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Motivated by the impact of emerging technologies on (toll) parks, this paper studies a problem of customers’
strategic behavior, social optimization, and revenue maximization for infinite-server queues. More specifically, we
assume that a customer’s utility consists of a positive reward for receiving service minus a cost caused by the
other customers in the system. In the observable setting, we show the existence, uniqueness, and expressions of the
individual equilibrium threshold, the socially optimal threshold, and the optimal revenue threshold, respectively.
Then, we prove that the optimal revenue threshold is smaller than the socially optimal threshold, which is smaller
than the individual one. Furthermore, we also extend the cost functions to any finite polynomial function with
nonnegative coefficients. In the unobservable setting, we derive the joining probabilities of individual equilibrium
and optimal revenue. Finally, using numerical experiments, we complement our results and compare the social
welfare and the revenue under these two information levels.

1. Introduction

In the past few decades, studying queueing systems from an economic perspective has become increas-
ingly prominent. More specifically, a specific reward-cost structure is imposed on the queueing system
to reflect customers’ desire to be served and unwillingness to wait. Arriving customers are permitted
to make decisions about whether to join the queue. All customers would like to maximize their profit,
taking into consideration that all the other customers also have the same goal. When any customer can
choose to join, the system should intuitively be modeled by an infinite-server queue. In the real world,
many service systems can be approximated as infinite-server queues, for example, large resorts, (toll)
parks in urban areas. Although the interior of these systems could be divided into several different
queueing models or networks, it is still a reasonable approximation to view them as an infinite-server
queue as a whole. Therefore, the literature on infinite-server queues is very extensive, see, for instance,
[1–3, 5, 9, 22, 24, 26] and the extensive references therein. However, to the best of our knowledge, such
queues have not been studied from an economic perspective.

In the following, let’s first briefly review the development of studying the queueing problems from
the economic analysis. In a seminal paper, Naor [23] introduced the reward and the linear delay cost of
customers into the M/M/1 queueing model. If the queue length can be accurately observed by the cus-
tomers, Naor [23] gave threshold strategies of the individual equilibrium, the socially optimal welfare,
and the optimal revenue and proposed the idea of levying fees to induce the social optimal strategy.
Edelson and Hilderbrand [8] complemented Naor’s research from an unobservable case. Their conclu-
sion shows that the social welfare and the revenue are equal when the queue length is not observed by
customers. Therefore, they proposed a method of levying observation fees to make the social welfare
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and the revenue still coincide when customers’ queueing strategy has a threshold type. However, in the
case of non-homogeneous costs, the aforementioned results do not always hold. Hassin [12] compared
Naor’s observable model with Edelson and Hilderbrand’s unobservable model. The conclusion shows
that providing real-time information is not always beneficial to profit maximization of the manager and
the social welfare under the profit maximizing admission fee also has the similar results. Since then,
because the strategic queueing models have been widely used in various service industries, more and
more scholars have paid attention to the problem of strategic queue and numerous excellent papers have
been published, such as vacation queues in the transportation industry (Guo and Hassin [11]), retrial
queueing systems with applications in networks (Wang and Zhang [30], Cui, Su, and Veeraraghavan
[6]), double-ended queues in the passenger-taxi service system (Shi and Lian [27]), priority queues
with discriminatory pricing (Hassin and Haviv [14], Wang, Cui, and Wang [29]), queues with uncer-
tain/different information (Cui and Veeraraghavan [7], Hassin, Haviv, and Oz [16], Chen and Hasenbein
[4], Liu [19]), etc. The basic knowledge of strategic queues is summarized in Hassin and Haviv [15].
Recently, the book Hassin [13] lists most of the relevant literature. Interested readers can refer to it and
the extensive references therein.

Models with infinite servers to approximatively characterize and analyze real problems arise in var-
ious situations in practice. An example of infinite-server queues may be illustrated by the decision
making of tourists in modern parks. In modern parks, congestion problems occur from time to time
due to the centralized travel of people. For example, in Fantawild (Disneyland, Universal studios) of
China, it is always reported that there are too many people staying in the park during the holidays, and
in urban (toll) parks located in densely populated metropolitan areas, we also usually see a large num-
ber of people traveling on weekends. It is no difficult to find that whether tourists are willing to enter
the park has a lot to do with the number of people staying in the park. Intuitively, the more the people
stay in the park, the more reluctant tourists are to join it. The reason is that according to the empirical
(expected) information or the real-time information provided by the park on the mobile platform (the
bulletin board), rational tourists will judge whether it is worth entering the park and their individual
utilities are negatively correlated with the number of people in the park. Based on this phenomenon, we
could model these parks as infinite-server queues, regard tourists as customers, quantify tourists’ behav-
ior by using the game theory, and analyze tourists’ equilibrium strategic behavior, social optimization,
and revenue maximization under different information levels, so as to provide some valuable advice to
the public. In the following sections, we use the terms of queueing theory to explain the conclusions.
These explanations can also correspond to the practical examples given above.

In the traditional literature, we usually see that some basic hypotheses of the queueing model have
the following salient characteristics: the customer’s reward is assumed to be R> 0 and customers’ own
cost is positively correlated with their sojourn time. In the context of infinite-server queues, customers
are assumed to receive a reward that depends negatively on the number of customers in the system.
An interesting practical explanation is that in the park example, this assumption is able to reflect the
impact of the park population on tourists satisfaction in modern parks. Under this structure, there are
several contributions in the present paper. First, according to whether to announce the real-time number
of people, we divide the problem into the observable model and the unobservable model. For these two
cases, we analyze the individual equilibrium, the optimal social welfare, and the optimal revenue of the
infinite-server queue and gives computable expressions for these optimal policies. Furthermore, we the-
oretically show the relationship of these optimal strategies and make some monotonic analyses. Finally,
we numerically compare the social welfare and the revenue with different thresholds and information
levels, and some valuable suggestions for the system administrator (SA) are also presented.

