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Branching Rules for Ramified Principal
Series Representations of GL(3) over a
p-adic Field

Peter S. Campbell and Monica Nevins

Abstract. We decompose the restriction of ramified principal series representations of the p-adic

group GL(3, k) to its maximal compact subgroup K = GL(3,R). Its decomposition is dependent on

the degree of ramification of the inducing characters and can be characterized in terms of filtrations of

the Iwahori subgroup in K . We establish several irreducibility results and illustrate the decomposition

with some examples.

1 Introduction

The complex representations of p-adic algebraic groups are of great interest, both

in their own right and in what they can reveal through the Langlands program in
number theory. The representation theory of p-adic groups also often mirrors the

theory for real Lie groups, and it is especially interesting to see how analogous results

will develop.

To this end, one goal is to examine the finer structure of representations by con-
sidering their restrictions to compact open subgroups. The theory of types promises

that one can classify representations in the Bernstein decomposition by identifying,

among certain representations of compact open subgroups, which ones they con-
tain. In contrast, in the theory of real Lie groups, the maximal compact subgroups

have a crucial role, encoding as they do all the topology of the group, and one classi-
fies irreducible unitary representations by classifying the irreducible Harish-Chandra

modules. Our interest is to explore the extent to which information about the repre-

sentations of the p-adic group resides in the maximal compact subgroup.

Representations of compact subgroups of p-adic groups are very tangible at a
number of levels. First, the representations of sufficiently small (exponentiable)

compact open subgroups can all be constructed using Kirillov theory, as shown by

Howe [H2]. Secondly, each compact open subgroup is pro-finite and consequently
its representation theory is largely determined by the representation theory of Lie

groups over finite local rings. Finally, any admissible representation of a p-adic group

decomposes with finite multiplicity upon restriction to a compact open subgroup
and so one can expect to recover information about the original representation by

examining these constituents.
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That said, the maximal compact subgroups are not exponentiable so Howe’s the-
ory does not apply. Furthermore the representation theory of Lie groups over local

rings is just beginning to see significant progress (see, for example, [L]). Therefore
one objective of this study is to provide some interchange between the representation

theories of p-adic groups and of Lie groups over local rings.

Let k be a p-adic field (that is, a local non-archimedean field) and denote by R its
integer ring. In this paper we consider the group G = GL(3, k) and let K = GL(3,R)

be a maximal compact subgroup. In [CN], the authors considered unramified prin-

cipal series representations and showed how their restriction to K decomposed as
per the double cosets in K of smaller compact open subgroups Cc (defined in Sec-

tion 2). In [CN], the added assumption that the inducing character was trivial on the
compact part of the torus implied that every double coset supported an intertwining

operator of the representation, an assumption we relax here.

This paper is organized as follows. In Section 2 we set our notation and recall some
necessary results from [CN]. The key calculation for determining the decomposition

is the determination of the double cosets in Cc\K/Cd which support intertwining

operators for the restricted principal series representation; this is the main result in
Section 3. We go on to consider questions of irreducibility in Section 4 and conclude

with several examples to illustrate these decompositions in Section 5.
The question of parameterizing double cosets of the upper triangular subgroup B

in K , and more generally of the subgroups C(n,n,n) in K , has been visited and solved by

several authors with various goals in mind. In [OPV] the goal was to look at which
Bruhat decompositions would be independent of the characteristic of the residue

field; the answer was that only GL(2, k) has this property. This implies, in particular,

that the decomposition of principal series is essentially independent of p for GL(2, k)
(see [N, Si]) but will depend on the properties of the residue field in all other cases.

Several authors have considered related questions on the decomposition of repre-
sentations of p-adic groups upon restriction to a maximal compact subgroup. These

include the work of Silberger on GL(2, k) [Si], Nevins on SL(2, k) [N], and Bader and

Onn [BO] on the Grassmann representation of GL(n, k). Paskunas proved that every
irreducible supercuspidal representation of GL(n, k) has a unique Bushnell–Kutzko

type appearing as a multiplicity 1 component of the restriction to the maximal com-

pact subgroup GL(n,R) [P]. Gregory Hill has also constructed classes of representa-
tions of GL(n,R) [Hi]; a key part of his results was the determination of the double

cosets of the subgroups C(0, j, j) in K .

2 Notation and Background

Let k be a local non-archimedean field of residual characteristic p. Let q denote the

number of elements in the residue field of k. We assume throughout that p > 2 and

q > 3. Denote the integer ring of k by R and the maximal ideal of R by P. Choose a
uniformizer π and normalize the discrete valuation on k so that val(π) = 1. Define

U0
= R× and Ui

= 1 + Pi for i > 0.
Let G = GL(3, k) and let K = GL(3,R). Write TG for the diagonal torus in G and

BG for the upper triangular Borel subgroup. Write T = TG ∩ K and B = BG ∩ K for

their intersections with K .
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2.1 Principal Series and Posets

Let χG be a character, not necessarily unitary, of the torus TG and extend it trivially

over the subgroup BG. Then the (normalized) induced representation φG = IndG
BG
χG

is a principal series representation of G. We consider its restriction to K . Writing

χ = χG|T and φ = φG|K , we have that φ = IndK
B χ, since K is a good maximal

compact subgroup. The principal series representation is called ramified if χ 6= 1.

The unramified case was considered in [CN].

Given a ramified character χG of TG, we may write it as χG = (χ1, χ2, χ3) for
characters χi : k× → C

×. Recall that the conductor of a character χi of k× is the least

m ≥ 0 such that Um ⊆ ker(χi); thus we make the convention that cond(χi) = 0 if

and only if χi|R× = 1.
The use of normalized induction implies that IndG

BG
χ ≃ IndG

BG
χw for any w in the

Weyl group of G, so we may reorder the characters χi in a convenient way. Moreover,

if ψ is a character of k× and ψ · χ = (ψχ1, ψχ2, ψχ3), then

IndG
BG
ψ · χ = (ψ ◦ det) IndG

BG
χ.

It follows that we may assume that χ1 = 1 and that

0 ≤ M = cond(χ2) ≤ cond(χ3) = N.

Then cond(χ1χ
−1
2 ) = M and we may furthermore assume that cond(χ2χ

−1
3 ) =

cond(χ1χ
−1
3 ) = N. Define m = (M,N,N). We will assume throughout that χ 6= 1,

so in particular χ3 6= 1 and N > 0.

