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Summary

We develop a model to predict the increase in genetic variance of a quantitative character in a
hybrid population produced by crossing two previously isolated populations of the same species.
The increase in variance in the F2 hybrids, the 'segregation variance', is caused by differences in
the average allelic effects at each locus and by linkage disequilibrium among loci. We focus on the
case in which the character is additively based and the average value of the character does not
differ in the two populations. In that case the predicted segregation variance depends strongly on
what is assumed about the genetic basis of the character. If the genetic variance of the character in
each population is attributable to loci with numerous alleles of small effect that are in moderate
frequency, as in Lande's (1975) model, the segregation variance should increase linearly with time
since the populations were isolated, at a rate determined by the inverse of the effective population
size. If the genetic variance is attributable to loci with alleles in very low frequency, as in Turelli's
(1984) house-of-cards model or in Barton's (1990) model of pleiotropic, deleterious alleles, then the
segregation variance in the hybrid population increases at a much lower rate.

1. Introduction

In different populations, genes that determine the
distribution of a quantitative character may differ
even though the means and variances of the character
are the same. Selection may constrain the mean of a
character but that mean value can be achieved by a
large variety of genetic combinations. Genetic drift
and mutation may result in very different combi-
nations of genes in different isolated populations and
those differences will be manifest in the segregation
variance in an F2 hybrid population obtained by
crossing two isolates. How much segregation variance
there is in a hybrid population depends on the genetic
basis of the character. In this paper we will consider
three different models of the maintenance of genetic
variability and show that they lead to different
predictions about the segregation variance. The
essential difference between the models is in whether
variation is attributable to numerous alleles in
moderate frequency at each locus or only to very rare
alleles.

Corresponding author.

2. Mathematical models

(i) Variance in a hybrid population

Throughout, we will be concerned with a diploid
species and a single quantitative character that is
determined by additive effects at k loci. We assume
throughout that the variance in the character is
maintained by a balance between selection and
mutation. Let x( and o-\ be the mean and variance of
the additive effects of alleles at locus i in a population.
If the character is at an equilibrium under symmetric
mutation and stabilizing selection, then the mean of
the character will be at the optimum, which we can
arbitrarily set to 0, and the variance is determined by
the balance achieved between mutation and selection.
Lande (1975) showed that in such a model the xt are
constrained to sum to 0

(i)

but otherwise may take any values. Thus, there is
only one constraint on the average allelic effects at the
k loci. The total genetic variance of the character is,
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ignoring linkage disequilibrium, the sum of the
variances in additive effects at individual loci

(2)

The actual values of the of depend on the relative
strengths of mutation and selection. We will assume
that the loci are not tightly linked and that the isolated
populations are sufficiently close to an equilibrium
that linkage disequilibrium can be ignored (Lande,
l975;Turelli, 1984).

If two populations are subject to the same stabilizing
selection, then at equilibrium the mean of the character
will be 0 in both and the genetic variance will be crA

in both, yet the average effect at each locus may differ
because of genetic drift or other factors. Let y( be the
average effect at the ith locus in a second population.
We are concerned with the additive genetic variance in
a population that is formed by first hybridizing the
two populations to form an F : population and then
allowing the resulting hybrid population to breed
randomly to form an F2 population. The additive
genetic variance in the F2 generation of the hybrid
population is

= a

\ S 0 - 2ry) (xt -yt) (x, - (3)

where ri} is the recombination rate between locus i and
j . Equation (3) assumes either that there is no
stabilizing selection on the character in the hybrid
population or that it is sufficiently weak that the
values of xt and yt do not change significantly. It also
ignores the effect of mutation during the formation of
the Fj and F2 populations.

The term AaA, which is the sum of the second and
third terms of the right hand side of (3), is the
segregation variance in the F2, following the usage of
Lande (1981). The second term on the right-hand side
represents the contribution of the differences in the
average effects of each locus and the third term
represents the contribution of linkage disequilibrium.
The third term is probably less important than the
second. Terms in the sum representing unlinked loci
{r() = 1/2) will be 0, and even for linked loci the terms
in the sum would not tend to be of one sign unless the
means of the character differed in the two populations,
which is not the case we are concerned with here. The
second term is always positive and will be the focus of
our interest.

