
J. Fluid Mech. (2022), vol. 947, A44, doi:10.1017/jfm.2022.674

On coherent vortical structures in wave breaking
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The flow generated by the breaking of free-surface waves in a periodic domain is
simulated numerically with a gas–liquid Navier–Stokes solver. The solver relies on the
volume-of-fluid method to account for different phases, and the interface tracking is
carried out by using novel schemes based on a tailored total-variation-diminishing limiter.
The numerical solver is proved to be characterized by a low numerical dissipation,
thanks to the use of a scheme that guarantees energy conservation in the discrete form.
Both two- and three-dimensional simulations have been performed, and the analysis is
presented in terms of energy dissipation, air entrainment, bubble fragmentation, statistics
and distribution. Particular attention is paid to the analysis of the mechanisms of viscous
dissipation. To this purpose, coherent vortical structures, such as vortex tubes and vortex
sheets, are identified, and the different behaviours of the vortex sheets and tubes at various
Reynolds numbers are highlighted. The correlation between vortical structures and energy
dissipation demonstrates clearly their close link both in the mixing zone and in the pure
water domain, where the coherent structures propagate as a consequence of the downward
transport. Notably, it is found that the dissipation is identified primarily by the vortex
sheets, whereas the vortex tubes govern mainly the intermittency.

Key words: gas/liquid flow, wave breaking

1. Introduction

Breaking of ocean waves is of relevant interest because of its implications in many
physical, chemical and biological processes that take place at the ocean–atmosphere
interface. Wave breaking is responsible for the generation of free-surface turbulence,
dissipation of the wave energy, and enhancement of the momentum, heat and gas transfer
between air and water.
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Over the years, a number of review articles and monographs have been published on
the subject (Banner & Peregrine 1993; Melville 1996; Duncan 2001; Babanin 2011; Kiger
& Duncan 2012; Perlin, Choi & Tian 2013; Lubin & Chanson 2017; Deike 2022), and
these works call for more research into nearly every aspect of wave breaking. In open
ocean, following wind acts on the water surface leading to the generation of free-surface
waves that break when they exceed a limiting steepness, thus injecting momentum and
energy into the upper ocean layer. Being the primary mechanism through which energy
is transferred from wind to ocean, wave breaking has a significant impact on the global
energy balance. In spite of its global influence, the breaking occurs on a relatively
small scale, and through the bubble fragmentation and turbulence processes, involves
phenomena up to the microscopic scale, thus making the breaking a rather challenging
multiscale problem. Garrett, Li & Farmer (2000) suggested that super-Hinze-scale
turbulent break-up transfers entrained gas from large to small bubble sizes in the manner
of a cascade, and Chan, Johnson & Moin (2021a) provide a theoretical basis for this
bubble mass cascade. An example of generation of drops, spray, aerosol and turbulent
coherent structures caused by breaking waves is shown in figure 1. The wide range of
scales involved in the breaking process is not only in space but also in time. Usually,
the breaking occurs in a fraction of the wave period (Bonmarin 1989; Rapp & Melville
1990), which is rather short compared to the time scales at which the wind-generated waves
develop as a consequence of the wind forcing and the nonlinear energy transfer across the
different wave components (Hasselmann 1962, 1974). The intermittent and random nature
of the breaking phenomenon makes the experimental study in the field very challenging.
The breaking is generally identified and characterized based on image analysis and the
white-capping coverage (e.g. Sutherland & Melville 2015), but such approaches cannot
provide any information about the flow and the exchange processes. Much richer is the
information that can be obtained beneath the free surface through investigation in the
laboratory (e.g. Rapp & Melville 1990; Duncan et al. 1999; Qiao & Duncan 2001; Melville,
Veron & White 2002; Kimmoun & Branger 2007; Drazen & Melville 2009; Rojas &
Loewen 2010; Lubin et al. 2019). Recent progress on non-intrusive optical techniques has
enabled detailed characterization of the flow and the air entrainment process, but due to
technical issues caused by light reflection from the bubbles, velocity measurements are
available only for a later stage when the large bubbles have degassed (Drazen & Melville
2009). As a consequence, the phase during which the exchange processes are more relevant
remains largely unexplored. Such limitations can be overcome, at least partly, by exploiting
the progress of computational methods for the solution of the Navier–Stokes equations in
two-phase flows.

The numerical investigation of the multiphase flow is very attractive for the perspective
of achieving a highly refined description of the flow field in both fluids, thus enabling
a quantitative characterization of the exchange processes. Several models have been
proposed in the last 25 years, and a comprehensive overview is reported in Mirjalili, Jain
& Dodd (2017) and Soligo, Roccon & Soldati (2021). Both large-eddy simulations (e.g.
Lubin & Glockner 2015; Christensen & Rolf 2001; Lubin & Chanson 2017) and direct
numerical simulations (e.g. Deike, Melville & Popinet 2016; De Vita, Verzicco & Iafrati
2018) have been used to solve the Navier–Stokes equations. In all cases, the equations are
solved for an incompressible fluid with physical properties varying across the air–water
interface. Various techniques have been used for the description of the interface dynamics,
the most popular being the level-set (Iafrati 2009), the volume-of-fluid (VOF; Chen et al.
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Droplets, Jet,

Spray, Aerosol

Bubbles

Turbulent structures

Figure 1. Rendering of the breaking wave process, in which bubbles, droplets and sprays are highlighted. The
underwater turbulent structures generated by the breaking and the bubble fragmentation process are also shown
on the left. Similar structures, not shown for the sake of the clarity, also occur in air.

1999; Deike, Popinet & Melville 2015; Chan et al. 2021b), and hybrids thereof (Wang,
Yang & Stern 2016; Yang, Deng & Shen 2018).

The first application of a multiphase solver to wave breaking is presented by Chen
et al. (1999), who simulated the breaking of an artificially steep, third-order Stokes wave
in a periodic two-dimensional domain. Owing to problem complexity, the simulation
was carried out assuming an unrealistic air–water density ratio of 1/100. Despite
such a limitation, the study confirmed qualitatively the formation of a plunging jet,
the entrainment of air bubbles, generation of vorticity and energy dissipation. Iafrati
(2009) conducted a similar study by using the actual air–water density ratio 1/800
and viscosity ratio μa/μw = 0.04, with Weber number corresponding to about 30 cm
wavelength, and Reynolds number Re = 10 000. The study investigated the role of the
initial steepness parameter (ε) on the wave evolution and on the breaking process. It
was found that breaking occurs for ε > 0.33, and it is of spilling type for ε = 0.35 and
plunging type for ε � 0.37. The analysis focused on energy dissipation, vertical transfer
of horizontal momentum, air entrainment and vorticity production. The analysis was
continued in Iafrati (2011), where the different dissipation mechanisms characterizing
spilling and plunging breaking were highlighted. The influence of capillary effects on
wave breaking was analysed by Deike et al. (2015). A parametric study in terms of
the Bond number and the initial wave steepness was conducted at a relatively high
Reynolds number, and the different regimes of gravity-capillary waves, spilling and
plunging breaking were distinguished. The formation of aerated vortex filaments in
breaking waves was observed by Lubin & Glockner (2015) through three-dimensional
numerical simulations. The vortex tubes, identified via the Q-criterion, were found to
be rather independent of the breaking intensity and somewhat correlated with striations
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appearing at the back of the plunging jet, but they were found not to contribute
substantially to the dissipation process. Detailed three-dimensional simulations of the
two-phase flow and of the fragmentation process occurring during wave breaking events
were presented by Deike et al. (2016). A phenomenological model for the bubble
size distribution was proposed based on the assumption that the energy dissipated
during the breaking scales with the work done against buoyancy force to entrain air.
A similar study at higher resolution was carried out by Wang et al. (2016), which
allowed them to resolve bubbles and droplets at sub-millimetre scale. Probability density
functions for the bubble and droplets distributions were derived and compared with the
experimental findings of Deane & Stokes (2002). Theoretical and numerical investigation
of the statistics of the turbulent bubbles break-up cascade at the various stages of
wave breaking was presented by Chan et al. (2021a,b), who observed that in the early
stages the dissipation rate and bubble mass flux are quasi-steady, whereas in the second
stage the dissipation rate decays, and the bubble mass flux increases as small and
intermediate-sized bubbles become more numerous. Recently, the roles of the Reynolds
number and the Bond number (wave scale over the capillary length) on bubble and droplet
statistics of strong plunging breakers have been investigated by Mostert, Popinet & Deike
(2022).

In an attempt to induce breaking in a more realistic way, De Vita et al. (2018)
simulated numerically the modulational instability induced by side-band perturbation of a
fundamental wave component. The nonlinear interaction of the different wave components
causes a downshift of the energy from the fundamental component to the side-bands,
which leads to the formation of a rather steep wave. As long as the initial steepness
parameter is sufficiently small, the process is reversible; but if, due to the amplification,
the maximum wave steepness in the group exceeds a threshold value, then the wave breaks,
making the energy transfer from the fundamental to the lower side-band irreversible – see
Tulin & Waseda (1999). That study investigated different ways to approach the breaking
when varying the initial steepness and the dissipation processes. By singling out the energy
contents of the different waves in the group, it was observed that after the breaking, the
energy of the most energetic wave in the group decays as t−1, whereas the total energy
content of all other waves remains nearly constant. Iafrati, De Vita & Verzicco (2019)
analysed the effect of wind on wave breaking induced via modulational instability, and
showed that wind has a stabilizing effect, with breaking occurring at a higher steepness as
compared to a no-wind condition.