Let T = {c = (c1, c2, c3) ∈ Z
3 | 0 ≤ c1, c2 ≤ c3 ≤ c1 + c2} and note that

m = (M,N,N) ∈ T. Then T is a poset with c � d if ci ≤ di for all i. Define the
subposet Tm = {c ∈ T | c � m}. Then for any c, d ∈ Tm, their greatest common

descendant gcd{c, d} exists and is unique. It is defined as the maximal element of

the set {e ∈ Tm | e � c, d} and is given explicitly by ei = min{ci, di} for i = 1, 2
and e3 = min{c3, d3, e1 + e2}. For example, if c = (1, 3, 4) and d = (2, 2, 4), then

gcd{c, d} = (1, 2, 3) 6= min{c, d}.
Given c ∈ T, we define a subgroup Cc by

Cc =





R R R

Pc1 R R

Pc3 Pc2 R



 ∩ K.

Then Cc ⊆ Cd if and only if c � d.

Let Kn denote the n-th principal congruence subgroup of K , that is, the normal
subgroup of K consisting of all those matrices which are equivalent to the identity

matrix modulo Pn. Then for all c ∈ T we have Cc ⊃ Kc3
.

Subrepresentations Let χ be the restriction to T of a character of TG, with the

above conventions. Then, in particular, χ1 = 1. If c ∈ Tm, then we can extend χ
to a character of Cc, denoted χc or simply χ if there is no possibility of confusion.

Namely, given g = (gi j) ∈ Cc, we define χc(g) = χ2(g22)χ3(g33). One verifies

directly that this is multiplicative exactly when c1 ≥ M and c2, c3 ≥ N.

https://doi.org/10.4153/CJM-2010-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-003-5


Branching Rules for Ramified Principal Series Representations of GL(3) over a p-adic Field 37

Definition 2.1 For each c ∈ Tm, set Uc = IndK
Cc
χc.

We have from [CN] that dim Uc = (q + 1)(q2 + q + 1)qc1+c2+c3−3 if c1c2 > 0 and

dim Uc = (q2 + q + 1)q2(c1+c2−1) if exactly one of c1 or c2 is zero. The represen-
tation Uc is naturally a subrepresentation of φ. In fact, it is contained in the sub-

space of Kc3
-fixed vectors of φ, a space which itself can be identified with Ud, where

d = (c3, c3, c3). Consequently, one may also view Uc as a representation of the finite
group K/Kc3

.

Note that Ud ⊆ Uc if and only if d � c. In fact, we can say slightly more.

Lemma 2.2 Let c, d ∈ Tm and set e = gcd{c, d}. Then Uc ∩Ud = Ue.

Proof Since e � c, d, we immediately have Ue ⊂ Uc ∩ Ud. The opposite inclusion
follows because Ce is the subgroup generated by Cc and Cd.

Now consider the quotient

Vc = Uc/
∑

d∈Tm,d≺c

Ud.

This quotient can be identified with a summand of φ. These summands are the

building blocks of the decomposition of φ that we wish to study, so let us refine our

description of Vc.
Let c ∈ Tm. If c1c2 6= 0, define for each i ∈ {1, 2, 3} the triple

c{i} = (c1 − δi1, c2 − δi2, c3 − δi3) ∈ Z
3.

If c1 = 0, then only consider c{3} = (0, c2 − 1, c2 − 1) and if c2 = 0, then only

consider c{3} = (c1 − 1, 0, c1 − 1). Set Sc = {i | c{i} ∈ Tm}. Then for all d ≺ c such
that d ∈ Tm, there is some i ∈ Sc such that d � c{i}.

Further, let c∅ = c and for each non-empty I ⊆ Sc set cI = gcd{c{i} | i ∈ I}.

Thus Sc defines a poset {UcI
| I ⊆ Sc} of subrepresentations of Uc with the property

that, for all d ∈ Tm such that Ud ⊆ Uc, if Ud 6= UcI
for any I ⊆ Sc, then Ud ( UcSc

.

The argument of [CN, Proposition 3.3] therefore applies to give the following result
in the Grothendieck group of K .

Theorem 2.3 For any c ∈ Tm we have

[Vc] =

∑

I⊆Sc

(−1)|I|[UcI
],

where [V ] denotes the equivalence class of V in the Grothendieck group of K.

Since the Uc are essentially induced representations of finite groups, the dimen-

sion I(Uc,Ud) of the space of intertwining operators between Uc and Ud is equal to

dim H(χc, χd), where

H(χc, χd) = { f : K → C | f (gkg ′) = χc(g) f (k)χd(g ′) ∀g ∈ Cc, g
′ ∈ Cd}.

As an immediate corollary of the above theorem we therefore have an effective means

of determining the number of intertwining operators between the various quo-

tients Vc.
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Corollary 2.4 Let c, d ∈ Tm. Then the dimension of the space of intertwining opera-

tors between Vc and Vd is

I(Vc,Vd) =

∑

I⊆Sc

J⊆Sd

(−1)|I|+| J|
I(UcI

,Ud J
).

2.2 Distinguished Double Coset Representatives of Cc\K/Cd

We recall the parametrization of representatives for the double coset space Cc\K/Cd

as given in [CN].

Let T1
= {a = (a1, a2, a3) ∈ Z

3 | 1 ≤ a1, a2 ≤ a3}. Given c ∈ T, define c ∈ T∩T1

by ci = max{ci , 1} for each i.

Definition 2.5 For any c, d ∈ T, set

Tc,d =

{

a ∈ T
1 | a � c, a � d and a3 ≤ min{a1 + c2, d1 + a2}

}

with the following exceptions:

Tc,d =











{(1, 1, 1)} if c or d equals (0, 0, 0),

{(1, a, a) | a ≤ min{c2, d2}} if c2d2 > 0 and c1 = d1 = 0,

{(a, 1, a) | a ≤ min{c1, d1}} if c1d1 > 0 and c2 = d2 = 0.

Next, for a ∈ Tc,d set min{a} = min{a1, a2, a3}. Then we define

a(c, d) = max
{

0,min{a1, a2, a3 − a1, a3 − a2, c− a, d− a,

a1 + c2 − a3, d1 + a2 − a3}
}

and

a(c, d) ′ = max{0,min{d3 − a3, c3 − a3, c1 − a1, d2 − a2}} ≥ a(c, d).

Now identify R/Pi with a set of representatives in R chosen so that they contain

the representatives corresponding to R/P j for all j < i, and so that the representative
of the zero element of R/Pi has valuation i. Set R/P0

= {1}, and for i > 0 set

(R/Pi)× = {x ∈ R/Pi | val(x) = 0}. With these conventions, define

X
a

c,d =

{

(R/Pa(c,d))× if a1 + a2 6= a3,
⋃

a(c,d) ′

i=0 (Ui \ Ui+1) ∩ (R/Pa(c,d)+i)× ∩ (R/Pa(c,d) ′)× if a1 + a2 = a3.