The rest of this article is arranged as follows. In Section 2, we give a detailed description of the model
and the reward-cost structure. Sections 3 and 4 are devoted to the observable and unobservable cases of
the model. Section 5 shows numerical analyses including a mini example which gives a simple operation
procedure for calculating each quantity. The proofs of the main results are postponed to Section 6. The
paper ends presenting some conclusions and potential research directions in Section 7.
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2. Formulation and preliminaries

Following the background described in Section 1, here we consider an infinite-server queue. We assume
that customers are homogeneous and arrive at the system according to a Poisson process with potential
arrival rate Λ. The sojourn times of all customers in the system are independent and follow a common
general distribution function B(x) with a mean of 1/`. A customer’s utility is assumed to consist of a
reward for receiving service minus a cost caused by the other customers in the system. More specifically,
if the SA announces the real-time number of customers in the system, customers receive a state depen-
dent reward R−C1N−C2N2 upon successful completion of service, where R> 0 and N is the number of
customers in the system. There are many practical explanations when C1 and C2 take different values.

1. If C1 > 0 and C2 = 0, we have C1N +C2N2 = C1N , which means that the cost is a linear function of
the current number of customers in the system. Thus, this corresponds to the risk-neutral customers.

2. If C1 = 0 and C2 > 0, we have C1N + C2N2 = C2N2, which implies that the cost is a quadratic
function with respect to the real-time number of customers in the system. This represents the risk-
averse customers.

If the system does not announce the real-time number of customers, we assume that customers use the
expected information to estimate the number of customers in the system. Therefore, customers receive
a state dependent reward R − C1E(L) − C2E(L)2 after the service is completed, where E(L) is the
average number of customers in the system. Similarly, we could get corresponding interpretations when
customers use the cost structure C1E[L] +C2E[L]2. Moreover, if C1 = C(1+ `A′′ (1)

∫ ∞
0 [1−B(x)]2dy)

and C2 = C, we also have C1E[L] + C2E[L]2 = CE[L2], where A(z) = E[zX] (see Holman, Chaudhry,
and Kashyap [17]). This expression indicates that customers’ costs are linear to the second moment of
queue length. In the following sections, we only require C1C2 ≥ 0 and max{C1, C2} > 0. Therefore,
the above statements are only a special case. We also investigate that the cost structures are any finite
polynomial function with nonnegative coefficients, but for brevity, if the extended conclusions can be
obtained in the same way, we will only state them in remarks. Besides the individual utility, the additive
social utility composed of the sum of individual utilities and the revenue composed of long-term gains
from monopolist pricing are also analyzed in the following sections.

3. The observable model

3.1. Individual equilibrium

In the observable setting, we assume that the real-time number of customers in the system are always
posted on the bulletin board and all rational customers can clearly know this information before deciding
whether to join the system. According to the reward-cost structure, an arriving customer who finds n
customers in the system joins the queue with the individual utility R− (C1n +C2n2) and balks with the
individual utility 0. It follows from R> 0 that rational customers will join the system if and only if the
individual utility is nonnegative. Therefore, the maximum integer ne − 1 that the customers decide to
join the system will satisfy the following two inequalities

R − [C1(ne − 1) + C2(ne − 1)2] ≥ 0, (1)

R − [C1ne + C2n2
e] < 0.

Solving the above two inequalities, we have the following theorem.
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Theorem 1. In the observable infinite-server queue, there exists a unique equilibrium strategy
ne = max

{
N : N ≤ 2C2−C1+

√
(C1 )2+4C2R

2C2

}
such that customers join the system if and only if n < ne.

3.2. Social optimality

Now, we could consider the problem of maximizing the expected total net gain of all customers per time
unit, that is, the socially optimal welfare. Since the actual (long-run) joining rate is an important index,
we must proceed in a different mode from the individual equilibrium.

Denote d = Λ
`

and let P(N = j) (j = 1, 2, . . . , n) be the stationary distribution of the M/G/n/n
queue. Note that when all customers consistently use balking strategies n (join the system if and only
if the number of customers is less than n), we can regard this process as an M/G/n/n queue. It follows
from the results of M/G/n/n queue (see Fakinos [9] or Shortle, Thompson, Gross, and Harris [28]) that

P(N = j) =
( Λ
`
)j 1

j!∑n
k=0( Λ` )k 1

k!
=

dj

j!∑n
k=0

dk

k!

, (2)

E(Ln) =
∑n

k=0 k dk

k!∑n
k=0

dk

k!

=
d
∑n−1

k=0
dk

k!∑n
k=0

dk

k!

, (3)

where E(Ln) is the expected queue length of the M/G/n/n queue. Then, if all customers consistently
use the balking strategy n, the actual joining rate of customers is

ΛP(N < n) = Λ

∑n−1
k=0

dk

k!∑n
k=0

dk

k!

= `E(Ln).

Let Sr (n) be the expected total net gain per time unit under balking strategy n. Using the PASTA
property (see Wolff [31]), we arrive at the following expressions of Sr (n):

Sr (n) = Λ

n−1∑
m=0
P(N = m)

[
R − (C1m + C2m2)

]
(4)

= Λ

[
RP(N < n) −

(
C1

n−1∑
m=0

mP(N = m) + C2

n−1∑
m=0

m2P(N = m)
) ]

= `RE(Ln) − `d

[
C1

∑n−1
m=0 m dm

m!∑n
m=0

dm

m!

+ C2

∑n−1
m=0 m2 dm

m!∑n
m=0

dm

m!

]
. (5)

According to the expression of (5), we could get the following key results about the socially optimal
welfare. The proof can be found in Section 6.

Theorem 2. In the observable infinite-server queue, there exists a unique socially optimal threshold
strategy

ns = max
{
N :

d
∑2

i=1 Ci

[∑N−1
m=0 mi dm

m!∑N
m=0

dm
m!

−
∑N−2

m=0 mi dm
m!∑N−1

m=0
dm
m!

]
E(LN ) − E(LN−1)

≤ R
}

(6)
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such that Sr (n) is strictly increasing in n when n ≤ ns and strictly decreasing in n when n > ns.
Furthermore, ns is decreasing in d.