The results of all the above studies indicate that the fraction of the initial energy content
dissipated by the breaking event is nearly independent of the specific conditions, e.g.
two-dimensional (2-D) versus three-dimensional (3-D), Bond number, Reynolds number,
air–water density ratio. In this study we thus attempt to address in greater detail the
dissipation mechanisms during wave breaking events. For that purpose, the breaking of an
artificially steep wave (Chen et al. 1999) is simulated numerically by means of a two-fluid
Navier–Stokes solver, considering the actual air–water density ratio, and Weber number
corresponding to a 30 cm wavelength. Attention is focused primarily on how dissipative
processes and associated coherent structures, identified as vortex tubes and vortex sheets,
behave at different Reynolds numbers. In the following, the mathematical/numerical set-up
is discussed first, and results of validation studies are presented in Appendix A. The
model is then applied to simulate wave breaking in a periodic domain, and the analysis
is presented in terms of free-surface dynamics, air entrainment and bubble distribution,
energy dissipation and coherent structures.
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2. Computational set-up

The two-phase flow of air and water taking place during the breaking of a free-surface
wave is simulated numerically by a Navier–Stokes solver for a single incompressible
fluid with variable physical properties across the interface. The fluids are assumed to
be immiscible, and the interface is tracked implicitly by means of an indicator function.
Hereafter, the subscript 1 is used to denote water, and the subscript 2 is used for air. The
relevant governing equations in non-dimensional form are

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) = 1
ρ

[
−∇p + 1

Re
∇ · (

μ
(∇u + ∇uT)) + 1

We
f σ

]
− 1

Fr
j, (2.2)

where u = u(x, t) is the fluid velocity, p = p(x, t) is the pressure, ρ = ρ(x, t) is the
density, μ = μ(x, t) is the dynamic viscosity, and j is the unit vector oriented upwards.
Here, lengths are made non-dimensional with respect to the fundamental wavelength (λ),
velocities by Ũ = (gλ)1/2 (with g the gravity acceleration), density and viscosity with the
respective values in water, and pressure by ρ1Ũ2. Although surface tension acts only at the
interface, its effects are modelled as a distributed volumetric force f σ = f σ (x, t), with

f σ = kδ(x − xs)n, (2.3)

where k is the local curvature of the interface between the two fluids, n is the unit normal
of the interface, and δ is the Dirac function that localizes the force at interface points xs
(Tryggvason, Scardovelli & Zaleski 2011). In (2.2), Re, We and Fr are, respectively, the
Reynolds, Weber and Froude numbers, defined as

Re = Ũλρ1

μ1
, We = ρ1Ũ2λ

σ
, Fr = Ũ2

gλ
, (2.4a–c)

where σ is the surface tension coefficient, here assumed to be constant.
The Navier–Stokes equations are solved with a classical projection method in which

the momentum equation is advanced in time by neglecting the pressure gradient. Hence
the pressure gradient is determined by enforcing the continuity equation, and it is added
to the intermediate velocity field in a correction step (Chorin 1968; Orlandi 2012).
Time integration is carried out by means of the Adams–Bashforth explicit scheme
for the convective terms and for the off-diagonal part of the viscous terms, and the
Crank–Nicolson scheme for the diagonal diffusion terms. Hence (2.2) becomes, in discrete
form,

un+1 − un

�t
= − 1

ρn+1/2 ∇hp −
(

3
2

Nn
h − 1

2
Nn−1

h

)

+ 1
2ρn+1/2

(
Dn

h + Dn+1
h

)
+ 1

ρn+1/2 f n, (2.5)

where �t is the time step. The superscript n denotes quantities evaluated at the beginning
of the step, and n + 1 identifies the end of the step. As suggested by Popinet (2009),
the material properties (viscosity and density) in the previous equation are evaluated by
advancing the respective transport equation at staggered times (see § 2.1). The notation Nh
and Dh is used to denote numerical approximations of the advection and diffusion terms,
and f includes gravity and surface tension forces. Similarly, ∇h stands for a numerical
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approximation of the gradient operator. The momentum equation (2.5) is complemented
with the divergence-free conditions

∇h · un+1 = 0. (2.6)

The momentum equation (2.5) is solved in two steps. In the predictor step, a temporary
velocity field (u∗) is determined by ignoring the effect of the pressure:

u∗ − un

�t
= −

(
3
2

Nn
h − 1

2
Nn−1

h

)
+ 1

2ρn+1/2 Re

(
Dn

h + D∗
h
) + 1

ρn+1/2 f n. (2.7)

In the correction step, the pressure gradient is added to the temporary velocity field to
yield the velocity field at the new time step:

un+1 − u∗

�t
= − 1

ρn+1/2 ∇hp. (2.8)

Adding (2.7) and (2.8) yields (2.5) exactly. Taking the discrete divergence of (2.8) and
using (2.6) to eliminate un+1, a Poisson equation for the pressure is obtained:

∇h ·
(

1
ρn+1/2 ∇hp

)
= 1

�t
∇h · u∗. (2.9)

Once the pressure is solved for, (2.8) is used to determine the velocity field at time n + 1.
The convective terms and the off-diagonal part of the viscous operator are rearranged as

Nn
h = ∇h · unun − 1

ρn+1/2 Re
∇h ·

(
μn+1/2 ∇uT n

)
,

Nn−1
h = ∇h · un−1un−1 − 1

ρn+1/2 Re
∇h ·

(
μn+1/2 ∇uT n−1

)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

whereas the diagonal part of the viscous term becomes

Dn
h = ∇h ·

(
μn+1/2 ∇un

)
, D∗

h = ∇h ·
(
μn+1/2 ∇u∗

)
, (2.11a,b)

which, by defining δun = u∗ − un, allows us to reformulate the problem in delta form,

Dn
h + D∗

h = ∇h ·
(
μn+1/2 (∇hun + ∇h

(
δun + un)))

= ∇h ·
(
μn+1/2 (∇hδun + 2

(∇hun))) . (2.12)

Starting from (2.7), it follows that

δun

�t
− 1

2ρn+1/2 Re
∇h ·

(
μn+1/2 ∇hδun

)
= −

(
3
2

Nn
h − 1

2
Nn−1

h

)
+ 1

ρn+1/2 Re
Dn

h

+ 1
ρn+1/2 We

f n
σ − 1

Fr
j. (2.13)

If the left-hand side of the above equation is discretized using second-order finite
differences, and the right-hand side is denoted as RHSi, where i is the ith component,
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then it is found that
[1 − �t (Li1 − Li2 − Li3)] δui = RHSi, (2.14)

to which the approximate factorization is applied, resulting in
(1 − Ai1) (1 − Ai2) (1 − Ai3) δui = RHSi, (2.15)

where Aij = �t Lij, and

Ai1 = 1
2ρn+1/2

∂

∂x1

(
μn+1/2 ∂

∂x1

)
,

Ai2 = 1
2ρn+1/2

∂

∂x2

(
μn+1/2 ∂

∂x2

)
,

Ai3 = 1
2ρn+1/2

∂

∂x3

(
μn+1/2 ∂

∂x3

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

The left-hand side of (2.15) can be shown to be a third-order-accurate approximation of the
large sparse matrix at the left-hand side of (2.14) (Orlandi 2012). Equation (2.15) can then
be solved by sequential application of algorithms for solving tridiagonal linear systems:

(1 − Ai1) δu∗∗
i = RHSi,

(1 − Ai3) δu∗
i = δu∗∗

i ,

(1 − Ai2) δun
i = δu∗

i ,

⎫⎪⎬
⎪⎭ (2.17)

where δu∗∗ and δu∗ denote time increments at fictitious intermediate stages.

2.1. VOF formulation
Since fluids are assumed to be immiscible, the advection of the material interface is carried
out by means of an algebraic VOF method. The numerical scheme for the advection is
based on a novel Courant–Friedrichs–Lewy-dependent flux limiter whereby the classical
total-variation-diminishing (TVD) bounds are exceeded, thus enabling efficient and
improved representation of binary functions (Pirozzoli, Di Giorgio & Iafrati 2019). The
method yields perfectly crisp interfaces with very limited numerical atomization (flotsam
and jetsam). Let χ be a passive tracer advected by a continuous divergence-free velocity
field u, which satisfies the passive transport equation

∂χ

∂t
+ ∇ · (χu) = 0. (2.18)

For the problem under scrutiny here, χ is either 1 or 0, which is the case of two immiscible
fluids. In the VOF method, a colour function is introduced to approximate the cell average
of χ , which in the illustrative case of one space dimension is defined as

Ci = 1
�xi

∫ xi+1/2

xi−1/2

χ(x, tn) dx, (2.19)

where �xi = xi+1/2 − xi−1/2 is the cell size. Equation (2.18) is then discretized in time
yielding

Cn+1/2
i = Cn−1/2

i − 1
�xi

(
f̂i+1/2 − f̂i−1/2

)
, (2.20)

where the numerical flux f̂i+1/2 is an approximation for the amount of χ transported
through the cell interface xi+1/2 during the time interval (tn−1/2, tn+1/2). This is

947 A44-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.674


S. Di Giorgio, S. Pirozzoli and A. Iafrati

determined by assuming piecewise linear reconstruction within each cell, namely

Ci(x) = Cn
i + si(x − xi), (2.21)

with slope si selected so as to prevent the occurrence of overshoots/undershoots by
enforcing the TVD constraints (Sweby 1984)

si = 1
�xi

ϕ(θi+1/2) δCi+1/2, (2.22)

where δCi+1/2 = Ci+1 − Ci, θi+1/2 = δCi−1/2/δCi+1/2. Suitable choice of the slope
limiter function ϕ is found to provide crisp resolution of contact discontinuities (with
2–3 grid points), and absence of spurious flotsam–jetsam as in early implementations of
the TVD idea (Noh & Woodward 1976; Hirt & Nichols 1981). Details of the algorithm
are provided in the original reference, Pirozzoli et al. (2019). After computing the colour
function C, density and viscosity are determined from

ρ = C̃ + ρ2

ρ1

(
1 − C̃

)
, μ = C̃ + μ2

μ1

(
1 − C̃

)
, (2.23a,b)

where C̃ is a smoothed version of the colour function, evaluated by averaging C over 27
neighbouring cells (Popinet 2009; Tryggvason et al. 2011).