(ii) Multivariate normal model

The magnitude of the increase in the segregation
variance when two populations are hybridized will
depend on how variability in the character is main-
tained and on how long the populations have been

isolated from each other. We will consider three
models of the maintenance of quantitative genetic
variability and predict the magnitude of the seg-
regation variance in each. The first model is the
multivariate normal model analysed by Lande (1975).
In this model, as in Turelli's (1984) house-of-cards
model discussed next, the variance of a quantitative
character is determined by a balance between mutation
at loci affecting that character and selection acting
directly on that character. This assumption differs
from the model of Barton (1990), the third model we
consider, in which the character is neutral but is
affected by numerous pleiotropic loci influencing both
overall fitness and the character. As discussed by
Turelli (1984), Lande's model assumes in effect that
mutation at each locus is stronger than stabilizing
selection felt by each locus, which implies that the
genetic variance at each locus is attributable to
numerous alleles in moderate frequency.

Assume that the two populations of interest were
identical at time / = 0 and have diverged after that
because of genetic drift and mutation only. The force
of stabilizing selection is the same in both and is
sufficiently strong that the mean of the character
remains near 0 in both populations and that the
variance remains at crA. Because we have assumed that
the x( are constrained only by (1), i.e. they are not
constrained by the mutation process itself, each xt can
change because of drift. Under drift alone the sampling
variance in xt is of/(2A0, where of is the additive
component of the variance attributable to locus /' and
N is the effective population size (Lande, 1976).
Selection returning the overall mean to 0 will then
reduce the sampling variance in proportion to the
contribution of locus / to the total. Hence, the
asymptotic rate of divergence per generation under
drift and selection is

(4)

(cf. Kendall & Stuart (1973, §27.14)).
This is the variance in the average effects at the rth

locus in one generation. After t generations of
isolation, the variance in xi over independent replicates
would be t times this value. Substituting into eqn (3)
and treating each of the two populations of interest as
independent replicates, we obtain

(5)

where a\ is the additive genetic variance of the
character and nE = (I of )2/£ <r\ is the effective num-
ber of loci (Lande, 1981). The expected value of the
third term on the right-hand side of (3) is zero because
the expected value of the linkage disequilibrium
created by drift alone is zero for each pair of loci.

On a longer time scale, our assumptions will not be
satisfied. It seems unlikely that the average effect of
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each locus can be increased or decreased by an
arbitrary amount. Instead, we can imagine that there
are bounds on the average effect at each locus that are
caused by some intrinsic limitation in what it can do.
As drift carries some x( to their limits, increments
to the segregation variance would decrease. After a
longer time we would expect the segregation variance
to reach a plateau. The exact location of that plateau
would depend on what limits were assumed for each
locus. Nevertheless, the multivariate normal model
would not be a reasonable approximation unless the
average effects at each locus could be changed by a
few standard deviations, so that we can assume that
the overall limit on the segregation variance is at least
several times the initial genetic standard deviation.

(iii) House-of-cards model

Turelli (1984) noted that Lande's (1975) multivariate
normal model is actually an approximation to a more
general model of mutation-selection balance. Turelli
posed an alternative approximation, which is called
the 'house-of-cards' model. In the house-of-cards
model, as in the multivariate normal model, there are
a large number of allelic states at each locus with each
state differing in its additive effect on the character of
interest. In the multivariate normal model, no one
allele is very common, but in the house-of-cards
model, one allele at each locus is in high frequency
and the other alleles are maintained in very low
frequency. Turelli (1984) shows that the house-of-
cards approximation is valid if the additive effect of
each mutation is relatively large. In the house-of-cards
model, then, there is a constraint on the changes in
average effect at each locus. The value of.?, will not be
able to change steadily under drift because the same
allele will tend to remain in high frequency. Instead,
there will be only slight but non-cumulative variation
in the value of xt with the possibility of an occasional
large change as a result of the fixation of one of the
previously low frequency alleles. Thus, it seems likely
that segregation variance may increase much more
slowly between isolated populations under the assump-
tions of the house-of-cards model than under the
multivariate normal model.