Remark 1. There exists an intuitive explanation for the relationship between ns and d. As d increases,
if ns remains the same, the number of customers in the system will be stochastically increasing in d.
This, together with the individual utility R− (C1n+C2n2), implies that the (long-run) average marginal
net utility for each arriving customer will become very small. At this point, the optimal threshold ns
should be reduced to increase the average net utility of each customer in the system and further increase
the additive social utility. This interpretation is consistent with the monotonicity of ns with respect to d.
On the other hand, the smaller d is, the greater the probability that arriving customers will see a small
number of customers in the system. Simple calculations yield

lim
d→0

d

[∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E(Ln+1) − E(Ln)

= ni.

This combining with (1) and (6) implies that when d tends to 0, ns and ne are getting closer and closer and
therefore allowing customers with the positive individual utility value to enter the system will increase
the social welfare.

Remark 2.

(a) LettingΛ′ > Λ, we consider a new strategy such that if the number of customers in the system is less
than ns, the new system with parameter Λ′ (all the other parameters are assumed to be the same)
allows customers to enter with probability Λ

Λ′ . According to the decomposability of the Poisson
flow and the expression (5), we see that under this new strategy, the social welfare of this new
system is also equal to Sr (ns). Note that we can regard this social welfare problem of the infinite-
server queue as a particular (long-run) average reward model in the theory of the Markov decision
processes (MDPs). Thus, according to the results of the MDPs (see Chapter 11 in Puterman [25]
or Feinberg and Yang [10]), the deterministic stationary optimal strategy (or optimal pure strategy)
always exists, which means that Sr (ns) is increasing in Λ.

(b) For fixed n < ne, let P[N (d) = j], j = 1, 2, . . . , n, be the stationary distribution of the M/G/n/n
queue with parameter d. Using the method of the sample path comparison, we easily have N (d) ≤st
N (d′) when d < d′, where ≤st is the usual stochastic order (see Müller and Stoyan [21] or Keilson
and Kester [18]). Therefore, for the decreasing sequence R − (C1n + C2n2) with respect to n, we
have

n−1∑
m=0
P(N (d) = m)

[
R − (C1m + C2m2)

]
>

n−1∑
m=0
P(N (d′) = m)

[
R − (C1m + C2m2)

]
,

which, together with (4), implies that Sr (n)
Λ

is strictly decreasing in d. This means that Sr (ns) is
strictly increasing in `.

3.3. The system’s revenue

In this subsection, we introduce a price Po to study the system’s revenue maximizing problem. Because
customers respond to Po, we model the interaction between the SA and the customers as a Stackelberg
game, where the SA is the leader whose action is to set the price, while customers are the followers
whose roles are determine their utilities and strategies based on the price set by the SA. The goal of
the SA is to maximize its revenue while anticipating customers equilibrium strategies. Similar to the
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traditional analysis (see Section 2.4 of Hassin and Haviv [15]), under a balking strategy n, the best price
is Po = R − [C1(n − 1) + C2(n − 1)2] and thus, the expected total net revenue, Sr

m (n), can be expressed
as follows:

Sr
m (n) = ΛP(N < n)Po

= `E(Ln) [R − (C1(n − 1) + C2(n − 1)2)] . (7)

According to this expression, we are able to obtain the following theorem about the optimal revenue.
The proof can be found in Section 6.

Theorem 3. In the observable infinite-server queue, there exists a unique optimal threshold strategy

nm = max
{
N :

∑2
i=1 Ci (E(LN ) (N − 1)i − E(LN−1) (N − 2)i)]

E(LN ) − E(LN−1)
≤ R

}
(8)

such that Sr
m (n) is strictly increasing in n when n ≤ nm and strictly decreasing in n when n > nm.

Moreover, nm is increasing in d and the optimal price for the SA is P̃o = R− [C1(nm−1) +C2(nm − 1)2] .

Remark 3. The relationship between nm and d has an interesting interpretation. As d increases, increas-
ing nm will allow more customers to be served, thereby increasing the (long-run) revenue of the system.
This reflects the small profit but quick turnover strategy often used in economics.

Having obtained the optimal threshold strategies of individual equilibrium, social welfare, and rev-
enue, now, we could compare the relationship of size between them. The following results show that
for the observable case, if the customers’ costs are positively correlated with the real-time number of
customers in the system, the three thresholds are generally different and the unequal relationship is
consistent with the traditional conclusion found by Naor [23].

Theorem 4. In the observable infinite-server queue, we have nm ≤ ns ≤ ne.

Proof. It follows from (1) and (4) that ns ≤ ne is straightforward, therefore we just need to show nm ≤ ns.
Since

lim
d→∞

d

[∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E(Ln+1) − E(Ln)

= ni (n + 1) − n(n − 1)i

and

lim
d→∞

E(Ln+1)ni − E(Ln) (n − 1)i

E(Ln+1) − E(Ln)
= ni (n + 1) − n(n − 1)i,

by the definition of (6) and (8), we have that nm = ns when d → ∞. Using the results of Theorems 2 and
3, we know that ns is decreasing in d while nm is increasing in d, which immediately indicates nm ≤ ns
for d < ∞. �

Remark 4. The first inequality of Theorem 4 shows that a revenue-maximizing SA sets a higher
entrance price than that maximizes the social welfare, potentially making the system less available
to the public. It follows from the proof of Theorem 4 that the capacity gap between the socially opti-
mal strategy and the revenue-maximizing strategy gradually decreases as d increases. An interesting
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explanation is that as d increases, there will be more customers left in the system and the profits of all
new arrivals are closer to the system’s pricing, which brings the socially optimal welfare closer to the
optimal revenue. The second inequality indicates us that under the fully free condition, the system is
generally not able to achieve the social optimum. Thus, appropriate tolls are still a good way to reach
the socially optimal threshold.