2.2. Spatial discretization
The momentum equations are discretized in the finite-difference framework with a
staggered grid layout, where the pressure, the colour function and the material properties
are defined at the cell centres, whereas the velocity components are stored at the middle of
the cell faces (Harlow & Welch 1965). The right-hand side of (2.13) is rewritten in order
to cast convective and diffusive terms in a more canonical form:

RHS = −
(

3
2

Hn
h − 1

2
Hn−1

h

)
+ 1

ρn+1/2 Re

[
Σn

h + 1
2

(
∇huT,n − ∇huT,n−1

)
∇hμ

n+1/2
]

+ 1
ρn+1/2 We

f n
σ − 1

ρn+1/2 Fr
j, (2.24)

where Hh and Σh denote, respectively, convective and viscous terms. Terms associated
with variation of viscosity appear in this case, which are rearranged as

1
ρn+1/2 Re

[
3
2

∇h ·
(
μn+1/2 ∇uT,n

)
− 1

2
∇h

(
μn+1/2 ∇uT,n−1

)]

= 1
ρn+1/2 Re

[
∇h ·

(
μn+1/2 ∇uT,n

)
+ 1

2

(
∇h ·

(
μn+1/2 ∇uT,n

)
− ∇h ·

(
μn+1/2 ∇uT,n−1

))]
,

(2.25)

and exploiting incompressibility, one has

∇h ·
(
μn+1/2 ∇uT,n

)
= ∇huT,n ∇hμ

n+1/2 + μn+1/2 ∇h · ∇huT,n

= ∇huT,n ∇hμ
n+1/2 + μn+1/2 ∇h (∇h · u)

= ∇huT,n ∇hμ
n+1/2. (2.26)
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For the convective terms, defined as

Hn
h = ∇h · (unun), Hn−1

h = ∇h · (un−1un−1), (2.27a,b)

a centred second-order discretization is used (e.g. Harlow & Welch 1965; Orlandi 2012),
which is generally best suitable for fully resolved flows, yielding discrete preservation of
the total kinetic energy in the case of uniform density. For the diffusive terms, which are
written as

Σn
h = ∇h · μn+1/2 (∇hun + ∇huT,n) , (2.28)

a standard second-order central discretization is used (Tryggvason et al. 2011).
The last step concerns the solution of the Poisson equation (2.9) for the corrective

pressure, which is also the most expensive part in multiphase flow solvers in terms of
computational effort. The Poisson equation is discretized by a finite-difference scheme
with a staggered Cartesian mesh. The resulting sparse linear system is solved by iterative
methods. In particular, the HYPRE library (Falgout & Yang 2002) is found to be very
efficient in massively parallel computations. Both geometric multigrids and the Krylov
methods have been tested, the latter proving to be more robust in the presence of
complicated flow topologies.

2.3. Surface tension
The modelling of surface tension effects is the most peculiar and critical aspect when
developing a multiphase flow solver. Use of the VOF method, which has advantages in
terms of mass conservation, has some drawbacks when the curvature on the interface
has to be estimated, which is necessary for the determination of surface tension. In this
work, the continuum surface force method (Brackbill, Kothe & Zemach 1992) is used to
determine the equivalent local body force, whereas the interface curvature is evaluated
through the height function technique (Cummins, Francois & Kothe 2005; Francois et al.
2006; Hernández et al. 2008; López & Hernández 2010; Popinet 2009; Aniszewski et al.
2021)). The height function method is known to work well as long as the height function is
within the cell dimension (Cummins et al. 2005). At points where this condition is not met,
the interface curvature is estimated based on the gradient of the interface normal vector
(Goldman 2005):

k = ∇C̃ ∗ H(C̃) ∗ ∇C̃T − |∇C̃|2 Tr
(
H(C̃)

)
2|∇C̃|3 , (2.29)

where ∇C̃ and H(C̃) are, respectively, the gradient and the Hessian of the smoothed colour
function. The first- and second-order derivatives of the colour function field (∂C̃/∂xi

and ∂2C̃/∂xi ∂xj) are approximated using the least-squares method (Ding et al. 2004). A
detailed verification and validation study of the solver is reported in Appendix A.

3. Numerical simulation of wave breaking

3.1. Flow cases
Results of numerical simulations of wave breaking are hereafter reported for the idealized
case of a wave train with assumed periodicity in the streamwise and spanwise directions
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Figure 2. Sketch of the computational set-up for the study of wave breaking: no-slip boundary conditions
are assigned at the top and bottom boundaries, whereas periodic boundary conditions are assigned in the
streamwise (x) and spanwise (z) directions.

(see figure 2). The initial free-surface elevation η(x, z) is assigned as in Iafrati (2009),
Chen et al. (1999), Deike et al. (2015, 2016) and Wang et al. (2016), that is,

η(x, z) = ε

2π

(
cos(k (x − r(z)�x)) + 1

2
ε cos(2k (x − r(z)�x)) + 3

8
ε2 cos(3k (x − r(z)�x))

)
, (3.1)

where ε = ak is the initial wave steepness, a is the wave amplitude, k = 2π is the
fundamental wavenumber, and the period of the fundamental wave component is T =√

2π ≈ 2.5. A small perturbation is introduced in the initial wave profile in the form of a
random shift by a fraction (0 � r(z) � 1) of the grid cell size. The corresponding initial
velocity field in water is derived from potential flow theory:

u(x, y, z) = Ω
ε

k
exp(ky) cos(k (x − r(z)�x)), ∀ y < η(x, z), (3.2)

v(x, y, z) = Ω
ε

k
exp(ky) sin(k (x − r(z)�x)), ∀ y < η(x, z), (3.3)

where Ω =
√

k/Fr (1 + ε2) accounts for nonlinear corrections (Whitham 1974). No-slip
boundary conditions are assigned at the top and bottom boundaries. At the beginning of
the simulation, the fluid in the air domain, i.e. y > η(x, z), is assumed to be at rest. As
soon as the simulation starts, the solution of the Poisson equation enforces the continuity
of the velocity field, therefore the velocity in air is initialized as a divergence-free velocity
field satisfying the continuity of the normal velocity at the interface. Later on, motion
in air is induced by momentum exchange occurring at the interface due to the normal and
tangential stresses. As the water depth is of the same order as the fundamental wavelength,
wave propagation can be regarded to be of deep-water type, and the presence of the bottom
does not affect the evolution of the breaking process substantially (Chen et al. 1999). For
similar reasons, at such a wavelength/depth ratio, the energy loss by bottom friction is
essentially negligible (Lighthill 1978). Two- and three-dimensional numerical simulations
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Flow case Nx × Ny × Nz Lx × Ly × Lz ε Rew

2D 512 × 384 1 × 2 0.50 10 000
3D1E4c 512 × 384 × 256 1 × 2 × 1/2 0.50 10 000
3D1E4f 1024 × 768 × 512 1 × 2 × 1/2 0.50 10 000
3D4E4c 512 × 384 × 256 1 × 2 × 1/2 0.50 40 000
3D4E4f 1024 × 768 × 512 1 × 2 × 1/2 0.50 40 000

Table 1. List of simulations performed. For all cases, We = 12 262.5. Columns show the simulation identifier,
the number of cells used, the domain size in the streamwise, vertical and spanwise directions, the initial
steepness parameter, and the Reynolds number of the liquid phase.

have been carried out for different Reynolds numbers, but in all cases it is assumed that

We = ρ1Ũ2λ

σ
= ρ1gλ2

σ
= 12 262.5. (3.4)

Assuming the surface tension coefficient to be 0.072 N m−1, the chosen Weber number
corresponds to water waves with about 30 cm fundamental wavelength. At such a
wavelength, the Reynolds number is

Re = ρ1Ũλ
μ1

= ρ1g1/2λ3/2

μ1
≈ 5.1 × 105. (3.5)

Numerical simulations at such a Reynolds number would require a considerable
computational effort for all the relevant scales of the flow to be fully resolved. In order
to minimize artefacts due to lack of sufficient resolution, simulations have been conducted
at Re = 10 000 and 40 000. Despite this limitation, viscous effects may be regarded as
representative of full-scale conditions, while providing accurate and energy-preserving
solutions. In all cases, the density and viscosity ratios are assumed to be ρ1/ρ2 = 800
and μ1/μ2 = 55, hence representative of the real air–water system. The flow parameters
for the various simulations performed are listed in table 1. The computational domain is
one fundamental wavelength long (streamwise direction), two fundamental wavelengths
high (vertical direction), and for 3-D simulations, one-half fundamental wavelength wide
(spanwise direction), namely x ∈ [−0.5, 0.5], y ∈ [−1, 1], z ∈ [−0.25, 0.25]. Each 3-D
simulation has been carried out at two grid resolutions, in order to gain information about
grid sensitivity. In all cases, the grid cells are uniformly spaced in the x- and z-directions,
whereas in the vertical direction, cells are clustered about the still-water level in order to
achieve better resolution around the interface. In particular, the grid size is kept uniform
for −0.25 � y � 0.25, and progressively increased moving away from the centre of the
domain (Orlandi 2012, § 2.2.3c). Assuming λ = 30 cm, the resulting grid spacing in the
well-resolved zone is about 0.6 mm in the coarse-mesh simulations (as in Chen et al.
1999), and 0.3 mm in the fine-mesh simulations.