In other words, in this latter case, any two elements x, y ∈ Ui \ Ui+1 represent the

same element of Xa
c,d if and only if val(x − y) ≥ min{i + a(c, d), a(c, d) ′}.
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Definition 2.6 Let c, d ∈ T. Enumerate the elements of W ≃ S3 as

W = {1, s1, s2, s1s2, s2s1,w0},

where si is the transposition (i i + 1) and w0 is the longest element. Define a subset

Wc,d of W as

Wc,d =































W if c, d � (1, 1, 1),

{1, s1,w0} if c1d1(c2 + d2) > 0 and c2d2 = 0,

{1, s2,w0} if c1d1 = 0 and (c1 + d1)c2d2 > 0,

{1,w0} if c1c2 = 0 and d1d2 = 0 but (c1 + c2)(d1 + d2) > 0,

{1} if c = (0, 0, 0) or d = (0, 0, 0).

The following theorem is proved in [CN].

Proposition 2.7 Let c, d ∈ T. A complete set of distinct double coset representatives

Rc,d of Cc\K/Cd is Rc,d =

⋃

w∈Wc,d
R

w
c,d, where for w ∈ Wc,d we define Rw

c,d as follows.

(i) R
1
c,d =







ta,x =





1 0 0

πa1 1 0

xπa3 πa2 1





∣

∣

∣
a ∈ Tc,d, x ∈ X

a

c,d







;

(ii) R
s1
c,d =







s
(α,β)
1 =





0 1 0

1 0 0

πβ πα 1





∣

∣

∣

1 ≤ α ≤ min{d2, c3}
1 ≤ β ≤ min{c2, d3}
− c1 ≤ β − α ≤ d1







;

(iii) R
s2
c,d =







s
(α,β)
2 =





1 0 0

πβ 0 1
πα 1 0





∣

∣

∣

1 ≤ α ≤ min{d1, c3}
1 ≤ β ≤ min{c1, d3}
− c2 ≤ β − α ≤ d2







;

(iv) R
s1s2
c,d =







s1s(α)
2 =





0 0 1

1 0 0
πα 1 0





∣

∣

∣
1 ≤ α ≤ min{d1, c2}







;

(v) R
s2s1
c,d =







s2s(α)
1 =





0 1 0

0 πα 1
1 0 0





∣

∣

∣
1 ≤ α ≤ min{c1, d2}







;

(vi) R
w0

c,d =







w0 =





0 0 1

0 1 0

1 0 0











.

3 Determination of the Set of Double Cosets Supporting
Intertwining Operators

To understand the space of intertwining operators of the finite-dimensional represen-
tations Uc given in Definition 2.1, we construct bases for the spaces H(χc, χd). That

is, for any c, d ∈ Tm we must identify among the double cosets enumerated in Propo-

sition 2.7 those which support intertwining operators of Uc with Ud. Denote the
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subset of these cosets by Sc,d ⊆ Rc,d, and write I(Uc,Ud) = dim H(χc, χd) = |Sc,d|.
(Note that in the case that χ = 1, which we continue to exclude, Rc,d = Sc,d and

there is nothing to show.)

If a ∈ T
1, then define aop

= (a3 − a2, a3 − a1, (a3 − a1) + (a3 − a2)).

Theorem 3.1 Let c, d ∈ Tm, with m = (M,N,N) ≻ (0, 0, 0) as before. Then a set of

representatives for double cosets in Cc\K/Cd supporting elements of H(χc, χd) is

Sc,d =

⋃

w∈Wc,d

S
w
c,d,

where the subsets Sw
c,d ⊆ R

w
c,d are defined as follows.

(i) S
1
c,d is the set of all ta,x with a ∈ Tc,d and x ∈ X

a

c,d such that one of the following

holds:

(1) a1 ≥ M and a2 ≥ N;

(2) a1 < M, a2 ≥ N, and one of the following holds:

(a) a1 + a2 < a3 and M ≤ min{c− a, d− a, c2 + a1 − a3, d1 + a2 − a3},

(b) a1 + a2 > a3 and M ≤ min{c− a
op, d− a

op},

(c) a1 +a2 = a3 and M ≤ min{c−a, d−a} and val(x−1) ≤ a(c, d) ′−M;

(3) a1 ≥ N and a2 < N and the same conditions (a), (b), (c) with M replaced by

N;

(ii) S
s1
c,d is the set of all s

(α,β)
1 such that

N ≤ α ≤ min{d2, c3} − M,

N ≤ β ≤ min{c2, d3} − M,

M − c1 ≤ β − α ≤ d1 − M;

(iii) S
s2
c,d is the set of all s

(α,β)
2 such that

N ≤ α ≤ min{d1, c3} − N,

N ≤ β ≤ min{c1, d3} − N,

N − c2 ≤ β − α ≤ d2 − N;

(iv) S
w
c,d = ∅ for all other w ∈ Wc,d and for any w /∈ Wc,d.

Proof Let us first show that none of the cosets represented by elements of Rs1s2
c,d ∪

R
s2s1
c,d ∪ R

w0
c,d can support intertwining operators. Choose an element b ∈ R× such

that χ3(b) 6= 1. Set g = diag(b, 1, 1) and g ′
= diag(1, 1, b). These are elements of

Cc and Cd for any c, d ∈ Tm. One verifies that gs1s(α)
2 = s1s(α)

2 g ′, gw0 = w0g ′, and

s2s(α)
1 g = g ′s2s(α)

1 , but that χ(g) 6= χ(g ′). Consequently none of these representatives
are in Sc,d.

From now on, let us adopt the notational convention that if g = (gi j) ∈ Cc, then

g21 = γ21π
c1 , g32 = γ32π

c2 , and g31 = γ31π
c3 . So g ′ ∈ Cd would have g ′

21 = γ ′
21π

d1 ,
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and so forth. Moreover, given a coset representative h ∈ Rc,d and a pair of elements
g ∈ Cc and g ′ ∈ Cd such that gh = hg ′, we will call (g, g ′) a coset pair.

Suppose now that (g, g ′) ∈ Cc × Cd are a coset pair for the representative s
(α,β)
1 .