4. The unobservable model

In the unobservable model, we assume that customers can not obtain the real-time number of customers
in the system upon arrival. Customers make decisions based on the information of the system including
Λ, `, R, and the cost structure C1E(L) + C2E(L)2, where E(L) is the average number of people in the
system. To consider a symmetric equilibrium, we suppose that customers join the system with probabil-
ity q (0 ≤ q ≤ 1) upon arrival. In this section, we first derive the equilibrium strategy with no price set.
When the SA chooses a desired threshold n and sets the maximum price Pu to ensure this threshold, like
in Section 3.3, the results of this Stackelberg game is Pu = R − [C1E(L) + C2E(L)2]. Since the system
is unobservable, the social welfare and the revenue have the same expressions, thus we don’t need to
distinguish them in the following study.

4.1. Equilibrium

When R − [C1d + C2d
2] ≤ 0, suppose that the equilibrium strategy of a customer to join the system is

qe, 0 ≤ qe ≤ 1, then qe should satisfy

0 = R − (C1E(L) + C2E(L)2)
= R − [C1(dqe) + C2 (dqe)2],

where E[L] is the expected queue length of the system, which equals to that of an M/G/∞ queue with

arrival Λqe and the service rate `. Solving the above equation, we see that qe =
−C1+

√
C2

1+4RC2

2C2d
when

R ≤ C1d + C2d
2, which yields the following theorem immediately.

Theorem 5. In the unobservable infinite-server queue, the unique equilibrium strategy for customers
is given as follows:

(a) If R − (C1d + C2d
2) ≥ 0, qe = 1.

(b) If R − (C1d + C2d
2) < 0, qe =

−C1+
√

C2
1+4RC2

2C2d
.

4.2. Revenue (social) optimality

Like in Section 3.3, when the SA sets an entrance fee Pu, the reward of customers drops from R to
R − Pu, which will change the equilibrium probability of joining the system. Let q(Pu) denote the
joining probability associated with a given fee Pu and without confusion, we use q to represent. Then,
we have the expression of revenue

S(q) = qΛ[R − (C1(dq) + C2(dq)2)], (9)

where Pu = R − [C1dq + C2(dq)2]. When R ≤ (2dC1 + 3d2C2), by differentiating S(q) with respect to
q and finding the nonnegative root, we have

q =
−C1 +

√
C2

1 + 3RC2

3C2d
.
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Summarizing the above discussions, we could naturally develop the following theorem.

Theorem 6. In the unobservable infinite-server queue, let q̃ be the optimal joining probability of
revenue and P̃u be an optimal entrance price, then the following statements hold.

(a) If R ≥ (2dC1 + 3d2C2), we have
1. q̃ = 1;
2. S(q̃) = `(Rd − C1d

2 − C2d
3);

3. P̃u = R − C1d − C2d
2.

(b) If R < (2dC1 + 3d2C2), we have

1. q̃ =
−C1+

√
C2

1+3RC2

3C2d
;

2. S(q̃) =
−2C3

1−9RC1C2+(2C2
1+6RC2 )

√
C2

1+3RC2

27C2
2

`;

3. P̃u =
6RC2+C2

1−C1

√
C2

1+3RC2

9C2
.

Remark 5.

(a) It follows from Theorems 5 and 6 that q̃ ≤ qe and S(qe) = 0, which means that for the unobservable
case, the system is still not able to achieve the social optimum under the fully free condition. In fact,
a customer who decides to join the system would impose negative externalities on future arrivals.
Thus, appropriate tolls can reach the socially optimal threshold.

(b) It follows from Theorem 6(b) that if R < (2dC1 + 3d2C2), P̃u and S(q̃) are both constants with
respect to Λ while S(q̃) is increasing in R and `. This implies that the change in the arrival flow
of customers does not affect the revenue and there is no need to adjust the entrance price. If R ≥
(2dC1 + 3d2C2), P̃u is decreasing in d but S(q̃) is increasing in d and R. This shows that when
R ≥ (2dC1 + 3d2C2) and d increases, the revenue-maximizing SA should reduce the price to
increase the effective arrival rate. Like the observable case, increasing individual reward (R) will
always increase the optimal social welfare.

Remark 6.

(a) The relationship between Sr
m (nm) and S(q̃) can not be completely determined. In fact, if E(Lnm ) ≤

(nm − 1), it follows from (7) and (9) that Sr
m (nm) ≤ S(q̃). However, as d → ∞, for R = 20, ` =

1, C1 = 1, C2 = 0, we have S(q̃) = `R2

4C1
= 100, Sr

m (nm) = `nm [R−(C1(nm−1)] > 10[20−(10−1)] =
110 > S(q̃). Thus, whether a profit-maximizing SA publishes the real-time number of customers
depends on system parameters. Similarly, the relationship of size between Sr

m (ns) and S(q̃) cannot
be completely determined.

(b) For any n ≤ ne, we have

Λ

n−1∑
m=0
P(N = m)

[
R − (C1m + C2m2)

]
≥ Λ

n−1∑
m=0
P(N = m)

[
R − (C1(n − 1) + C2(n − 1)2)

]
= ΛP(N < n) [R − (C1(n − 1) + C2(n − 1)2)]
= `E(Ln) [R − (C1(n − 1) + C2(n − 1)2)],

which, combining with (4) and (7), implies that Sr (nm) > Sr
m (nm). This shows that if the revenue-

maximizing SA chooses to release the real-time number of customers, that is, Sr
m (nm) ≥ S(q̃), this
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behavior for the public should also be actively advocated because Sr (nm) ≥ Sr
m (nm) ≥ S(q̃) implies

Sr (nm) ≥ S(q̃).

5. Numerical comparisons

In this section, we present some numerical results for both observable and unobservable models. We
mainly focus on comparing the social welfare and revenue under these two models to gain insight into
some valuable results that have been or have not been proven. Finally, we also give a simple example to
calculate each quantity.

In Figure 1, we compare the social welfare with different Λ (d with ` = 1). From the figure, we could
observe the following facts.