Particularly at the shortest scales, the dynamics of the breaking is strongly affected by
surface tension (Duncan 2001). An illustration of the various stages of the breaking process
is provided in figure 3, where kinetic energy and instantaneous streamtraces are shown.
Starting from the initial conditions (figure 3a), the onset of the breaking occurs at the time
instant at which for the first time a portion of the air–water interface becomes vertical
(figure 3b). Next, curling of the crest and plunging onto the forward face are displayed
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101

Figure 3. Air entrainment in a plunging breaker: slices of the 3D1E4c flow case are reported, showing contours
of kinetic energy, and instantaneous streamtraces: (a) initial condition, t/T = 0.0; (b) breaking inception, t/T =
0.26; (c) initial jet impact, t/T = 0.38; (d) backward-splash entrainment, t/T = 0.84.

in figure 3(c), which shows the impact of the water jet and subsequent air entrainment.
Finally, figure 3(d) shows the splash-up and successive impacts on the free surface, and
resulting air entrainment (Kiger & Duncan 2012). The simulations are advanced in time
up to t/T = 2.8, at which time most energy has been dissipated, and effects of spurious
streamwise periodicity are still small.

3.2. Influence of initial conditions and grid size
In order to derive a quantitative estimate of the uncertainty in the numerical results, for
the 2-D case, five repetitions of the same simulation have been carried out by imparting
small random perturbations of the initial wave profile (3.1). This is to mimic what
usually happens in experiments where, due to the residual turbulence level and/or small
perturbations in the initial free-surface profile, differences in the breaking dynamics occur,
although the main features are quite repeatable. In figure 4, the time histories of the total
mechanical energy for the various simulations are reported. Up to onset of breaking,
the results are perfectly overlapping. However, when breaking initiates, minor changes
in the air entrainment and in the bubble fragmentation process caused by the different
initial shifts lead to progressive divergence in the behaviour of the total energy. At the
end of the simulation, the maximum scatter across cases is about 10 − 15 % of the initial
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0
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0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

E/E0

t/T
Figure 4. Time histories of total energy for 2-D simulations with initial steepness ε = 0.5, with different

initial perturbations.

energy content. This issue should be kept in mind when comparing different simulations.
The results of 2-D simulations with initially perturbed state are then used to extract
an ensemble average of the volume fraction and associated density and viscosity fields.
For that purpose, an intermittency coefficient (Brocchini & Peregrine 2001)

C̄(x, t) =
∑N

i Ci(x, t)
N

(3.6)

is determined as an average of the local volume fraction over N = 5 simulations with
different initial conditions, as shown in figure 5. The time evolution confirms that all
computed solutions are well overlapping up to the breaking onset, also in terms of
the free-surface profile. As soon as the water jet plunges onto the free surface, larger
differences emerge in the size and distributions of the entrapped bubbles, thus leading
to much wider scatter. Differences are originated by strong nonlinearities in the flow
triggered by changes associated with use of a discrete grid to describe the fragmentation
and reconnection processes of the interface. At a later stage, the large air cavity that forms
breaks down into smaller cavities that subsequently rise up and emerge from the water,
thus the intermittency region shrinks, while remaining larger than the grid cell.

The effect of the grid resolution is analysed in the 3-D flow cases. In order to test
the capability of the computational model to resolve all the relevant scales responsible
for energy dissipation, a comparison between the time history of the total energy (Etot)
obtained from the simulations on coarse and fine meshes is displayed in figure 6. The total
energy is here defined as

Etot =
∫

V

1
2

ρ(u2 + v2 + w2) dV︸ ︷︷ ︸
kinetic energy

+
∫

V
ρ g( y + d/2) dV︸ ︷︷ ︸
potential energy

+ 1
We

(S − 1)︸ ︷︷ ︸
surface tension potential energy

,

(3.7)
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0 0.2 0.4 0.6
C̄

0.8 1.0

(a) (b) (c)

(d ) (e) ( f )

Figure 5. Contours of ensemble-averaged volume fraction of 2-D simulations with perturbed initial
conditions at different times, (a) t/T = 0.4, (b) t/T = 0.8, (c) t/T = 1.2, (d) t/T = 1.6, (e) t/T = 2.0, and
( f ) t/T = 2.4.

0

0.2

0.4
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0.8

1.0(a) (b)
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0.2

0.4

0.6

0.8
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0.5 1.0 1.5 2.0 2.5

E/E0

t/T

3D1E4c

3D1E4f

0.5 1.0 1.5 2.0 2.5
t/T

3D4E4c

3D4E4f

Figure 6. Evolution of total energy as obtained from 3-D simulations of wave breaking with ε = 0.5. Results
are shown for (a) Re = 10 000, and (b) Re = 40 000.

where the first term on the right-hand side is the total kinetic energy, the second
term is the potential energy, with d the water depth, and the last term is the surface
tension potential energy, with S the surface area of the interface. No significant
difference is observed between coarse and fine simulations during the pre-breaking
phase. Once the breaking starts, small differences develop, which, nevertheless, are
within the inherent uncertainty of the simulations as discussed previously in the 2-D
case.
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Figure 7. Time histories of total mechanical energy (purple line with solid square symbols) and of the time
integral of the sum of viscous dissipation and surface tension work (green line with open circles) for 3-D
simulations of wave breaking with initial steepness ε = 0.5: (a) Re = 10 000, coarse grid (3D1E4c); (b) Re =
10 000, fine grid (3D1E4f); (c) Re = 40 000, coarse grid (3D4E4c); (d) Re = 40 000, fine grid (3D4E4f).

3.3. Energy budgets
Starting from the momentum and continuity equations, the following integral budget
equation can be derived:

d
dt

∫
V

(
ρ

u2

2
+ ρgy

)
dV︸ ︷︷ ︸

total energy

= −
∮

∂V

(
p + ρ

u2

2
+ ρgy

)
u · n dS︸ ︷︷ ︸

boundary energy flux

+
∮

∂V
(Σ · u) · n dS︸ ︷︷ ︸

work of surface tension forces

−
∫

V
Σ : ∇u dV︸ ︷︷ ︸

viscous dissipation

+
∫

V
u · f σ dV︸ ︷︷ ︸

work of tension forces

, (3.8)

where surface integrals over the domain boundaries vanish due to the periodicity in the
streamwise and spanwise directions, and to the no-slip boundary condition at the bottom
and top walls. It is important to note that the above equations apply in continuous form, but
they are not valid rigorously in discrete form, depending on the numerical scheme and grid
size. The discretization scheme adopted in the present model for the momentum equation
conserves the total energy also in discrete form in the case of a single fluid (Orlandi 2012).
However, the conservation properties are not guaranteed in case of multiphase flows due
to the variation of the fluid properties, and of the density in particular. In figure 7, the
time histories of the total mechanical energy for the various simulations are compared
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Figure 8. Time histories of kinetic energy (Ek), potential energy (Ep), surface tension energy (Es) and total
energy (Etot) of water for 3-D wave breaking with initial steepness ε = 0.5. Here, E0 is the initial total
energy, and T is the wave period. The solid black line represents the theoretical linear viscous dissipation
E/E0 = exp(−4νk2t), where k = 2π is the fundamental wavenumber (Landau & Lifschitz 1987). Plots are for:
(a) Re = 10 000, fine grid (3D1E4f); (b) Re = 40 000, fine grid (3D4E4f).

with the time integrals of the sum of the viscous dissipation and surface tension work
terms. The results highlight satisfactory agreement between the energy decay and the
total dissipation, which, as expected, improves for the case of fine grid computations.
Differences are minor prior to breaking, and become more significant once breaking
starts. After the start of the breaking occurring at about t/T ≈ 0.5, the air–water interface
increases in size owing to air entrainment and bubble fragmentation, but in spite of that,
the energy conservation properties of the discrete form of the convective terms and of the
approximate representation of the surface tension are confirmed.