We can obtain an approximate expression for the
segregation variance under the house-of-cards model
as follows. Assume that at each locus there is one
common allele, which we can assume without loss of
generality to have additive effect 0, and one or more
alleles in low frequency. Let a be the additive effect of
one of these alleles and V, be the strength of stabilizing
selection on the character. Turelli (1984) shows that
the frequency of this allele in an infinite population is
approximately p = /i/s, where fi is the mutation rate
to this allele and s = a2/(2V,) is the intensity of
selection against individuals heterozygous for this
allele. At each locus there may be several such alleles,

each with its own value of /t and a. For the allele
frequencies to remain small, /t and a are constrained
to values for which /.c/s <t 1, that is a2 t> 2/.cVs.

In a finite population, the expected frequency is still
fi/s but there is some variation because of genetic
drift. We can find the net effect of genetic drift before
there is a replacement of one of the common alleles by
considering each low frequency allele separately,
taking advantage of the fact that while they are all
rare, their frequencies are nearly independent of one
another. The change in the mean effect of each locus
will be caused by changes in frequencies of rare alleles.
Consider one such allele and assume, for simplicity,
that its frequency in the ancestral population is
p = fi/s. For / > 0, its frequency is a random variable
that changes according to

where E,t is a random variable with mean 0 and
variance pt{\ —pt)/(2N). If pt is small, then (6) can be
approximated by the linear equation

where the mean of £, is 0 and the variance of E,t is
approximately pt/(2N). The third term on the right
hand side of (6) would be different for mutant alleles
with other degrees of dominance, but for such alleles
the linear approximation in (7) would still be valid
provided that the frequency is small and that they are
not completely recessive.

Taking the expectation of (7) we conclude that
£•(/?,) = p. To find the variance, we let St = pt —p to
obtain

#m = ( l - s K + £r (8)

Squaring both sides and taking the expectation, we
find

Therefore,

2N\-(\-sf 4Nsl

(9)

(10)

This would be the increase in E(af) if selection did not
constrain the overall mean of the character. With that
constraint and the assumption that all alleles have the
same selection coefficient, s, and same mutation rate,
fi, E(8f) is reduced by a factor of (1 — \/ri), where n is
the number of loci.

Equation (10) predicts the variance in the frequency
of a particular allele subject to selection of strength s
and with an equilibrium frequency p. The variance
increases to an asymptotic value of 2a2(\ — \/ri)p/
(4Ns). The approach to this asymptote will be on
a time scale of 1 /(2s) generations. We are concerned
here not with one allele but with a potentially large
number of such alleles, at the same or at different loci,
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each of which could have different values of ft and s.
The segregation variance in a hybrid population will
be attributable to variance in the frequencies of all the
low frequency alleles. The segregation variance will
then approach an asymptotic value that is the sum of
(1 -\/n)p/(4Ns) across alleles, which is (1 - \/ri) Vc/
ANs. Under this model, the segregation variance will
not increase in proportion to time but will instead
reach an asymptotic value and, if Nspl, the
segregation variance will be a small fraction of the
equilibrium genetic variance. That is in contrast to the
multivariate normal model, in which an asymptote is
not likely to be reached for a much longer time. The
difference is caused by the constraint on possible
mutational effects that is implicit in the house-of-
cards model.

On a longer time scale, there will be additional
segregation variance because low frequency alleles
will occasionally become fixed. That will occur at a
rate determined by the probability of fixation of
deleterious mutants. The process is the same as that
described by Barton (1989). Barton (1989) showed
that when Ns >̂ 1, which is the case we are concerned
with here, the fixation probability is very small.

The picture that emerges of the increase in the
segregation variance in a hybrid population as a
function of time in this model is quite different from
that in the multivariate normal model. The segregation
variance would increase relatively quickly to a plateau
that will be quite small if TV is large. Then on a much
longer time scale, there would be a slow increase with
time as low-frequency alleles occasionally become
fixed.