We determine directly that the matrix coefficients of g and g ′ satisfy

g22 = g33 − g23π
β − γ ′

21π
d1+α−β + γ32π

c2−β − γ ′
31π

d3−β ,

g ′
22 = g33 − g23π

β − γ21π
c1+β−α − γ ′

32π
d2−α + γ31π

c3−α,

g ′
33 = g33 − g23π

β − g ′
23π

α,

with the remaining coefficients given by

g11 = g ′
22 − g ′

23π
α, g ′

11 = g22 + g23π
β ,

g12 = γ ′
21π

d1 − g ′
23π

β , g ′
12 = g23π

α + γ21π
c1 ,

g13 = g ′
23, g ′

13 = g23.

This allows us to compare

χc(g) = χ2(g22)χ3(g33) = χ2(g33−g23π
β−γ ′

21π
d1+α−β+γ32π

c2−β−γ ′
31π

d3−β)χ3(g33)

with

χd(g ′) = χ2(g ′
22)χ3(g ′

33)

= χ2(g33 − g23π
β − γ21π

c1+β−α − γ ′
32π

d2−α + γ31π
c3−α)·

χ3(g33 − g23π
β − g ′

23π
α).

It follows that whenever M ≤ min{c1−α+β, d1 +α−β, c2−β, d2−α, c3−α, d3−β}

and N ≤ min{α, β}, then χc(g) = χd(g ′), and so s
(α,β)
1 ∈ Sc,d. Conversely, when

these inequalities are not satisfied, and additionally α, β ≥ 1, then we can use the

relations above to construct a coset pair (g, g ′) on which the characters do not agree.
This proves part (ii); the proof of part (iii) is analogous and is omitted.

To prove part (i) of the theorem, suppose ta,x ∈ R
1
c,d and let (g, g ′) ∈ Cc × Cd be

a coset pair such that gta,x = ta,xg ′. To simplify notation, set rx = πa1+a2 − xπa3 . One

calculates directly that the matrix coefficients of g and g ′ satisfy the relation

(g12π
a1 + g13π

a1+a2 − g23π
a2 )xrx = −γ21xπc1+a2 − γ ′

21rxπ
d1+a2−a3

+ γ32rxπ
a1+c2−a3 + γ ′

32xπa1+d2

+ γ31π
c3−a3+a1+a2 − γ ′

31π
d3−a3+a1+a2 ,

(3.1)
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and all other matrix coefficients are determined by the equations

g ′
11 = g22 + g23xπa3−a1 + γ21π

c1−a1 − γ ′
21π

d1−a1 ,

g11 = g ′
11 − g12π

a1 − g13xπa3 ,

g ′
22 = g22 − g12π

a1 − g13π
a1+a2 + g23π

a2 ,

g ′
33 = g22 − g12rxπ

−a2 − γ32π
c2−a2 + γ ′

32π
d2−a2 ,

g33 = g ′
33 − g13rx + g23π

a2 ,

together with g ′
12 = g12 + g13π

a2 , g ′
13 = g13 and g ′

23 = g23 − g13π
a1 . Note that in this

case, as opposed to the one for s
(α,β)
1 above, although any solution (with coefficients

in R) of (3.1) gives a pair of matrices (g, g ′) satisfying the relation gta,x = ta,xg ′, it
must be additionally verified that g and g ′ are invertible in K .

Now, given a coset pair (g, g ′), we have

(3.2) χc(g) = χ2(g22)χ3(g33) = χ2(g22)χ3(g ′
33 − g13rx + g23π

a2 ),

while

(3.3) χd(g ′) = χ2(g22 − g12π
a1 − g13π

a1+a2 + g23π
a2 )χ3(g ′

33).

Hence these characters agree whenever a1 ≥ M and a2 ≥ N, proving part (i)(1).
Now suppose a1 and a2 are both less than N. Choose a pair (g12, g23) ∈ R × R of

minimum valuation satisfying g23π
a2

= g12π
a1 . Set

g13 = γ21 = γ ′
21 = γ31 = γ ′

31 = γ32 = γ ′
32 = 0

and set g22 = 1. These are easily seen to define a coset pair (g, g ′) ∈ Cc × Cd. Since

val(g12π
a1 ) = val(g23π

a2 ) = max{a1, a2} < N = cond(χ3), we have χc(g) 6= χd(g ′)
and it follows that ta,x /∈ S

1
c,d.

There are exactly two cases left to consider: when a1 < M and a2 ≥ N, or when

a1 ≥ N and a2 < N. Comparing (3.2) and (3.3), and noting that max{a1, a2} ≤
min{a3, val(rx)}, we deduce the following.

(A) If a1 < M and a2 ≥ N, then ta,x ∈ S
1
c,d if and only if val(g12π

a1 ) ≥ M for all
coset pairs (g, g ′).

(B) If a1 ≥ N and a2 < N, then ta,x ∈ S
1
c,d if and only if val(g23π

a2 ) ≥ N for all coset

pairs (g, g ′).

Consider case (A), that is, assume that a1 < M and a2 ≥ N. If val(g12π
a1 ) ≥ a2 ≥

N, then we are done; otherwise, the term with least valuation on the left-hand side

of (3.1) is g12π
a1 xrx. Comparing with the right-hand side, we deduce val(g12π

a1 ) +
val(rx) ≥ α where

α = min
{

c1 + a2, d1 + a2 − a3 + val(rx), a1 + c2 − a3 + val(rx), a1 + d2,

c3 − a3 + a1 + a2, d3 − a3 + a1 + a2

}

.
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It follows that if α ≥ M + val(rx), then ta,x ∈ Sc,d by (A) above. Restating this
condition in the three cases a1 + a2 < a3, a1 + a2 > a3, and a1 + a2 = a3 yields the

conditions described in part (i)(2)(a,b,c) of the theorem.

Conversely, suppose α < M + val(rx) and set g13 = g23 = 0. Choose a term of

least possible valuation on the right-hand side of (3.1); set its coefficient (either γi j

or γ ′
i j , for some i > j) to be πa1−α if α < a1 + val(rx) and 1 otherwise. Then set the

remaining coefficients of the right-hand side of (3.1) equal to zero and solve for g12,

which is now necessarily in R×. Take g22 = 1 and solve for the remaining coefficients.

This results in a coset pair (g, g ′) ∈ Cc ×Cd such that val(g12π
a1 ) < M, so by (A) we

conclude ta,x /∈ Sc,d, as required.

A similar argument establishes condition (i)(3) of the Theorem, following case
(B) above.

Let us conclude this section by deriving some consequences of Theorem 3.1. The
first, which is immediate, is a convenient restatement of the theorem in a special case.