3.4. Role of breaking in energy dissipation
The time histories of kinetic, potential, surface tension and total energies during the
breaking process are shown in figure 8 for Re = 10 000 and 40 000, limited to fine grid
cases. In the early stages, the total energy follows the theoretical decay rate estimated
by Landau & Lifschitz (1987), whereas a sharp increase of energy dissipation occurs
shortly after the onset of breaking. The time histories of the kinetic and potential energy
contributions are characterized by oscillatory behaviours with opposite phases, associated
with the bound wave component. As long as the wave is regular, the two contributions are
balanced, and their sum remains constant. During the breaking stage, owing to plunging
of the water jet with subsequent air entrainment and bubble fragmentation, large vortical
structures develop that yield an increase of kinetic energy as compared to potential energy.
The time history of the total energy shows that most dissipation occurs within about one
wave period, in agreement with results of previous authors (Chen et al. 1999; Iafrati 2009;
Deike et al. 2015, 2016; Wang et al. 2016). As discussed by Iafrati (2011), most dissipation
is associated with the formation of small-scale bubbles, which increase the size of the
air–water interface and thus the surface tension contribution, and is accompanied with
severe velocity gradients, mainly concentrated into vortex sheets (see below). The results
of simulations at the two Reynolds numbers are quite similar, except for small differences
in the dissipated energy fraction. Besides uncertainties discussed previously, part of this
difference is associated with the different amount of the energy fraction that would be
dissipated in the absence of breaking, as suggested by the theoretical estimates (thin black
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Figure 9. Time histories of total viscous dissipation in 3-D wave breaking with initial steepness ε = 0.5, for
fine simulations at Re = 10 000 and 40 000. The green dash-dotted and purple dotted vertical lines indicate the
time of the onset of breaking, whereas the black dashed lines represent the time instants shown in figure 10.

lines in figure 8). The above results corroborate findings made in previous studies (e.g.
Lubin et al. 2006; Iafrati 2009; Deike et al. 2015), which showed that the dissipated energy
fraction does not depend much on the Reynolds number, or on dimensionality.

With this background, it becomes interesting to investigate the dissipation process more
deeply, by looking for possible differences in the basic mechanisms characterizing wave
breaking at different Reynolds numbers. For that purpose, the time histories of viscous
dissipation are compared in figure 9. At the beginning of the simulations, differences
are just due to use of different Reynolds numbers. Dissipation increases sharply soon
after the breaking starts, and it decays as t−2 afterwards. It is worth noticing that in the
late stage of the breaking process, the solutions at the two Reynolds numbers are nearly
overlapped, implying that increased Re is accompanied by increased velocity gradients,
thus representing a special case of the general principle of dissipation anomaly (Onsager
1949). In order to identify better the zones where it is mostly concentrated, spanwise
averages of the viscous dissipation have been computed at different times and shown in
figure 10, at time instants corresponding to the vertical dashed lines in figure 9. The time
evolution indicates that in the early stages of the breaking process, viscous dissipation is
quite vigorous, and mostly localized about the plunging point and around the entrained air
cavity. In the next stage, when the air cavity is pushed downwards, the viscous dissipation
region broadens and propagates more in depth. Next, as the large air cavity fragments into
smaller bubbles, the viscous dissipation decreases in amplitude but spreads behind the
breaker, continuing to propagate in depth. By comparing the results obtained at the two
Reynolds numbers, it is seen that that in the higher-Re simulation, the region with high
viscous dissipation displays sharper variations in space and a deeper penetration.

3.5. Air entrainment and bubbles distribution
Whereas the above discussion is focused on global quantities, a more quantitative analysis
of bubbles and vortical structures generated by the breaking process is presented herein.
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10110010–110–210–3

Figure 10. Spanwise averages of viscous dissipation in 3-D simulation of wave breaking at (a) Re = 10 000
(3D1E4f), and (b) Re = 40 000 (3D4E4f), in logarithmic scale. The white line marks the 0.5 volume fraction
iso-line.

A rendering of the computed air–water interface is provided in figure 11 (more frames
are provided in movie 1 and 2 in the online supplementary materials). As expected,
the simulation at Re = 40 000 includes smaller bubbles, which are grouped into larger
clusters. In the simulation at Re = 10 000, the air cavity entrained at the onset of the
breaking retains its tubular shape for a longer time interval, and it takes some time before
destabilizing and breaking into smaller bubbles. Conversely, at Re = 40 000, the air cavity
displays large perturbation in the spanwise direction already at the time when the jet
touches the free surface ahead, thus it fragments rather quickly into smaller bubbles,
meaning that the 3-D instability mechanisms become effective in play much earlier.

Because of its longer stability, the entrained air cavity at Re = 10 000 can propagate
deeper before fragmenting into smaller bubbles. A detailed illustration of the instability
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Re = 10 000(a) (b) Re = 40 000

Figure 11. Evolution of the breaking event all sequences are provided respectively in movie 1 and 2
(Re = 10 000 and Re = 40 000) in the online supplementary materials for (a) Re = 10 000 (3D1E4f), and
(b) Re = 40 000 (3D4E4f).
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Figure 12. Details of the fragmentation of the cylindrical air cavity in numerical simulation of wave breaking
at Re = 10 000 (3D1E4f).

mechanism leading to fragmentation of the tubular air cavity for the case Re = 10 000
is provided in figure 12. Here, the air cavity develops first modulations of the radius in
the spanwise direction, which lead to the formation of large air bubbles connected by
thin air filaments. As time elapses, the large bubbles move upwards under the action
of the buoyancy, whereas the air filaments become thinner and longer. Finally, the air
bubbles reach the upper water surface and degas, whereas the thin filaments break into
tiny bubbles. This is a clear manifestation of the Rayleigh–Taylor instability mechanism
involving gravity and surface tension (Gao, Deane & Shen 2021b).

A quantitative analysis of the bubble size distribution generated during the breaking
process is provided in figure 13. The theoretical distribution proposed by Deane &
Stokes (2002) is also shown for comparison. For bubble size larger than the Hinze scale
(Hinze 1955), the bubble size distribution is the result of balance between turbulent
velocity fluctuations and surface tension effects; it is characterized by a −10/3 power-law
probability density function. As discussed by Soloviev & Lukas (2014), large bubbles
fragment due to both the instability of the air cavities and the detachment of small bubbles
during the rising process associated with the buoyancy. Bubbles smaller than the Hinze
scale are not prone to fragment owing to the stabilizing effect of surface tension, and are
instead generated by jet/wave-face interaction throughout the active phase, and exhibit
a −3/2 power-law probability density function (Deane & Stokes 2002). The bubble
size distributions shown in figure 13 have been evaluated from flow samples stored at
intervals �t/T ≈ 0.02 apart, from t/T ≈ 0.8 to t/T ≈ 2.8. The equivalent bubble radius
is evaluated by using the algorithm developed by Herrmann (2010) to identify connected
domains with the volume fraction field. The volumes of the domains thus identified are
evaluated, and their equivalent radii are determined assuming a spherical shape, namely
Req = (3V/(4π))1/3. For the smaller bubbles, the −3/2 power law is observed for the
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Figure 13. Probability density functions of bubble size, including all bubbles from t/T = 0.8 to t/T = 2.8:
(a) wave breaking at Re = 10 000; (b) wave breaking at Re = 40 000.

finest grid only, as the limitations of the discrete model adopted for surface tension prevent
a correct description of the interface dynamics for bubble with radius comparable to the
cell size (Gao et al. 2021a). This limitation is indeed confirmed by the change in the slope
of the probability density functions occurring for bubbles with radius smaller than 2.5 grid
lengths.

In addition to the global statistics of the bubble size, in figure 14, information concerning
the number of the bubbles, their average size, the trapped air volume and the vertical
position of their centre of mass is provided. As shown in figure 11, regardless of the grid
resolution, at Re = 10 000, larger air cavities are entrained at the onset of the breaking
compared to the Re = 40 000 case. As can be deduced from figure 14, shortly after the
onset of the breaking, the large air cavity breaks into smaller bubbles (figure 12), thus
leading to an increase in the bubble number and in a corresponding reduction of the
average size. As anticipated previously, at Re = 40 000, the interface is already strongly
perturbed and a large cluster of bubbles is entrained at the onset of the breaking instead of a
single large air cavity. At later stages, the bubble size remains almost constant, whereas the
number of bubbles decreases owing to the degassing process. Comparison of data shows
fewer, larger bubbles at Re = 10 000 for t/T < 1.4, whereas for t/T > 1.4, the average
bubble size is about the same, but more bubbles are found at Re = 40 000. In both cases,
the average bubble size approaches 1 mm. It is worth noticing that also coarse grid results
are very close each other, although far from the fine grid ones. Figure 14(b) also shows
differences in the surface tension energy at the two Reynolds numbers, which might result
from approximate estimation of the bubbles surface area, and because of the contribution
of the free surface of the wave, which is not accounted for.

In terms of the total entrained air volume (figure 14c), significant differences occur
for t/T < 1.4, whereas the decay rate is rather similar for t/T > 1.4. As found through
acoustic measurements by Eric & Melville (1991), after the initial air entrainment, the total
air volume decays exponentially with coefficient −3.9, whereas the present results fit better
with a −2.9 coefficient. In the late stages, the coarse simulations display a reduced decay
rate, which is presumably associated with limitation of the post-processing in resolving
the dynamics of the smallest bubbles.

The time histories of the vertical position of the centre of mass show that at the onset of
breaking, the bubbles are mostly located above the still-water level, and as time progresses,
they are dragged down to depths of the order of the initial wave amplitude. At Re = 40 000
the position of the centre of mass exhibits large oscillations, presumably due to the large
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Figure 14. Time histories of: (a) number of bubbles; (b) average equivalent bubbles radius and surface
tension energy; (c) volume of trapped air; and (d) averaged depth of bubble centres.

coherent structures formed during the breaking, whereas, presumably due to the higher
viscosity, at Re = 10 000 the descent of the position of the centre of mass is much more
gentle.