(iv) Pleiotropic mutation model

The two previous models assumed that selection
directly affects the quantitative character of interest.
Another possibility, discussed by Hill & Keightley
(1988) and modeled in more detail by Barton (1990),
is that the character itself is neutral but that its value
is determined by the pleiotropic effects of alleles at loci
that are themselves selected. In Barton's model, there
are a number of loci affecting overall fitness and each
locus is at an equilibrium under selection against
alleles that lower fitness and mutation to those alleles.
Each allele has an additive effect, a,, on a neutral
character, where the value of a, is drawn from a
known probability distribution with mean 0 and
variance a2. Barton assumes that the fitness of each
deleterious allele is 1 — s and fitnesses are multiplicative
across loci. He also assumes that the mutation rate /<.
is much less than s. That implies that in an infinite
population, deleterious alleles are rare and that the
number of deleterious alleles carried by any individual
follows a Poisson distribution with mean 2k/i/s,
where k is the number of loci.

Our concern here is with the amount of segregation
variance after t generations of isolation if both

populations are of effective size TV. Although the
genetic assumptions differ substantially from those in
the house-of-cards model, the amount of segregation
variance that would accumulate is the same. The
reason is that both models have the property that the
genetic variance of the quantitative character is
determined by the frequencies of alleles that are each
governed by a separate mutation-selection balance.
The cause of the selection is different in the two
models but its effect is the same. As a consequence, the
results for the house-of-cards model can be used here
with the one modification that the value of s here is the
selection intensity caused by pleiotropic effects on
fitness rather than as a result of selection directly on
the quantitative character itself. Genetic evidence
reviewed by Barton (1990) shows that a value of s of
0-01 to O-001 is reasonable so Ns is likely to be quite
large in most species. Hence, in this model we would
expect a very small initial plateau for the segregation
variance and a very slow increase later caused by the
fixation of deleterious mutations.

3. Simulations

To test the accuracy of the approximations made
above, we developed a simulation model. The model
was of a single randomly mating population con-
taining N diploid individuals. There were k unlinked
loci that contributed equally to the value z of a
quantitative character. For each individual, the value
of z was Sf=1 (a( + a't) + E, where a( and a'( are the
additive effects of the two alleles at the /th locus, and
E is the environmental component. We assumed that
E was drawn from a normal distribution with mean 0
and variance 1. Selection was imposed at the mating
stage. For each of the N offspring making up the next
generation, an individual was chosen as a potential
parent. Then its relative fitness, w(z) = exp[—z2/
(2VS)], was used to determine its chance of being
rejected, thus modeling viability selection. After
parents were chosen for each offspring, gametes were
formed and then subject to mutation. Each locus had
the same probability /t of mutating. If an allele
mutated, the additive effect of the descendant allele
differed by an amount 8a that was drawn from a
normal distribution with mean 0 and variance Vm.
Thus the net effect of mutation is a2

m = 2kfiVm.
Each replicate simulation began with each locus

initially fixed for an a = 0 allele. Then the population
evolved under the above assumptions until the
variance of z reached an apparent equilibrium. We
found that waiting 1000 generations was more than
sufficient and that waiting longer did not affect our
results. The program saved a copy of the population
after 1000 generations (the initial population) and
then proceeded to let the population evolve for 1000
more generations, saving copies of the population at
times t= 100,200,..., 1000.
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Fig. 1. Average values of the segregation variance in F2

populations formed as described in the text. In each
replicate, a copy of the population was saved at / = 0,
after a stochastic equilibrium was reached, and then
hybridized with copies of the population saved at / = 100,
200,..., 1000. The values plotted are the averages over
100 replicate simulations. In all cases, N = 128 and
Vs = 20. Nine sets of replicates were run: three each with
k = 8 (A), k = 16 (O), and k = 32 (Q), with values of
Vm: (a) 0 1 ; (b) 1; (c) 10. Cases with the same values of
Vm are connected by lines of similar types. In each case,
the value of/t was adjusted so that the equilibrium
additive genetic variance was approximately 1. The values
of/t used in each case are as follows: /t = 0006 (k = 8,
Vm = 01), fi = 0-002 (k = 8, Vm = 1), ft = 00016 (k = 8,
Vm = 10), fi = 00025 (k = 16, Vm = 01), fi = 00009
(k = 16, Vm = 1), / t = 00008 (k = 16, Vm = 10),
ji = 00011 (k = 32, Fm = 01), /t = 000044 (k = 32,
Km = l), / t = 00004 (£ = 32, Vm = 10). The solid line
shows the expectation, t/(8N) = //(1024), which is based
on eqn (5) with <J\ = \, nE = oo. The expectation takes
account of the factor of 2 which must be present because
populations separated by time t in the simulation
represent two populations descended from a common
ancestral population at a time t/2 in the past.