Note that when c = d = (n, n, n), we have simply

a(c, d) = min{a1, a2, a3 − a1, a3 − a2, n − a3} and a(c, d) ′ = n − a3.

Corollary 3.2 Set c = (n, n, n) for n ≥ N. The space of intertwining operators of

Uc = V Kn
χ with itself has a basis parametrized by Sn =

⋃

w∈W S
w
n , where

(i) S
1
n is the set of all ta,x such that 1 ≤ a1, a2 ≤ a3 ≤ n, x ∈ X

a

c,c and one of

conditions (a), (b), or (c) is met:

(1) a � m; or

(2) a1 < M and a2 ≥ N and:

(a) a1 + a2 < a3 ≤ n − M, or

(b) a1 + a2 > a3 and a1 + a2 ≥ M − n + 2a3, or

(c) a1 + a2 = a3 ≤ n − M and val(rx) ≤ n − M; or

(3) a1 ≥ N, a2 < N and the same conditions (a), (b), (c), with M replaced by N,

are satisfied;

(ii) S
s1
n = {s

(α,β)
1 | N ≤ α, β ≤ n − M};

(iii) S
s2
n = {s(α,β)

2 | N ≤ α, β ≤ n − N};

(iv) S
s1s2
n = S

s2s1
n = S

w0
n = ∅.

Our second corollary will be relevant for the purposes of calculating I(Vc,Vd) in

Section 4.

Corollary 3.3 Suppose that c, d, c ′, d ′ ∈ Tm with c � c
′ and d � d

′. Then Sc,d ⊆
Sc ′,d ′ .

Proof Recall that we have identified elements of Xa
c,d with a set of representatives in

R× in such a way that if a(c, d) ≤ a(c ′, d ′) and a(c, d) ′ ≤ a(c ′, d ′) ′, then X
a

c,d ⊆
X
a

c ′,d ′ . It now easily follows that Rc,d ⊆ Rc ′,d ′ . Furthermore, it is clear that the list of

constraints on elements of S in Theorem 3.1 can only become less constrictive as c

or d increases.
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In particular, it makes sense to ask, for a given distinguished double coset repre-
sentative g ∈

⋃

c,d Rc,d, whether there exist c, d ∈ Tm for which g ∈ Sc,d.

Theorem 3.4 The double cosets which support self-intertwining operators of Uc for

some c ∈ Tm, are represented by S = Sc,d =

⋃

w∈W S
w, where

(i) S
1
= {ta,x | a3 ≥ max{a1, a2} ≥ N, x ∈ R×};

(ii) S
s1

= {s
(α,β)
1 | α, β ≥ N};

(iii) S
s2

= {s
(α,β)
2 | α, β ≥ N};

(iv) S
s1s2

= S
s2s1

= S
w0

= ∅.

Moreover, up to identifying ta,x and ta,y whenever x and y have the same image in X
a

c,d

for c, d sufficiently large, these elements all represent distinct cosets.

Proof This follows from Corollary 3.2 by allowing n to grow without bound.

4 Irreducibility

The results of the preceding section allow us to restate Corollary 2.4 in terms of the
sets Sc,d. That is, for any c, d ∈ Tm, we have

I(Vc,Vd) =

∑

I⊆Sc

J⊆Sd

(−1)|I|+| J| |ScI ,d J
|.

The irreducibility of Um = Vm is known from Howe’s work [H1, Theorem 1]. In

this section, we demonstrate that this extends to many, but not all, of the quotients

which are “extremal” in the sense that they have few immediate descendants in the
poset Tm.

We retain the notation of the previous sections and begin with a lemma.

Lemma 4.1 Let c, d ∈ Tm. Then I(Vc,Vd) = 0 if c3 6= d3.

Proof Note that Uc ⊆ U(c3,c3,c3) = V
Kc3
χ . Without loss of generality, assume d3 < c3.

Then e = gcd(c, (d3, d3, d3)) ≺ c, so from Lemma 2.2 we deduce

Vc ⊂ Uc/(Uc ∩V
Kd3
χ ).

Hence although Vd consists of Kd3
-fixed vectors, no subrepresentation of Vc does, so

they cannot intertwine.

Theorem 4.2 For each n ∈ Z with N ≤ n ≤ N + M, the K-module V(M,N,n) is

irreducible.

Proof Set c = (M,N, n). If n = N, then Sc = ∅; otherwise, Sc is a singleton
corresponding to the triple (M,N, n − 1). By Corollary 2.4 and induction, it thus

suffices to show that |Sc,c| = n − N + 1.
If M = 0, then Wc,c = {1,w0}, so S

s1
c,c = S

s2
c,c = ∅. If M > 0, then

min{c2, c3} − M = N − M < N and min{c1, c3} − N = M − N < N, so again

S
s1
c,c = S

s2
c,c = ∅, regardless of the value of n. Thus Sc,c = S

1
c,c.
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Now let ta,x ∈ S
1
c,c, so one of Theorem 3.1(i)(1), (2), or (3) applies. If it were

(2), then a1 < M and a2 ≥ N imply that M > 0 and a2 = N, so neither case

(a) nor case (c) could apply, since M > c2 − a2 = 0. Were case (b) to apply, then
M ≤ min{c− a

op} would imply that a2 = a3 = N and so N − (a3 − a1) = a1,

which is not greater than or equal to M, a contradiction. We similarly deduce that

case (3) cannot apply. This leaves case (1), which consists of the elements ta,x with
a = (M,N,m), N ≤ m ≤ n and x ∈ X

a

c,c, each of which support an intertwining

operator. For each such a, we have a(c, c) = a(c, c) ′ = 0, so in fact |Xa
c,c| = 1. The

desired conclusion follows.

Theorem 4.3 V(m,n,n+m) is irreducible for each m ≥ M and n ≥ N.

Proof We first consider the case that c = (m, n,m + n) with m ≥ 1. Then Sc is

a singleton corresponding to d = c{3} = (m, n,m + n − 1). Hence I(Uc,Vc) =

I(Uc,Uc) − I(Uc,Ud) and it suffices to show that |Sc,c \ Sc,d| = 1.

First note that since c1 = d1 and c2 = d2, and that both are at most d3 < c3, we

have Sw
c,c = S

w
c,d for each w ∈ W \ {1}.