In order to get a better understanding of the bubble size distribution at different stages of
the breaking process, the statistics of the equivalent bubble radius versus time are provided
in figure 15 for the fine-grid simulations. In the graphs, the average equivalent radius is also
shown as a solid line. The data again confirm that at Re = 10 000, a few larger and more
persistent bubbles are formed at the onset of the breaking, whereas at Re = 40 000, the
air cavity is already fragmented into smaller bubbles. Furthermore, the maximum number
of bubbles is achieved at different times, namely t/T ≈ 2 for Re = 10 000, and t/T ≈
1.45 for Re = 40 000. Figure 16 provides information about the vertical distribution of the
bubbles. In particular, the figure shows the number of bubbles lying in a horizontal slab
with thickness �y λ = 0.6 mm, as a function of time. No substantial effect of the Reynolds
number is observed in terms of the maximum depth reached by the bubbles, although the
concentration of bubbles in the deepest layers is higher for Re = 40 000. Furthermore,
for Re = 40 000, the bubbles are spread out in a wider region, whereas at Re = 10 000,
bubbles are preferentially concentrated around yλ = −10 mm.

Figure 17 shows the distribution of the depth of the bubbles as a function of the
respective size. Close to the free surface (−20 mm � yλ � 5 mm), bubbles with a wide
range of sizes are present, the largest with radius about 10 mm. Moving deeper, only
relatively small bubbles are present, with typical radius about 1 mm. As already observed,
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the average equivalent radius 〈Req〉.

m
ax

 N
r 

=
 2

9
2

m
ax

 N
r 

=
 5

8
6

0.8 1.0 1.2 1.4

y cg
λ

 (
m

m
)

1.6 1.8 2.0

t/T

2.2 2.4 2.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

t/T

2.2 2.4 2.6
100

101

–60

–50

–40

–30

–20

–10

40

30

20

10

0

–60

–50

–40

–30

–20

–10

40

30

20

10

0

100

101

Nr

(b)(a)

Figure 16. Bubble depth distribution over time, for flow cases (a) 3D1E4f and (b) 3D4E4f. The colour map
indicates the number of bubbles, and the line with symbols denotes the average depth of the bubbles.

more bubbles penetrate deeply at higher Reynolds numbers. It is noteworthy that the
above results cannot be extrapolated directly to the case of ocean waves, as fresh water
is herein assumed. In fact, there is experimental evidence that salinity affects the process
of micro-bubble formation, hence the overall number of bubbles that form in salt water is
about an order of magnitude higher than in fresh water (Cartmill & Yang Su 1993).

3.6. Coherent vortical structures
The results presented in the previous subsections have shown that air entrainment and
bubble dynamics occurring at different Reynolds numbers are remarkably different,
although the total energy dissipated during the breaking is essentially the same. It
is therefore interesting to investigate in more depth the mechanisms governing the
energy dissipation, and their connection with air entrainment and bubble fragmentation
processes. This can be done by analysing the coherent vortical structures generated during
the breaking phenomenon. Several types of vortical structures can be recognized in
turbulence, which can be categorized roughly into vortex tubes and vortex sheets (She,
Jackson & Orszag 1990; Douady, Couder & Brachet 1991; Ruetsch & Maxey 1992). Vortex
tubes (the so-called worms) drew most of the attention in early numerical simulations
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Figure 17. Bubble depth distribution as a function of bubble size, for flow cases (a) 3D1E4f and (b) 3D4E4f.
The colour map indicates the number of bubbles.

and experiments (Vincent & Meneguzzi 1991; Cadot, Douady & Couder 1995), being the
most prominent observed features. However, deeper analyses showed that vortex sheets, i.e.
zones of locally nearly 2-D shearing motion, provide a dominant contribution to enstrophy
production through vortex stretching and, in turn, to energy dissipation (Tsinober 1998).
Vortex sheets are often disregarded since they exhibit a strong tendency to roll up as a
consequence of the Kelvin–Helmholtz instability mechanisms, leading to the formation
of vortex tubes, hence their lifetimes are relatively short (Passot et al. 1995). This is also
the reason why intense vortical structures in turbulence come in the form of vortex tubes
surrounded by vortex sheets spiralling around them (Horiuti & Takagi 2005).

In order to identify vortex tubes and vortex sheets, Pirozzoli, Bernardini & Grasso
(2008) introduced distinct vorticity-like variables, one more suitable to identify tube-like
structures (ωt), and the other more appropriate to identify sheet-like vorticity distributions
(ωs). After Zhou et al. (1999), vortex tubes are identified as the connected regions where
the velocity gradient tensor has one real eigenvalue (λr) and two complex conjugate
eigenvalues (λc = λcr ± iλci). In those regions, the discriminant of ui,j satisfies the
condition

Δ = Q∗3 + 27
4 R∗2 > 0, (3.9)

where Q = −1/2ui,juj,i and R = −1/3ui,juj,kuk,i are the second and third invariants of
ui,j (the first being identically zero). Within the core of vortex tubes, the flow is then a
combination of a straining motion with intensity λr, and a spiralling motion with angular
velocity λci. It can be shown readily that in the case of 2-D solid-body rotation, the
imaginary part of the complex eigenvalue pair is proportional to the vorticity modulus
(λci = ω/2), hence a vorticity-like variable can be introduced to characterize vortex tubes:

ωt = 2λci. (3.10)

Tubes are defined as regions where ωt exceeds a physically relevant threshold value.
The identification of the vortex sheets relies on the work of Horiuti & Takagi (2005). Let

Si,j and Wi,j be the symmetric and antisymmetric parts of the velocity gradient tensor. Then
vortex sheets are identified as the regions where the largest eigenvalue (λL) of the tensor
Li,j = Si,kWk,j + Sj,kWk,i is positive, after discarding the eigenvector that is most aligned
with the vorticity vector. In the case of a pure 2-D parallel shear flow, by its definition, λL

turns out to be proportional to the square of the vorticity modulus (λL = ω2/2), hence a
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Figure 18. View from under the water level of vortex tubes and vortex sheets in a plunging breaking event
at (a,c,e,g) Re = 10 000(3D1E4f), and (b,d, f,h) Re = 40 000 (3D4E4f), in their evolution from t/T ≈ 0.8 to
t/T ≈ 1.4. Vortex tubes are rendered as yellow iso-surfaces of ωt = 20, and vortex sheet are rendered as grey
iso-surfaces of ωs = 20.

vorticity-like variable can be introduced to characterize vortex sheets:

ωs =
√

2λL. (3.11)

Sheets are defined as regions where ωs exceeds a physically relevant threshold value.
Iso-surfaces of the vortex tube and vortex sheet indicators at various times during

the breaking process from data for Re = 10 000 and 40 000 are shown in figure 18.
The plots show that a strong shear layer is formed at the onset of breaking, which
becomes quite strong once the jet plunges onto the free surface and entrains the large
air cavity (see figures 18a–d). Hence smaller structures develop as a consequence of
the bubble fragmentation process and of the large velocity gradients developing inside
the bubble clouds (see figures 18d–g). In the simulation at Re = 10 000, a vortex sheet
initially develops around the entrained air column, and it retains a 2-D shape for a long
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Figure 19. View from under the water level of vortex tubes in a plunging breaking event at (a,c) Re = 10 000
(3D1E4f) and (b,d) Re = 40 000 (3D4E4f). Vortex tubes are rendered as yellow iso-surfaces of ωt = 20.

time interval. Next, when the air column collapses, the vortex sheets develop thinner and
more irregular shapes (see figure 18g). In the case at Re = 40 000, the air cavity is already
disrupted at the onset of breaking, therefore vortex sheets exhibit a 3-D irregular pattern
from the very beginning. Owing to severe stretching, the structures become elongated
along the streamwise direction shortly after the first plunging event (see figure 18b).
Coherent tubular structures develop progressively inside the vortex sheets, initially with
shape similar to the parent vortex sheets. The latter then roll up around the tubes as a
result of Kelvin–Helmholtz instability, which is very similar to that observed in isotropic
turbulence (Horiuti & Takagi 2005). Three types of tubular structures can be identified.
The first is obviously the hollow cylinder extending spanwise, associated with entrainment
of the large air cavity during the initial plunging event. The second type includes the
streamwise vortices formed around the air tubes in a periodic series (see Lubin & Glockner
2015). A third type includes hairpin-like vortices resembling those generated in boundary
layers (Wu & Moin 2009; Schlatter & Örlü 2012; Pierce, Moin & Sayadi 2013), which
emerge in the last stages of the breaking event, as shown in figures 19(c,d).

The first type of tube is particularly evident in the simulation at Re = 10 000 soon
after the plunging process. Streamwise tubes are more evident in the simulation at
Re = 40 000, whereas they are much less evident at Re = 10 000, despite the presence
of some streamwise air filaments. This is presumably a consequence of the weak vorticity
generated at the lower Reynolds number, or the relatively large value of ωt chosen for their
identification. Hairpin-like vortices occur starting from t/T ≈ 1.0 (see figures 19c,d), and
considering their resemblance to the structures developing in turbulent boundary layers,
they seem to be a consequence of the surface current underneath the air–water interface
(Iafrati 2009). As expected, the simulations show that filamentary vortex structures at the
higher Reynolds numbers are smaller and more numerous. In fact, although vortex tubes
are mostly responsible for intermittency (Douady et al. 1991; Sreenivasan & Antonia 1997;
Moisy & Jiménez 2004), evidence shows that intense dissipation takes place mainly within
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Figure 20. Instantaneous visualizations in two cross-stream planes (b–e), in the longitudinal symmetry plane
( f,g), and in a horizontal plane (h,i), for wave breaking at Re = 10 000 (3D1E4f). See panel (a) for the precise
location of the planes. Coloured contours denote the local values of the normal-to-plane vorticity components
(b,d, f ,h), and the local dissipation rate (c,e,g,i). The black solid lines in (b,d, f ,h) denote the ωt = 20 iso-line,
and in (c,e,g,i) the ωs = 20 iso-line. Only points belonging to the water phase are shown (C � 0.5).
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Figure 21. Instantaneous visualizations in two cross-stream planes (b–e), in the longitudinal symmetry plane
( f,g), and in a horizontal plane (h,i), for wave breaking at Re = 40 000 (3D4E4f). See panel (a) for the precise
location of the planes. Coloured contours denote the local values of the normal-to-plane vorticity components
(b,d, f ,h), and the local dissipation rate (right). The black solid lines in (b,d, f ,h) denote the ωt = 20 iso-line,
and in (c,e,g,i) the ωs = 20 iso-line. Only points belonging to the water phase are shown (C � 0.5).