The populations saved were each "hybridized with
the initial population according to the procedure for
forming an F2. Then we found the increase in the
segregation variance by subtracting the variance in z
in the F2 from the average of the variances in the two
parent populations. That would give a single estimate
of the segregation variance between two populations
separated by time t and so is equivalent to the
segregation variance between two populations that
were isolated for a time t/2. Each replicate yielded 10
estimates of the segregation variance, one for each
time at which copies of the population were saved.
The program then repeated the process for a different
replicate with the same parameter values and produced
a table of average segregation variances at the end of
a set of 100 replicates.

Some results are shown in Figure 1. The results for
nine cases are shown, with all combinations of k = 8,
16 and 32, and Vm = 01, 1 and 10. In all the results
presented in Figure 1, W = 128 and Vs = 20. For each
set of parameter values, the value of/(was adjusted by
trial and error so that the equilibrium additive
genetic variance was approximately 1 (in all cases
0-95 < VG < 105). The mutation rates used are in the
figure caption.

We can see that the number of loci, k, does not
significantly affect the results. For a given value of Vm,
the results for k = 8, 16 and 32 overlap and are not
consistently different. They do however depend
strongly on Vm and confirm the predictions based on
the analytic theory. For Vm = 0\, each mutation has
a relatively small effect on the character and hence is
weakly selected, and the results fit the analytic
predictions of the multivariate normal model, which is
shown as the solid line. For Vm = 10, each mutation
has a relatively large effect and hence is strongly
selected. In that case, the segregation variance is
relatively small. The case with Vm = 1 is intermediate.

4. Empirical studies

There are few empirical studies in which characters
not closely related to fitness have been analysed in the
way we need. Characters such as viability and fertility
cannot be usefully compared with our predictions
because of the evident non-additivity. In fact, finding
the causes of heterosis in such characters has been an
important research program in genetics. One study
that is relevant is of leaf number in tobacco. Wright
(1968, p. 377) cites the data of Hayes, East & Beinhart
(1913) in which the means in two parent populations
were 19-9 and 19-8, the mean in the Fx was 19-8 and
the mean in the F2 was 20-9. The variances in the
parent populations were 2-25 and 1-90. The variance
in the F1 was 1-46 and the variance in the F2 was 10-96.
Thus the segregation variance was 8-88 and is
considerably larger than the initial variances. In the
absence of other information about these populations,
we cannot test the quantitative predictions of our
model but it does appear that we can reject the
hypothesis that variation in leaf number was main-
tained only by low frequency alleles if the populations
diverged under the effects of genetic drift.

5. Discussion

We have shown that the kind of genetic variation
underlying a quantitative character strongly affects
the segregation variance expected between two popu-
lations that have been isolated for some time if
divergence was because of drift. If variation is
maintained by numerous alleles of moderate or small
effect, then the segregation variance increases roughly
linearly with the time of separation. Selection imposes
only a single constraint on the mean of the character
so alleles at the underlying loci are free to drift. In
contrast, if variation is maintained primarily by low-
frequency alleles, either under the house-of-cards
model of Turelli (1984) or the pleiotropy model
analysed by Barton (1990), then the increase in
segregation variance is likely to be small. In both
models, each allele contributing significantly to the
genetic variance of the character is effectively in a
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separate mutation-selection balance and hence can be
only slightly affected by drift.

At present, there are few data that allow us to
distinguish the two possibilities other than the study
cited above. Our analysis does not, of course, account
for non-additivity and additional theory will un-
doubtedly be needed in the analysis of experimental
data. Nevertheless, our results do not depend as much
on the assumption of additivity as on the extent to
which each allele frequency is separately constrained
by selection. We would expect similar results for
multivariate stabilizing selection. If the number of loci
is much larger than the number of characters under
stabilizing selection, the qualitative nature of our
conclusions will still be true. The extent of the
segregation variance that accumulates under drift
depends primarily on the constraints on allele fre-
quencies, and not on the details of the selection
process. The question is whether a character is
overdetermined, meaning that there are more con-
straints on its value than there are independent allele
frequencies, or underdetermined.
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helpful comments on an earlier version of this paper. This
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