1. Sr (ns) and Sr (nm) are increasing in Λ, respectively. Sr (ns) is always bigger than S(q̃). In fact, when
C2 = 0, we have dq =

∑∞
m=0 mP(N = m) in (9). This, combining with expression of (4), shows that

we can think of the unobservable social welfare problems as an observable (long-run) average reward
model in the theory of MDPs with the stochastic Markov strategy, see Chapter 11 in Puterman [25].
Note that ns is the deterministic stationary optimal strategy in this average reward model, thus we
have S(q̃) ≤ Sr (ns).

2. Sr (ne) increases first and then decreases with respect to Λ. When Λ is relatively large, from the
figure, a reasonable toll is a better choice to achieve the social optimum, which coincides with the
actual strategy adopted. When Λ is relatively small, even if there is no charge, Sr (ne) is closer to the
social optimal welfare. The reasons for this phenomenon have been analyzed in Remark 1.

3. When Λ gradually increases, Sr (ns) and Sr (nm) get closer and closer until they coincide. In fact, it
follows from the proof of Theorem 4 that this is caused by the gradual approach of the two thresholds.
Therefore, when Λ is large, the optimal strategy of the SA is gradually in line with the goal of social
maximization.

4. When Λ is relatively small, we can see that Sr (nm) is less than S(q̃). At this time, under the revenue-
maximizing admission fee, not providing the number of customers is good for social welfare. When
Λ is relatively large, Sr (nm) > S(q̃). At this time, providing the real-time number of customers is
beneficial to the social welfare. In short, whether to publish the real-time number of customers needs
depend on the choice of real parameters.

In Figure 2, we provide the revenue with different Λ. Observing the figure, we have the following
statements.

1. Sr
m (nm) and S(q̃) are increasing in Λ, respectively and after a simple judgment, S(q̃) is a constant

when Λ ≥ 7.5. From the figure, we can also see that Sr
m (ns) is increasing in Λ although we can not

prove it theoretically. An intuitive reason is that ns and nm gradually approach as Λ increases.
2. When Λ is relatively small, Sr

m (nm) < S(q̃), which means that under the revenue-maximizing admis-
sion fee, the SA has no incentive to publish the real-time number of customers. Meanwhile, we also
see that Sr

m (ns) < S(q̃), so under the social welfare maximization threshold, the unobservable case
will also have greater revenue than the observable case. That is to say, it is beneficial for the SA not
to publish the real-time information in this circumstance.

3. When Λ gradually increases, Sr
m (nm) and Sr

m (ns) will get closer and closer and will exceed S(q̃).
Thus, for sufficiently large Λ, the SA is willing to publish real-time information under various opti-
mal thresholds. In fact, we can see that there exists Λ such that Sr

m (nm) > S(q̃) > Sr
m (ns). Under this

condition, the decision of the SA is the opposite to the decision with the social welfare-maximizing
objective. Therefore, in order to maximize the optimal social welfare, it is necessary to induce the
SA to publish the real-time information.
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Figure 1. Comparison of the social welfare per time unit vs. d for ` = 1, R = 15, C1 = 1, C2 = 0.

Finally, we also complement a concrete example to give a numerical solution of various quantities.

Example 1. Suppose that potential customers arrive at a system 20 persons per minute, the average
sojourn time is 60 minutes, the service reward R= 400 and the cost is C1 = 0, C2 = 0.01. Then,
d = 1, 200 and using the results of Sections 3 and 4, we have ne = 201, ns = 116, nm = 116,
qe = 1

6 , qs =
√

3
18 , Sr (ns) = 517.64, Sr (ne) = 2.66, P̃o = 265.44, Sr

m (nm) = 512.71, P̃u = 266.67,
S(qe) = 0, S(q̃) = 513.20.

In this example, the social optimal threshold and the revenue optimal threshold are the same.
Comparing Sr (ns) and Sr (ne), whether it is a free system that controls the number of people or a toll
system that controls the threshold through charging, the social welfare will be significantly improved.

6. Proofs of the main results

This part is devoted to the proofs of Theorems 2 and 3. To begin with, we need to state and prove some
lemmas and propositions.
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Figure 2. Comparison of optimal revenue per time unit vs. d for ` = 1, R = 15, C1 = 1, C2 = 0.

Lemma 1. Let function f (x) = bnxn + bn−1xn−1 + · · · + b1x + b0 (bi > 0) and g(x) = anxn + an−1xn−1 +
· · · + a1x + a0 (ai > 0). Then, if bn

an
≥ bn−1

an−1
≥ · · · ≥ b0

a0
, f (x)

g(x) is increasing in x. In particular, when one
of the above inequalities is strict, f (x)

g(x) is strictly increasing in x.

Proof. Through differentiation with respect to x, we have

d
(
f (x)
g(x)

)/
dx =

(∑n
k=1 kbkxk−1) (∑n

k=0 akxk) − (∑n
k=0 bkxk) (∑n

k=1 kakxk−1)
g(x)2

=

∑2n−1
m=0

[∑
i+j=m

0≤i≤n−1
0≤j≤n

(i + 1)bi+1ajxm −∑
i+j=m
0≤i≤n

0≤j≤n−1

(j + 1)biaj+1xm
]

g(x)2

=

∑2n−1
m=0

[∑min{m,n−1}
i=max{m−n,0} (i + 1)bi+1am−ixm −∑min{m,n−1}

i=max{m−n,0} (i + 1)bm−iai+1xm
]

g(x)2 . (10)
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Since bi+1
ai+1

≥ bm−i
am−i

for i + 1 > m− i, we have [(i + 1)bi+1am−i + (m− i)bm−iai+1] − [(i + 1)bm−iai+1 + (m−
i)bi+1am−i] = (2i + 1 − m)bi+1am−i − (2i + 1 − m)bm−iai+1 ≥ 0. This immediately implies that

min{m,n−1}∑
i=max{m−n,0}

(i + 1)bi+1am−i − (i + 1)bm−iai+1 ≥ 0. (11)

Thus, f (x)
g(x) is increasing in x. Obviously, when one of the inequalities is strict, the monotonicity is also

strict from the (10) and (11). �

Proposition 1. Let fn(d) =
∑n

m=0
dm

m! for n ≥ 0 and f−1(d) = 0. Then, the following statements hold.