947 A44-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.674


On coherent vortical structures in wave breaking

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Water

Air

Mixing

ωt

|ω|

|ωx|
|ωy|

|ωz|

ωs
ε

C̄
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Water

Air

Interface

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

10410210010–210–410–6 10410210010–210–410–6

10410210010–210–410–6 10410210010–210–410–6

Water

Air

Mixing

y

y

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Water

Air

Mixing

(b)(a)

(c) (d )

Figure 22. Vertical profiles of horizontal (spanwise and streamwise) averages in the water phase of viscous
dissipation (ε), vorticity modulus (|ω|), streamwise vorticity (|ωx|), vertical vorticity (|ωy|), spanwise vorticity
(|ωz|), vorticity-like variable for vortex tubes (ωt), vorticity-like variable for vortex sheet (ωs), and mean
volume fraction (C̄), for: (a) Re = 10 000 (3D1E4f) at t/T = 0.938; (b) Re = 40 000 (3D4E4f) at t/T = 0.878;
(c) Re = 10 000 (3D1E4f) at t/T = 1.6; (d) Re = 40 000 (3D4E4f) at t/T = 1.6. The shaded area denotes the
mixing region (0.001 < C̄ < 0.999).

vortex sheets that emanate from, and are spiralling around, the core region of vortex tubes
(Kawahara 2005).

In order to better understand the connections between air entrainment and viscous
dissipation with vortical structures, in figures 20 and 21, slices taken in the longitudinal
symmetry plane, in a horizontal plane, and in two cross-stream planes are drawn. Note that
different time instants are considered for the two Reynolds numbers, in order to capture the
most relevant configurations of each case. For clarity, the analysis is limited to the water
phase (C � 0.5). The results display clearly close correlation between viscous dissipation
and the vortex sheet indicator, at both Reynolds numbers. It is also worth noticing that
viscous dissipation is not confined around the free surface, but is also high around the
entrained bubbles, being a likely consequence of the bubble fragmentation process. Within
the high-dissipation regions marked by the vortex sheet indicator, vortex tubes also form in
zones with high vorticity. Due to entrainment of the elongated air cavity, at Re = 10 000,
vortex tubes are correlated mainly with spanwise vorticity (see figure 20 f ), whereas at
Re = 40 000, due to fragmentation of the air cavity, vorticity is more isotropic, and vortex
tubes are well correlated with all vorticity components.

In order to retrieve more quantitative information about the statistics among the various
indicators, vertical profiles of their averages in the longitudinal and spanwise directions
are shown in figure 22. Figures 22(a,b) refer to the same time instants as figures 20 and
21, whereas figures 22(c,d) refer to a later time, t/T = 1.6. Figures 22(a,b) show that
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Figure 23. Vertical profiles in the water phase of the correlation coefficient between the vorticity-like variable
for vortex tubes and vorticity-like variable for vortex sheets (R(ωt, ωs)), vorticity-like variable for vortex tubes
and viscous dissipation (R(ωt, ε)), vorticity-like variable for vortex sheet and viscous dissipation (R(ωs, ε)),
and mean volume fraction (C̄), for: (a) Re = 10 000 (3D1E4f) at t/T = 0.938; (b) Re = 40 000 (3D4E4f) at
t/T = 0.878; (c) Re = 10 000 (3D1E4f) at t/T = 1.6; (d) Re = 40 000 (3D4E4f) at t/T = 1.6. The shaded area
denotes the mixing region (0.001 < C̄ < 0.999).

for both Reynolds numbers, the vorticity is mainly concentrated in the region y ≈ −0.08
−0.08, and the dissipation also attain its maximum in the same zone. In fact, that is the
zone where the horizontal average density is between 0.001 and 0.999, i.e. where the
average density takes intermediate values between pure air and pure water. It is clear that
the concentration of high vorticity, vortical structures and dissipation happens where the
fragmentation and bubbles productions phenomena take place. Moreover, the spanwise
vorticity component very nearly coincides with its modulus at Re = 10 000, whereas the
vorticity is more isotropic at Re = 40 000 as a result of fragmentation of the entrapped air
cavity.

At later stages, i.e. figures 22(c,d), the vorticity propagates deeper, but at Re = 10 000
it decreases sharply at y � −0.20, whereas at Re = 40 000 the decay is milder. It is
interesting to note that at that depth, the total dissipation at Re = 40 000 is two orders
of magnitude higher. In all cases, it should be noted that dissipation is larger wherever
vortex sheets, namely ωs, are intense. Vortical structures are generated in the mixing zone
due mainly to air entrainment and bubble fragmentation, and in the next stage, they are
entrained downwards, where most viscous dissipation takes place.

In order to highlight how and to what extent vortical structures are linked to viscous
dissipation, the correlation coefficients between vorticity-like variables for vortex sheets
and vortex tubes, and viscous dissipation, have been evaluated, as shown in figure 23.
Inside the water phase, association between vortex sheets and dissipation is nearly perfect,
becoming a little less in the mixing region, where, however, the correlation coefficient is
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still around 0.8. Association between tubes and dissipation is, on the other hand, negligible
in water, becoming about 0.4 in the mixing region. Whereas the same trend is observed at
the two Reynolds numbers, it is interesting that at the higher Re, the region with significant
vortical activity extends well under the mixing region.

4. Conclusion

A two-phase Navier–Stokes solver has been used to investigate the breaking of free-surface
waves in a periodic domain, for two values of the characteristic Reynolds number. After
a careful analysis and verification study aimed at ascertaining the low level of artificial
dissipation of the numerical model and of the adopted grid resolutions, the energy
dissipated during the breaking of a free-surface wave in a periodic domain has been
computed for 2-D and 3-D simulations at the two different Reynolds numbers, and it has
been found that the energy fraction dissipated by the breaking is essentially the same in all
cases.

A detailed analysis of the interface evolution, of the subsequent fragmentation process
and of the bubbles distribution has been carried out. Significant differences in the
air entrainment process at the onset of the breaking characterizing the simulations at
the two Reynolds numbers have been revealed: at the lower Reynolds number a large
spanwise elongated cavity is entrapped at the plunging of the jet, whereas at Re =
40 000, the breaking starts with the entrainment of a large bubble cloud. The total air
volumes are about the same for the two different cases, and also the decay rates of
the entrained air and of the mean bubble radius have been observed. The statistics of
the bubble size have been found to follow the −10/3 and −3/2 trends for the bubble
size above and below the Hinze scale (Deane & Stokes 2002), at least for the bubble
large enough to be adequately resolved by the computational grid. The analysis of
the vertical distributions of the bubbles has shown that the bubbles propagate much
deeper at the higher Reynolds number, presumably due to the reduced action of the
viscosity on the penetration of the plunging jet and of the diffusion of the bubble
clouds.

Viscous dissipation has been observed to assume its largest values within the mixing
region, where bubble fragmentation occurs. Particular attention has been devoted to the
analysis of the vortical and coherent structures generated by the breaking process, and,
more specifically, to vortex tubes and vortex sheets. In this respect, we have found that
dissipation is associated primarily with vortex sheets, whereas vortex tubes, which are
present only within the mixing zone, being generated upon sheets roll-up (Kawahara
2005), are much less involved. Interestingly, we find that the effective mixing region of
vortical structures does not coincide with, but rather is significantly larger than, the mixing
region of the volume fraction at sufficiently high Re.

Based on the results herein presented, it may be concluded that although the
energy fraction dissipated by the breaking is about the same, the mechanisms
contributing the dissipation are quite different, depending on flow dimensionality
and on the Reynolds number, and in particular differences in the coherent vortical
structures. It is believed that deeper and more quantitative analysis of the coherent
vortical structures and of their correlation with the volume fraction may contribute to
identify the differences in the mechanisms governing the dissipation in the different
cases.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.674.
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Method/resolution 8 16 32 64 128

Present study 0.217 0.0506 0.0205 0.00774 0.00265
Basilisk (Popinet 2009) 0.1568 0.0279 0.00838 0.0018 0.000545
PROST (Gerlach et al. 2006) 0.2960 0.0818 0.0069 0.0018 —
CLSVOF (Gerlach et al. 2006) 0.3169 0.0991 0.0131 0.0033 —
CSF (Gueyffier et al. 1999) — — 0.1168 0.0132 0.007
RLSG (Herrmann 2008) — 0.1116 0.0295 0.0114 0.0067
Front-tracking (Popinet & Zaleski 1999) 0.3018 0.0778 0.0131 0.0082 0.00645

Table 2. Convergence of the L2 error on the interface height for the capillary wave test case (Re = 54, 77,
Fr = ∞, We = 1, ρ1/ρ2 = μ1/μ2 = 1), for different numerical methods. The resolution is provided in terms
of number of grid points per wavelength.
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Appendix A. Code validation

A.1. Capillary waves
In order to validate the capabilities of the numerical solver to model correctly the surface
tension effects and the interface dynamics for different density ratios, small-amplitude
damped oscillations of a capillary wave are simulated (Gueyffier et al. 1999; Popinet &
Zaleski 1999; Popinet 2009; Dodd & Ferrante 2014). An analytical solution to the problem
was derived by Prosperetti (1981) in the limit of vanishingly small surface oscillations. The
interface is initialized as a sinusoidal wave with wavelength λ, with small non-dimensional
amplitude A = 0.01λ. The computational domain is a box with dimensions 0 � x � λ
and −1.5λ � y � 1.5λ, discretized with a uniform Cartesian grid. Periodic boundary
conditions are imposed at the side boundaries, and no-slip conditions are assigned at the
top and bottom walls.