Next note that Tc,c \ Tc,d consists of the single element (m, n, n + m) = c. Since

|Xc
c,c| = 1, there is a unique distinguished double coset of the form tc,x ∈ R

1
c,c; it

is clearly in Sc,c. We claim that this is the only element of R1
c,c \ R

1
c,d. Namely, let

a ∈ Tc,d. Since 0 ≤ d3 − a3 = (d1 + d2 − 1) − a3 = (d1 + a2 − a3) + (d2 − a2) − 1, it

must be true that d3−a3 ≥ min{d1+a2−a3, d2−a2}, so necessarily a(c, c) = a(c, d).
If furthermore a1 + a2 = a3, then a(c, c)′ = a(c, d)′ by the same reasoning. Hence

X
a

c,c = X
a

c,d for all such a, as claimed.

We next claim that S1
c,c ∩ R

1
c,d = S

1
c,d. Namely, given ta,x ∈ S

1
c,c ∩ R

1
c,d, since

d3 − a3 ≥ min{d1 + a2 − a3, d2 − a2} = min{c1 + a2 − a3, c2 − a2}, we see that all

of the conditions set out in Theorem 3.1(i) are unchanged in passing from the pair

(c, c) to the pair (c, d). Hence ta,x ∈ S
1
c,d.

This shows, for the case m ≥ 1, that Sc,c \ Sc,d is a singleton, from which we

deduce the irreducibility of Vc.

When c = (0, n, n), we have instead Sc = {3} corresponding to d = c{3} =

(0, n − 1, n − 1). We have Sc,d = S
1
c,d, Sc,c = S

1
c,c and neither of the cases (i)(2) nor

(i)(3) of Theorem 3.1 can apply. It thus follows easily that |Sc,c \ Sc,d| = 1 in this

case as well.

Theorem 4.4 V(m,n,max{n,m}) is irreducible for each m > M and n > N.

Proof Suppose first that m > max{M, 1} and n > N, and that max{m, n} = n.
Then c = (m, n, n) and Sc = {1, 2} with the corresponding triples c{1} =

(m − 1, n, n), c{2} = (m, n − 1, n), and c{1,2} = (m − 1, n − 1, n). We compute
the alternating sum

(4.1) I(Uc,Vc) = I(Uc,Uc) − I(Uc,Uc{1}
) − I(Uc,Uc{2}

) + I(Uc,Uc{1,2}
)

as a sum of differences by defining

A0 = Sc,c \ Sc,c{2}
and A1 = Sc,c{1}

\ Sc,c{1,2}
.
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Thus we have I(Uc,Vc) = |A0| − |A1|. We use (d, d′) to denote either of the pairs
(c, c{2}) or (c{1}, c{1,2}), for ease of notation.

Suppose first that s
(α,β)
1 ∈ Sc,d \ Sc,d ′ . Then comparing the constraints on α and

β in Theorem 3.1(ii) for d and d
′, we see that necessarily α = d2 − M = n − M and

max{N,M − c1 + α} ≤ β ≤ min{d1 − M + α, c2 − M}.

Since d1 ≥ M by hypothesis, c2 − M = n − M ≤ α + d1 − M, so these inequalities

simplify to max{N, n − m} ≤ β ≤ n − M. This constraint on the pair (α, β) is

independent of the value of d1 ∈ {m−1,m}, so s
(α,β)
1 ∈ A0 if and only if s

(α,β)
1 ∈ A1.

Hence these cosets contribute nothing to the overall sum (4.1).

Now suppose that s
(α,β)
2 ∈ Sc,d. Then Theorem 3.1(iii) implies that β − α ≤

(c1 −N)−N; but this bound is at most d ′
2 −N, since c1 −N = n−N ≤ n− 1 = d ′

2.

Similarly, d1 ≤ c1 and β > 0 together imply that β − α ≥ N − c1, regardless of
the value of d1 ∈ {m − 1,m}. All other conditions on (α, β) being unchanged in

passing from (c, d) to (c, d ′), we deduce that s
(α,β)
2 ∈ Sc,d ′ . Hence none of these

cosets appear in either A0 or A1.

Finally, consider distinguished coset representatives of the form ta,x ∈ R
1
c,d. First

note that Tc,d \ Tc,d ′ = {(a1, n, n) | 1 ≤ a1 ≤ d1}, and |Xa
c,d| = |Xa

c,d ′ | = 1, since
a3 − a2 = 0. Considering which of these are in Sc,d, we deduce that these triples give

rise to m − M + 1 coset representatives in A0 and m − M of them in A1.

Suppose now that a ∈ Tc,d ′ . Since 0 ≤ d ′
2 − a2 = d3 − 1 − a2 = (d3 − a3) +

(a3 − a2)−1,we have d ′
2−a2 ≥ min{d3−a3, a3−a2} and so it follows that a(c, d) =

a(c, d ′). Similarly, if a1 + a2 = a3, then a2 < a3 implies that d ′
2 − a2 ≥ d3 − a3, so

a(c, d)′ = a(c, d ′)
′
. Hence for all a ∈ Tc,d ′ we have Xa

c,d = X
a

c,d′ .

So suppose ta,x ∈ S
1
c,d ∩ R

1
c,d ′ . We first note that if ta,x falls under any of the

conditions (2)(a), (2)(c), (3)(a), or (3)(c) of Theorem 3.1, then the inequality a2 < a3

implies d ′
2−a2 ≥ d3−a3. Consequently, this condition is unchanged in passing from

d to d
′ and so ta,x ∈ Sc,d ′ . Similarly, if ta,x falls under condition (3)(b), then a2 < a3

so d ′
2 − (a3 − a1) ≥ d3 − (a3 − a1) − (a3 − a2); again we deduce ta,x ∈ Sc,d ′ . So none

of these occur in either A0 or A1.

On the other hand, if ta,x falls under condition (2)(b) for the pair (c, d), then it

fails (2)(b) for the pair (c, d ′) exactly when a3 = a2 ≥ N, d1 ≥ M, d2−(a3−a1) = M,
and 1 ≤ a1 < M. Hence, noting also that this condition is independent of the choice

of d1 ∈ {m − 1,m}, all such ta,x lie in both A0 and A1.

We deduce that |A0| − |A1| = 1, so the quotient Vc is indeed irreducible.

The case for m ≥ n follows by an analogous argument, where we interchange the
roles of c{1} and c{2} throughout.

It only remains to show the case where m = 1 and M = 0. In this case, c =

(1, n, n) with n > N ≥ 1, so we have c{1} = (0, n, n), c{2} = (1, n − 1, n), and

c{1,2} = (0, n − 1, n − 1). Define A0 and A1 as above. Since c1 − a1 = 0 for all
a ∈ Tc,d, for any d, and since cases (i)(2) and (i)(3) cannot occur, the analysis is

much simplified from the above. We readily see that A0 = {s
(n,n−1)
1 , s(n,n)

1 , t(1,n,n),1},
whereas A1 = {t(1,n,n),1, t(1,n−1,n),1}. Thus we conclude again in this case that Vc is

irreducible.
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Corollary 4.5 If n > N, then the quotient V(n,n,n) is the unique irreducible module of

maximal dimension in V Kn
χ .