(a) fn−t (d)fn (d)−fn−1−t (d)fn+1 (d)
fn (d)2−fn−1 (d)fn+1 (d)

is strictly increasing in n for t = 1, 2, . . . , n.

(b) dt fn−t (d)fn (d)−dt fn−1−t (d)fn+1 (d)
fn (d)2−fn−1 (d)fn+1 (d)

is strictly increasing in d for t = 1, 2, . . . , n.

(c)
d

[ ∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E[Ln+1 ]−E[Ln ] is strictly increasing in n and d, respectively, for i = 1, 2, 3, . . . .

Proof.

(a) We just need to show fn−t (d)fn (d)−fn−1−t (d)fn+1 (d)
fn (d)2−fn−1 (d)fn+1 (d)

>
fn−1−t (d)fn−1 (d)−fn−2−t (d)fn (d)

fn−1 (d)2−fn−2 (d)fn (d)
, which holds if and

only if for n ≥ t + 1,

fn−t (d)fn−1(d)2 + fn−2−t (d)fn(d)2 + fn−1−t (d)fn−2(d)fn+1(d)
> fn−1−t (d)fn−1(d)fn(d) + fn−t (d)fn−2(d)fn(d) + fn−2−t (d)fn−1(d)fn+1(d).

(12)

Denoted the coefficients of the mth power on both sides of inequality (12) by

G(m) ,
∑

i+j+k=m
0≤i≤n−t
0≤j≤n−1
0≤k≤n−1

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−2−t

0≤j≤n
0≤k≤n

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−1−t
0≤j≤n−2
0≤k≤n+1

1
i!j!k!

, (13)

H (m) ,
∑

i+j+k=m
0≤i≤n−1−t
0≤j≤n−1
0≤k≤n

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−t
0≤j≤n−2
0≤k≤n

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−2−t
0≤j≤n−1
0≤k≤n+1

1
i!j!k!

. (14)

Then, it is clear to see that (12) holds if G(m) ≥ H (m) for 0 ≤ m ≤ 3n − 2 − t and at least one
inequality sign is strictly established. Next, we show that this condition is always true.
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We give a concrete proof for 2 ≤ t ≤ n − 2 and for t = 1 or t = n − 1, we can also prove it by a
similar method. If m < n − t, by (13) and (14), we have

G(m) − H (m) =
∑

i+j+k=m
0≤i≤n−t
0≤j≤n−t
0≤k≤n−t

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−2−t

0≤j≤n−t
0≤k≤n−t

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−1−t

0≤j≤n−t
0≤k≤n−t

1
i!j!k!

−
[ ∑

i+j+k=m
0≤i≤n−1−t

0≤j≤n−t
0≤k≤n

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−t
0≤j≤n−t
0≤k≤n−t

1
i!j!k!

+
∑

i+j+k=m
0≤i≤n−2−t

0≤j≤n−t
0≤k≤n−t

1
i!j!k!

]
= 0.

If m ≥ n − t, taking differences, we have

∑
i+j+k=m
0≤i≤n−t
0≤j≤n−1
0≤k≤n−1

1
i!j!k!

−
∑

i+j+k=m
0≤i≤n−t
0≤j≤n−2
0≤k≤n

1
i!j!k!

=

n−t∑
i=0

∑
i+j+k=m
0≤j≤n−1
0≤k≤n−1

1
i!j!k!

−
n−t∑
i=0

∑
i+j+k=m
0≤j≤n−2
0≤k≤n

1
i!j!k!

=

n−t∑
i=0

∑
i+j+k=m
j=n−1

0≤k≤n−1

1
i!j!k!

−
n−t∑
i=0

∑
i+j+k=m
0≤j≤n−2

k=n

1
i!j!k!

. (15)

Similarly, we arrive at the following two expressions.

∑
i+j+k=m

0≤i≤n−1−t
0≤j≤n−2
0≤k≤n+1

1
i!j!k!

−
∑

i+j+k=m
0≤i≤n−1−t
0≤j≤n−1
0≤k≤n

1
i!j!k!

=

n−1−t∑
i=0

∑
i+j+k=m
0≤j≤n−2

k=n+1

1
i!j!k!

−
n−1−t∑

i=0

∑
i+j+k=m
j=n−1
0≤k≤n

1
i!j!k!

, (16)

∑
i+j+k=m

0≤i≤n−2−t
0≤j≤n
0≤k≤n

1
i!j!k!

−
∑

i+j+k=m
0≤i≤n−2−t
0≤j≤n−1
0≤k≤n+1

1
i!j!k!

=

n−2−t∑
i=0

∑
i+j+k=m

j=n
0≤k≤n

1
i!j!k!

−
n−2−t∑

i=0

∑
i+j+k=m
0≤j≤n−1

k=n+1

1
i!j!k!

. (17)

This, combining with (13) and (14), implies that

G(m) − H (m) =
[ n−t∑

i=0

∑
i+j+k=m
j=n−1

0≤k≤n−1

1
i!j!k!

−
n−t∑
i=0

∑
i+j+k=m
0≤j≤n−2

k=n

1
i!j!k!

]

+
[n−1−t∑

i=0

∑
i+j+k=m
0≤j≤n−2

k=n+1

1
i!j!k!

−
n−1−t∑

i=0

∑
i+j+k=m
j=n−1
0≤k≤n

1
i!j!k!

]

+
[n−2−t∑

i=0

∑
i+j+k=m

j=n
0≤k≤n

1
i!j!k!

−
n−2−t∑

i=0

∑
i+j+k=m
0≤j≤n−1

k=n+1

1
i!j!k!

]
.

(18)
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By taking differences, we also have that

n−t∑
i=0

∑
i+j+k=m
j=n−1

0≤k≤n−1

1
i!j!k!

−
n−1−t∑

i=0

∑
i+j+k=m
j=n−1
0≤k≤n

1
i!j!k!