A grid convergence study is reported in table 2 for Re = 54.77, and unit density and
viscosity ratios. Clearly, Convergence is achieved, although the computed L2 error norm is
larger than from the Basilisk solver (Popinet 2009). Numerical simulations with different
density and viscosity ratios at Re = 100 have also been performed, which are compared
with the reference analytical solution in figure 24. Good agreement is recovered in all
cases.

A.2. Droplet deformation in shear flow
As a second validation test, the deformation of a droplet in a uniform shear flow is
considered, to verify capability of the numerical method to achieve the correct balance
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Figure 24. Capillary wave test case: time history of vertical coordinate of an interface point. Numerical
results obtained with 64 points per wavelength are denoted with the open circles, whereas the solid line is
the analytical prediction (Prosperetti 1981): (a) ρ2/ρ1 = 1.0, μ2/μ1 = 1.0; (b) ρ2/ρ1 = 0.1, μ2/μ1 = 0.1;
(c) ρ2/ρ1 = 0.01, μ2/μ1 = 0.01; (d) ρ2/ρ1 = 0.001, μ2/μ1 = 0.001. Here, Re = 100, Fr = ∞ and We = 1.

of surface tension and applied stresses (Takada, Tomiyama & Hosokawa 2003; Yue
et al. 2006; Vananroye, Van Puyvelde & Moldenaers 2007; Zhou et al. 2010; Soligo,
Roccon & Soldati 2019a,b). An analytical solution for the problem was derived by
Taylor (1934), under the assumptions of small droplet deformation and negligible inertia
effects, which is a function of the capillary number Ca, namely the ratio between
viscous and surface tension forces, and the viscosity ratio of the two fluids. Two- and
three-dimensional numerical simulations have been carried out on a computational domain
with lateral extension Lx = 2π, vertical dimension Ly = 2 and horizontal dimension Lz =
2π, discretized by a uniform grid Nx × Ny × Nz = 512 × 256 × 512. Periodic boundary
conditions are imposed on all variables in the x (streamwise) and z (spanwise) directions.
No-slip boundary conditions are enforced at the upper and bottom walls, y = ±1, where
the streamwise velocity is set to ±uw. The initial velocity profile is a linear function of y.
A spherical (or cylindrical) blob is placed initially at the middle of the channel. Gravity
is neglected, hence Fr = ∞, and the Reynolds number Re = ρuwh/μ is set to 0.1, where
h is the height of the domain. Simulations are carried out at different capillary numbers
Ca = μuwd/(σh) ranging from Ca = 0.062, i.e. stronger surface tension, to Ca = 0.400,
milder surface tension.

The final shape of the droplet is characterized by the length of its principal axes a and
b, as defined in figure 25(a). In 3-D simulations, these properties are evaluated in the
symmetry plane of the droplet. Taylor (1934) reported that the deformation parameter
D = (a − b)/(a + b) at steady state is proportional to the capillary number, namely
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Figure 25. Droplet in the shear test case: (a) definition of geometrical droplet parameters; (b) computed
deformation parameter as a function of capillary number. The results of 2-D and 3-D simulations are compared
with those obtained by using Basilisk, with the analytical solution given by (A1), and with data available in the
literature: Zhou & Pozrikidis (1993) (2-D boundary integral method), Guido & Villone (1998) (experiments),
Li, Renardy & Renardy (2000) (3-D simulation), Komrakova et al. (2014) (3-D simulation), and Soligo et al.
(2019b) (2-D simulation).
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Figure 26. Initial configuration and boundary conditions for the rising bubble test case (Hysing et al. 2009).

D = (35/32) Ca. Confinement effects were accounted for by Shapira & Haber (1990),
who reported

D = 35
32

Ca

[
1 + CSH

3.5
2

(
d
4h

)3
]

, (A1)

where CSH = 5.6996.
The deformation parameter D computed by using the present numerical method is

plotted versus the capillary number in figure 25(b). For the purpose of validation of
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Figure 27. Rising bubble test case: rise velocity (a) and vertical position of the centre of mass (b) versus time
for different grid resolutions (D/�x = 5, 10, 20, 40, 80, 160). The norms of the error of the rise velocity and
of the position of the centre of mass are shown in (c,d), respectively.

the present model, simulations are performed also by using the Basilisk open source
software (Popinet 2013) and comparisons are established with other results available in
the literature. The data indicate that the present method fits rather well with the theoretical
solution as well as with other numerical approaches. For high Ca, the computed data
deviate from the theoretical solution, but it is not clear if that is a limit of the numerical
modelling or, instead, a limit in the analytical solution in the low-surface-tension limit.

A.3. Rising bubble
The dynamics of a rising bubble is here studied numerically using the same set-up
as Hysing et al. (2009). The initial configuration (see figure 26) consists of a bubble
of circular shape of diameter d = 0.5, centred at [0.5, 0.5] in a 1 × 2 rectangular
domain. The density of the fluid inside the bubble, ρ2, is smaller than that of the
surrounding fluid, ρ1, with density ratio ρ1/ρ2 = 1000, and viscosity ratio μ1/μ2 = 10.
The controlling parameters are Re = ρ1

√
g D3/2/μ1 = 35, We = ρ1gD2/σ = 0.5. No-slip

boundary conditions (u, v = 0) are assigned at the top and bottom boundaries, whereas
free-slip conditions (u = 0, dv/dx = 0) are imposed at the vertical walls. Numerical
simulations have been carried out for different grid resolutions, namely D/�x = 5, 10,
20, 40, 80, 160.

The time histories of the rise velocity and the vertical position of the centre of mass of
the bubble are shown in figure 27. The norms of the error, measured as differences from
the results obtained on the finest grid, display first-order convergence.
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Figure 28. Rising bubble test case: bubble interface at t = 1, t = 4, and t = 6, for different grid resolutions
(D/�x = 5, 10, 20, 40, 80, 160).
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Figure 29. Rising bubble test case: rise velocity (a) and centre of mass position (b), obtained with different
solvers: TP2D D/Δ = 320, MooNMD 900 DOF, FreeLIFE D/Δ = 80, Basilisk-C D/Δ = 128, Basilisk-F
D/Δ = 256, Medium D/Δ = 80, Fine D/Δ = 160 (Hysing et al. 2009).
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Figure 30. Rising bubble test case: (a) horizontal velocity map, present solver; (b) horizontal velocity map,
Basilisk; (c) vertical velocity, present solver; (d) vertical velocity, Basilisk.
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Figure 31. Wave breaking: time histories of total mechanical energy for different initial steepnesses. The
solid black line denotes the theoretical viscous decay law (Landau & Lifschitz 1987).

The bubble shapes obtained with the different grid resolutions at three time instants
are shown in figure 28. For the coarsest grid resolution, the bubble rises more slowly
and displays a different shape, without trailing filaments. In figure 29, comparisons with
other computational models are provided in terms of the rise speed and the position of
the centre of mass. The time history of the vertical coordinate of the centre of mass is
consistent for all solvers considered, whereas the rise displays some differences towards
the end of the simulation. Noticeably, the results obtained by the present method are in
quite good agreement with those obtained with the Basilisk solver (Popinet 2013).

In figure 30, the comparisons of the results obtained by using the present model and
the Basilisk solver are provided in terms of velocity contours and bubble profile. Only
minor differences can be observed in the thin filaments at the sides, whereas the velocity
contours are quite similar. The u velocity component provided by Basilisk is slightly higher
than that computed by the present model. Correspondingly, the opposite happens for the v

component. All the above results show good agreement with other solvers.

A.4. Breaking waves: effect of initial steepness
The effect of the initial wave steepness on the wave breaking process has been evaluated
by carrying out 2-D numerical simulations with initial steepness parameter from ε = 0.2
to ε = 0.5, at Re = 10 000. For small values of the steepness, no breaking occurs, in which
case energy is dissipated only owing to viscous effects, as predicted by Landau & Lifschitz
(1987), as Etot(t) = Etot(0) exp(−4μw/ρwk2t), with k = 2π the fundamental wavenumber.

Increasing the initial steepness, spilling occurs initially for ε � 0.33 (Iafrati 2009), and
plunging occurs at ε � 0.5. Time histories of the wave mechanical energy are shown in
figure 31. For initial steepness ε � 0.325, the energy follows quite well the analytical
prediction. On the other hand, when breaking occurs, total energy decays much faster,
as a result of the formation of steep gradients and topological singularities.
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