Proof We recall that V Kn
χ ≃ U(n,n,n), and that V(n,n,n) is irreducible by Theorem 4.4.

Set α = (q + 1)(q2 + q + 1); then we have dim Uc = αqc1+c2+c3−3 whenever c1c2 6= 0.

Thus, for n > N ≥ 1, we have by Theorem 2.3 that

dim V(n,n,n) = dim U(n,n,n) − dim U(n−1,n,n) − dim U(n,n−1,n) + dim U(n−1,n−1,n)

= α(q3n−3 − 2q3n−4 + q3n−5)

= αq3n−5(q − 1)2.

However, it now follows that the complement of V(n,n,n) in U(n,n,n) has dimension

αq3n−5(2q − 1), which is strictly less than dim V(n,n,n) whenever q > 3.

The strict inequalities in Theorem 4.4 are necessary as the following proposition

shows.

Proposition 4.6

(i) Let c = (M, n, n) with n > N. Then

I(Vc,Vc) =

{

n − N + 1 if n < M + N,

M + 1 if n ≥ M + N.

(ii) Let c = (n,N, n) with n ≥ N. Then

I(Vc,Vc) =

{

n − N + 1 if n < 2N,

N + 1 if n ≥ 2N.

Proof To prove part (i), let c = (M, n, n) with M > 0 and n > N. Then Sc = {2},

corresponding to the triple c{2} = (M, n − 1, n). We first compute I(Uc,Vc) =

|Sc,c \ Sc,c{2} |. For ease of notation, set (d, d ′) = (c, c{2}).

It is easy to see that s(n−M,n−M)
1 ∈ Sc,d \ Sc,d ′ if n − M ≥ N, whereas Ss2

c,d =

S
s2

c,d′ = ∅.

Of the elements in Tc,d \ Tc,d ′ = {(a1, n, n) | 1 ≤ a1 ≤ M}, only (M, n, n) gives
rise to a representative in Sc,d, and then exactly one, which we shall denote t(M,n,n),1.

For each a ∈ Tc,d ′ , we have a2 < n and a3 ≤ n. Since a(c, d) ≤ min{a3 − a2,
n − a3, d2 − a2} and a3 ≤ d2, we deduce that if a(c, d) 6= a(c, d′), then necessarily
a3 = n and a3 = a2, a contradiction. Similarly, a(c, d) ′ does not depend on the value

of d2. Hence Xa
c,d = X

a

c,d ′ .

So suppose ta,x ∈ (S1
c,d ∩ Rc,d ′) \ Sc,d ′ . It does not fall under case (i)(1) of

Theorem 3.1, since this case is independent of d ′; nor can case (i)(3) occur, since

a1 ≤ M. In cases (i)(2)(a) and (c), the right-hand side can depend on the value of
d2 ∈ {n−1, n} if and only if a2 = a3, contradicting the hypotheses. In case (i)(2)(b),

which holds only if a2 ≥ N, we must have that a3 −a2 = 0 or else the right-hand side

is less than M. It follows that the right-hand side depends on the value of d2 exactly

https://doi.org/10.4153/CJM-2010-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-003-5


48 P. S. Campbell and M. Nevins

when a2 = a3 ≥ N and n− (a3 − a1) = M; in each of these cases |Xa
c,d| = |Xa

c,d ′ | = 1
and ta,1 ∈ Sc,d \ Sc,d ′ .

We conclude that when M > 0

Sc,c \ Sc,c{2}
= {t(M−k,n−k,n−k),1 | 0 ≤ k ≤ min{M − 1, n − N}}

∪ {s(n−M,n−M)
1 | n − M ≥ N}.

A simpler analysis, which we consequently omit, allows us to further deduce that

Sc{2},c = Sc{2},c{2}
and so I(Uc,Vc) = I(Vc,Vc), and this has the value stated in the

proposition.

When M = 0, we have instead c = (0, n, n) and c{3} = (0, n − 1, n − 1), and
Sc,d = S

1
c,d. Since neither (i)(2) nor (i)(3) of Theorem 3.1 can apply, and a(d, d ′) =

a(d, d ′) ′ = 0 for all choices of d, d ′ ∈ {c, c{3}} and for all a ∈ Td,d′ , we readily

conclude that Sc,c \ Sc,c{3}
= {t(1,n,n),1}. Hence the quotient Vc is irreducible in this

case.

To prove part (ii), let c = (n,N, n) with n ≥ N. Then Sc = {1} with correspond-

ing triple (n − 1,N, n). Reasoning as above, we deduce readily that s
(n−N,n−N)
2 ∈

Sc,c \ Sc,c{1}
whenever n ≥ 2N and that Ss1

c,c = S
s1
c,c{1}

= ∅.

Set (d, d ′) = (c, c{1}). Note that Tc,d \ Tc,d ′ = {(n, a2, n) | 1 ≤ a2 ≤ N} and
each of these has |Xa

c,d| = 1. These triples thus give rise to only one coset in S
1
c,d,

namely that represented by t(n,N,n),1.

Of those a ∈ Tc,d′ , one sees as above that Xa
c,d = X

a

c,d ′ . For such a triple a, if
ta,x ∈ Sc,d \ Sc,d ′ , then it falls under case (i)(3)(b) of Theorem 3.1 and we deduce as

above that N ≤ a1 = a3 ≤ n and n − a3 = N − a2. These conditions further imply
that |Xa

c,d| = 1 meaning each such triple gives rise to a unique double coset.

We conclude that

Sc,c \ Sc,c{1}
= {t(n−k,N−k,n−k),1 | 0 ≤ k ≤ min{n − N,N − 1}}

∪ {s
(n−N,n−N)
2 | if n − N ≥ N}.

It is readily verified that Sc{1},c = Sc{1},c{1}
, and so I(Uc,Vc) = I(Vc,Vc). Counting

the double cosets in the expression above yields part (ii) of the proposition.

5 Examples

We conclude the paper with two examples meant to illustrate the results in Section 4.