=
1

(n − t)!(n − 1)!(m − 2n + t + 1)! −
1

(m − 2n + 1)!(n − 1)!n!1{m≥2n−1} , (19)

n−1−t∑
i=0

∑
i+j+k=m
0≤j≤n−2

k=n+1

1
i!j!k!

−
n−2−t∑

i=0

∑
i+j+k=m
0≤j≤n−1

k=n+1

1
i!j!k!

=
1

(n − 1 − t)!(m − 2n + t)!(n + 1)! −
1

(m − 2n)!(n − 1)!(n + 1)!1{m≥2n} , (20)

and

n−2−t∑
i=0

∑
i+j+k=m

j=n
0≤k≤n

1
i!j!k!

−
n−t∑
i=0

∑
i+j+k=m
0≤j≤n−2

k=n

1
i!j!k!

= − 1
(n − t)!(m − 2n + t)!n! −

1
(n − 1 − t)!(m − 2n + t + 1)!n!

+ 1
(m − 2n)!n!n!1{m≥2n} +

1
(m − 2n + 1)!(n − 1)!n!1{m≥2n−1} , (21)

where 1B is the indicator function of B taking value 1 if the event B is true and 0 otherwise and
(21) also holds formally for m = 3n− 2− t. We substitute (19), (20), and (21) into (18), and simple
calculations show that

G(m) − H (m) = 1
(n − t)!(n − 1)!(m − 2n + t + 1)! +

1
(n − 1 − t)!(m − 2n + t)!(n + 1)!

− 1
(m − 2n)!(n − 1)!(n + 1)!1{m≥2n} −

1
(n − t)!(m − 2n + t)!n!

− 1
(n − 1 − t)!(m − 2n + t + 1)!(n)! +

1
(m − 2n)!n!n!1{m≥2n}

=
3n − t − 1 − m

(n − t)!n!(m − 2n + t + 1)! +
m − 3n + t

(n − 1 − t)!(m − 2n + t + 1)!(n + 1)!

+ 1
(m − 2n)!n!(n + 1)!1{m≥2n}

=
(3n − t − m) (t + 1) − (n + 1)

(n − t)!(n + 1)!(m − 2n + t + 1)! +
1

(m − 2n)!n!(n + 1)!1{m≥2n} .

When n− t≤m< 2n, we have (3n− t−m) (t+1)− (n+1)> (n− t) (t+1)− (n+1)= (n− t−1)t−1>0.
When m ≥ 2n, it is clear to see that

(3n − t − m)(t + 1) − (n + 1)
(n − t)!(n + 1)!(m − 2n + t + 1)! +

1
(m − 2n)!n!(n + 1)!1{m≥2n} > 0 (22)
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if and only if

(m − 2n + t + 1)!(n − t)!
(m − 2n)!n! − (m − 2n) (t + 1) > (n + 1) − (n − t) (t + 1). (23)

Since

(z + t + 1) (z + t) · · · (z + 1)
n(n − 1) · · · (n − t + 1) − z(t + 1)

is decreasing in z for 0 ≤ z ≤ n − 2 − t and for m = 3n − 2 − t,

(3n − t − m) (t + 1) − (n + 1)
(n − t)!(n + 1)!(m − 2n + t + 1)! +

1
(m − 2n)!(n)!(n + 1)!1{m≥2n}

=
t2 + t

(n − t)!(n + 1)!n! > 0,

then, (23) holds for m ≥ 2n. This yields that G(m) > H (m) when m ≥ n− t. Therefore, (12) always
holds for any d > 0, which completes the proof.

(b) First, by rearranging terms, we arrive at the following more compact representation:

dtfn−t (d)fn(d) − dtfn−1−t (d)fn+1(d)

= dt
2n−t∑
m=0

[ min{m,n−t}∑
i=max{m−n,0}

dm

i!(m − i)! −
min{m,n−1−t}∑

i=max{m−n−1,0}

dm

i!(m − i)!

]
= dt

2n−t∑
m=0

[ min{m,n−t}∑
i=max{m−n,0}

1
i!(m − i)! −

min{m,n−1−t}∑
i=max{m−n−1,0}

1
i!(m − i)!

]
dm. (24)

In order to analyze the relationship between the coefficients of dt fn−t (d)fn (d)−dt fn−1−t (d)fn+1 (d)
fn (d)2−fn−1 (d)fn+1 (d)

and use

the results of Lemma 1, we first define F (m, t) = ∑min{m,n−t}
i=max{m−n,0}

1
i!(m−i)! −

∑min{m,n−1−t}
i=max{m−n−1,0}

1
i!(m−i)! .

Then, we have that for t ≥ 0,

1. if m ≤ n − 1 − t, F (m, t) = 0;
2. if n − t ≤ m ≤ n, F (m, t) = 1

(n−t)!(m−n+t)! > 0;
3. if n + 1 ≤ m ≤ 2n − t, F (m, t) = 1

(n−t)!(m−n+t)! −
1

(m−n−1)!(n+1)! > 0.

Thus,
∑2n−t

m=0 F (m, t) > 0 and after simple calculations we also have that

1. if m ≤ n − 1 − t (m + t ≤ n − 1), F (m, t) = 0 and F (m + t, 0) = 0;
2. if m = n − t (m + t = n), F (m, t) = 1

(n−t)!(m−n+t)! > 0 and F (m + t, 0) = 1
n!(m−n+t)! > 0;

3. if n − t + 1 ≤ m ≤ n (n + 1 ≤ m + t ≤ n + t), F (m, t) = 1
(n−t)!(m−n+t)! and F (m + t, 0) =

1
n!(m−n+t)! −

1
(m+t−n−1)!(n+1)! ;

4. if n + 1 ≤ m ≤ 2n − t (n + 1 + t ≤ m + t ≤ 2n), F (m, t) = 1
(n−t)!(m−n+t)! −

1
(m−n−1)!(n+1)! and

F (m + t, 0) = 1
n!(m−n+t)! −

1
(m+t−n−1)!(n+1)! .

