separation distance between the two centers of
the solution. Let us see if the Nahm construction verifies this intuition and to
what extent one can write an explicit solution for this case. The Ti(s) which now
are not constants can be decomposed into the following form,

Ti(s) =
1
2

�T v
i (s) · �σ + T s

i (s)I2 . (21.66)

Substituting this into the Nahm equation implies that the �T v
i (s) have to obey,

d�T v
i (s)
ds

=
1
2
εijk

�T v
j (s)× �T v

k (s). (21.67)

It is easy to realize that there is a relation between the �T v
k (s), namely the fol-

lowing matrix,

Tij = �T v
i (s) · �T v

j (s)− 1
3
δij

�T v
k (s) · �T v

k (s), (21.68)

is s independent. After some tedious algebra one can show that the most general
form of �T v

k (s) takes the form,

�T v
i (s) =

1
2

∑
i

Aij fj (s + v/2, κ, d)τj + T s
i I2 , (21.69)

where Aij is an orthogonal matrix of constants that diagonalize Tij , f(s +
v/2, κ, d) are the Euler top functions2 and the parameter d can be shown for
widely separated monopoles to be the inter-monopole distance as the original
intuition taught us.

21.10 Moduli space of monopoles

As we have seen above the monopole configurations are parameterized by certain
moduli. One defines a space of these moduli, the moduli space. The properties
of this space are intimately related to the low energy behavior of monopoles
and dyons. In Section 22.3 we will describe the moduli space of YM instantons.
Denoting the collective coordinates that parameterize a monopole configuration

2 The Euler top function can be expressed in terms of the elliptic functions SNκ (x), CNκ and
DNκ (x) as follows:

f1 (x, κ, D) = −D
C N κ (D x )
S N κ (D x )

f2 (x, κ, D) = −D
D N κ (D x )
S N κ (D x )

f3 (x, κ, D) = −D 1
S N κ (D x ) (21.70)
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21.10 Moduli space of monopoles 387

by zr , the Lagrangian of the system is approximated by,

L = −(total rest mass of monopoles) +
1
2
grs(z)żr żs . (21.71)

The metric on the moduli space grs(z) can be determined from the background
zero models of the gauge fields as follows,

grs(z) = 2
∫

d3xTr[δrAiδsAi + δrΦδsΦ] = 2
∫

d3xTr[δrAaδsAa ], (21.72)

where a takes the values a = 1, . . . , 4 with A4 = Φ, and where,

δrA
a =

∂(Acl)a

∂zr
−Daεr , (21.73)

and where εr is defined via A0 = żr εr which follows from the Gauss law,
DaFa0 = 0.

In the case of a single monopole, as we have seen above, there are four zero
modes associated with the location of the center of the monopole �rcm and the
global U(1) phase so that,

grs(z)żr żs = M( �ṙcm )2 +
I

e
α̇2 , (21.74)

where M is the mass of the monopole and I is defined via (21.39 ) QE = Iw.
The moduli space of BPS monopoles is hyper-Kähler. This property that

implies that there are three almost complex structures with correspondingly
three closed Kähler forms will be discussed in detail in Chapter 22, so we will
not discuss it here for the BPS monopoles.

An important part of the structure of the moduli space is encoded in its isome-
tries, namely the symmetries that preserve the form of the metric. Naturally since
the underlying space where the monopoles reside is an R3 the isometries include
three translations of the center of mass of the collective coordinates. The same
applies to the spatial rotation of the monopole. It takes a monopole solution
to another monopole solution and hence it maps one point in the moduli space
into another one. Another type of isometries is those associated with the unbro-
ken U(1) gauge groups. These isometries, unlike the rotational isometry pre-
serve the complex structure. One can choose a coordinate basis where the gauge
transformations act as translations of the angular variables ξA , with the corre-
sponding Killing vectors being KA = ∂

∂ξA . Denoting by yp the rest of the coor-
dinates, the Lagrangian associated with the moduli space approximation can be
written as,

L =
1
2
gpq (y)ẏp ẏq +

1
2
g̃AB (y)[ξ̇A + ẏpwA

p (y)][ξ̇B + ẏqwB
q (y)]. (21.75)

Thus the coordinates ξA are cyclic coordinates and their conjugate momenta are
conserved. In fact the latter are the electric charges of the dyonic cores.
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388 From two-dimensional solitons to four-dimensional magnetic monopoles

For monopoles that are separated by large distances the task of determining
the metric of the moduli is much easier. Consider a system of N fundamental
monopoles all well separated from each other. In such a layout only abelian inter-
actions are relevant and there is an enhanced gauge symmetry. Instead of having
a conserved electric charge for each unbroken U(1), there is an effective con-
served charge for each monopole core. The moduli space is spanned in this case
by 3N coordinates of the positions of the cores and N angles �ξj , j = 1, . . . , N .
The enhance symmetry is the translation along each of the ξj . The approximated
Lagrangian then takes the form,

L =
1
2
Mij (x) �̇xi · �̇xj +

1
2
g̃ij (x)[ξ̇i + wi

k (x) �̇xk ][ξ̇j + wi
l (x) �̇xl ]. (21.76)

By computing the pairwise interactions between the separated dyons, one can
determine the functions Mij (x), g̃ij (x) and wi

j (x). We refer the reader to [214]
for the derivation and we cite here the results,

Mij = mi −
∑

k �=1
4π �α∗

i ·�α∗
k

e2 ri k
, i = j (21.77)

Mij =
∑

k �=1
4π �α∗

i ·�α∗
j

e2 ri j
, i 	= j (21.78)

�Wij = −
∑

k �=1 �α∗
i · �α∗

k �wik , i = j (21.79)

�Wij = �α∗
i · �α∗

i wij , i 	= j (21.80)

and K = (4π)2

e4 M−1 . It can be further shown that the metric of the moduli space
of a two monopole BPS solution can be determined exactly and it takes the
form of a Taub–Nut metric or Atiya–Hitchin metric [19] depending whether the
monopoles are distinct or the same. This is beyond the scope of this book and
we refer the reader to for instance the review [214].
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