Example 5.1 Suppose that M = N = 2 and let us consider the decomposition of

V K4
χ under K . The values of I(Vc,Vd) are calculated using Corollary 2.4 and The-

orem 3.1, with several values identified by Theorems 4.2, 4.3, and 4.4 and Propo-

sition 4.6. The remaining computations were implemented in GAP [GAP] and the
results are represented schematically in Figure 5.1, as follows.

Each triple c in Figure 5.1 corresponds to the induced representation Uc, and the

number beneath it is the value of I(Vc,Vc). The arrows imply the partial order �
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Figure 5.1: Reducibility of Vc for Vχ with M = 2 and N = 2.

on T; hence the set of all components of the diagram below and including c may be

identified with the whole of Uc. For reference, we list in Table 5.1 the dimensions of
the quotients Vc occuring in Figure 5.1. These are calculated using Theorem 2.3. We

abbreviate α = (q + 1)(q2 + q + 1).

Figure 5.1 reveals several typical features of the K-representations Vc. For ex-
ample, we note that while many Vc are irreducible, several are not. Besides those

identified by Proposition 4.6, for which the number of intertwining operators grows

at most linearly with c3, there exist components such as V(3,3,4), for which the num-
ber of intertwining operators is a polynomial function of q. Such components occur

more frequently in V Kn
χ as n increases, since they come into existence only when |Xa

c,c|
is a polynomial in q, that is, when a(c, c) > 0.

Example 5.2 Consider a character χ for which M = 1 and N = 2. Figure 5.2 de-

scribes a portion of the restriction to K of Vχ, namely, the subrepresentations Uc for
which dim Uc ≤ αq9. In terms of triples, this implies that we consider the elements

c ∈ Tm for which c1 + c2 + c3 ≤ 9. Again, the number of intertwining operators

between each pair of quotients is determined by Corollary 2.4.
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Quotient Dimension

V(4,4,4) q7(q − 1)2α

V(3,4,4),V(4,3,4) q6(q − 1)2α

V(3,3,4) q4(q − 1)3α

V(2,4,4),V(4,2,4) q6(q − 1)α

V(2,3,4),V(3,3,3),V(3,2,4) q4(q − 1)2α

V(2,3,3),V(2,2,4),V(3,2,3) q4(q − 1)α

V(2,2,3) q3(q − 1)α

V(2,2,2) q3α

Table 5.1: Dimensions of Vc for Vχ with M = 2 and N = 2.
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Figure 5.2: Reducibility of and equivalences between Vc for Vχ with M = 1 and N = 2.

This example illustrates a phenomenon not present in Example 5.1. There are

two pairs of isomorphic irreducible representations: V(1,3,4) ≃ V(2,2,4) (indicated by

∗ in Figure 5.2) and one of the two inequivalent irreducible summands of V(1,4,4)

is isomorphic to exactly one of the irreducible summands of V(2,3,4) (indicated by †
in Figure 5.2). By Lemma 4.1, such pairs of isomorphic irreducible summands, for
distinct triples c, d ∈ Tm, can occur only when c3 = d3.

The dimensions of the representations in Figure 5.2 are given in Table 5.2. We

have again abbreviated α = (q + 1)(q2 + q + 1). We conjecture that V(2,3,4) in fact
decomposes as a sum of q−2 distinct irreducible summands, each of dimension equal

to that of V(1,3,4), V(2,2,4), and V(3,2,3). This would be consistent with the remaining

irreducible summand in V(1,4,4) having dimension equal to that of V(3,3,3) and V(3,2,4).
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Quotient Dimension

V(1,4,4) q5(q − 1)α

V(3,3,3),V(3,2,4) q4(q − 1)2α

V(2,3,4) q4(q − 1)(q − 2)α

V(1,3,4),V(2,2,4),V(3,2,3) q4(q − 1)α

V(2,3,3) q3(q − 1)2α

V(1,3,3) q3(q − 1)α

V(2,2,3) q2(q − 1)2α

V(1,2,3),V(2,2,2) q2(q − 1)α

V(1,2,2) q2α

Table 5.2: Dimensions of Vc for Vχ with M = 1 and N = 2.

References

[BO] U. Bader and U. Onn, On some geometric representations of GLn(O). arXiv:math/0404408v1.
[CN] P. S. Campbell and M. Nevins, Branching rules for unramified principal series representations of

GL(3) over a p-adic field. J. Algebra 321(2009), no. 9, 2422–2444.
doi:10.1016/j.jalgebra.2009.01.013

[GAP] The GAP Group, GAP – Groups, Algorithms, and Programming. Version 4.4, 2004.
http://www.gap-system.org.

[Hi] G. Hill, On the nilpotent representations of GLn(O). Manuscripta Math. 82(1994), no. 3-4,
293–311. doi:10.1007/BF02567703

[H1] R. E. Howe, On the principal series of GLn over p-adic fields. Trans. Amer. Math. Soc. 177(1973),
275–286. doi:10.2307/1996596

[H2] , Kirillov theory for compact p-adic groups. Pacific J. Math. 73(1977), no. 2, 365–381.
[L] G. Lusztig, Representations of reductive groups over finite rings. Represent. Theory 8(2004), 1–14.

doi:10.1090/S1088-4165-04-00232-8

[N] M. Nevins, Branching rules for principal series representations of SL(2) over a p-adic field. Canad.
J. Math. 57(2005), no. 3, 648–672.

[OPV] U. Onn, A. Prasad, and L. Vaserstein, A note on Bruhat decomposition of GL(n) over local
principal ideal rings. Comm. Algebra 34(2006), no. 11, 4119–4130.
doi:10.1080/00927870600876250

[P] V. Paskunas, Unicity of types for supercuspidal representations of GLN . Proc. London Math. Soc.
91(2005), no. 3, 623–654. doi:10.1112/S0024611505015340

[Si] A. J. Silberger, Irreducible representations of a maximal compact subgroup of pgl2 over the p-adics.
Math. Ann. 229(1977), no. 1, 1–12. doi:10.1007/BF01420533

Department of Mathematics, University of Bristol, UK
e-mail: peter.campbell@bristol.ac.uk

Department of Mathematics and Statistics, University of Ottawa
e-mail: mnevins@uottawa.ca

https://doi.org/10.4153/CJM-2010-003-5 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jalgebra.2009.01.013
http://dx.doi.org/10.1007/BF02567703
http://dx.doi.org/10.2307/1996596
http://dx.doi.org/10.1090/S1088-4165-04-00232-8
http://dx.doi.org/10.1080/00927870600876250
http://dx.doi.org/10.1112/S0024611505015340
http://dx.doi.org/10.1007/BF01420533
https://doi.org/10.4153/CJM-2010-003-5