This immediately implies that for[
(n + 1) · · · (n − t + 1) − (m + 1 − n + t) · · · (m + 1 − n)1{m+1≥n+1}

] [
(n + 1)
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− (m − n + t)1{m≥n−t+1}
]
−
[
(n + 1) · · · (n − t + 1) − (m − n + t) · · · (m − n)1{m≥n+1}

][
(n + 1) − (m + 1 − n + t)1{m+1≥n−t+1}

]
= (n + 1) · · · (n − t + 1) [(m + 1 − n + t)1{m+1≥n−t+1} − (m − n + t)1{m≥n−t+1}]

+ [(m − n + t) · · · (m − n)1{m≥n+1}] [(n + 1) − (m + 1 − n + t)1{m+1≥n−t+1}]
− [(m + 1 − n + t) · · · (m + 1 − n)1{m+1≥n+1}] [(n + 1) − (m − n + t)1{m≥n−t+1}], (25)

we have the following case:

1. if m = n − t, (25) = (n + 1) · · · (n − t + 1) > 0;
2. if n − t + 1 ≤ m ≤ n − 1, (25) = (n + 1) · · · (n − t + 1) > 0 (If t = 1, there is no such item);
3. if m= n, (25) = (n+1) · · · (n− t+1) − [(t+1)!1{m+1≥n+1}] [(n+1) − (m−n+ t)1{m≥n−t+1}] > 0;
4. if m ≥ n+1, (25) = (n+1) · · · (n− t+1) − ((n+1) − t(2n− t−m)) (m−n+ t) · · · (m−n+1) > 0.

Note that for m ≥ n − t,

F (m, t)
F (m + t, 0) <

F (m + 1, t)
F (m + 1 + t, 0)

⇔
(n + 1) · · · (n − t + 1) − (m − n + t) · · · (m − n)1{m≥n+1}

(n + 1) − (m − n + t)1{m≥n−t+1}
<

(n + 1) · · · (n − t + 1) − (m + 1 − n + t) · · · (m + 1 − n)1{m+1≥n+1}
(n + 1) − (m + 1 − n + t)1{m+1≥n−t+1}

⇔ [(n + 1) · · · (n − t + 1) − (m+ 1− n + t) · · · (m + 1− n)1{m+1≥n+1}] [(n + 1)
− (m − n + t)1{m≥n−t+1}]
> [(n + 1) · · · (n − t + 1) − (m − n + t) · · · (m − n)1{m≥n+1}] [(n + 1)
− (m + 1 − n + t)1{m+1≥n−t+1}],

which is always true and have been proved in (25). Thus,

dtF (m, t)dm

F (m + t, 0)dm+t

is strictly increasing in m for m ≥ n− t. Because F (m, t) and F (m+ t, 0) are the coefficients of m+ t
power of dtfn−t (d)fn(d)−dtfn−1−t (d)fn+1(d) and fn(d)2−fn−1(d)fn+1(d) (when t = 0), respectively,
it immediately follows from Lemma 1 that dt fn−t (d)fn (d)−dt fn−1−t (d)fn+1 (d)

fn (d)2−fn−1 (d)fn+1 (d)
is strictly increasing in d for

n ≥ t ≥ 1.
(c) For any i = 1, 2, 3, . . . , we have

n∑
m=0

mi d
m

m!
= d

n−1∑
m=0

(m + 1)i−1 d
m

m!
= d

[n−1∑
m=0

( i−1∑
k=0

(
i − 1

k

)
mk d

m

m!

)]
= d

i−1∑
k=1

[n−1∑
m=0

(
i − 1

k

)
mk d

m

m!

]
+d

n−1∑
m=0

dm

m!
.

Then, repeating the above arguments, we could derive the following expansion:

n∑
m=0

mi d
m

m!
=

min{n,i}∑
j=1

ajd
j

n−j∑
m=0

dm

m!
,
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where aj is a positive constant. This means that

d

[∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E[Ln+1] − E[Ln]

=

∑min{n,i}
j=1 ajd

j ∑n−j
m=0

dm
m!

fn+1 (d) −
∑min{n−1,i}

j=1 ajd
j ∑n−1−j

m=0
dm
m!

fn (d)
fn (d)

fn+1 (d) −
fn−1 (d)
fn (d)

=

min{n−1,i}∑
j=1

aj
d jfn−j (d)fn(d) − d jfn−1−j (d)fn+1(d)

fn(d)2 − fn−1(d)fn+1(d)
+ an1{n≥i}

dnf0(d)fn(d)
fn(d)2 − fn−1(d)fn+1(d)

. (26)

Using the linearity of summation, by (a) and (b), the result holds immediately.
�

Proof of Theorem 2 By the sample path comparison, it is easy to have ns ≤ ne, which ensures that ns
is finite. According to the definition of ns, we have Sr (ns) ≥ Sr (ns − 1) and Sr (ns) > Sr (ns + 1). Using
algebraic manipulations analogous to those in Section 2.4 in Hassin and Haviv [15], it follows from (5)
that these relations can also be rewritten as

d
∑2

i=1 Ci

[∑ns
m=0 mi dm

m!∑ns+1
m=0

dm
m!

−
∑ns−1

m=0 mi dm
m!∑ns

m=0
dm
m!

]
E(Lns+1) − E(Lns)

> R ≥
d
∑2

i=1 Ci

[∑ns−1
m=0 mi dm

m!∑ns
m=0

dm
m!

−
∑ns−2

m=0 mi dm
m!∑ns−1

m=0
dm
m!

]
E(Lns) − E(Lns−1)

.

By the results of Proposition 1(c),
d
∑2

i=1 Ci

[ ∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E(Ln+1 )−E(Ln ) is strictly increasing in n, so ns is unique.

Since
d
∑2

i=1 Ci

[ ∑n
m=0 mi dm

m!∑n+1
m=0

dm
m!

−
∑n−1

m=0 mi dm
m!∑n

m=0
dm
m!

]
E(Ln+1 )−E(Ln ) is strictly increasing in d, ns is decreasing in d. �

Proposition 2.

(a) E(Ln) is strictly increasing in n.
(b) E(Ln+1) − E(Ln) > E(Ln+2) − E(Ln+1).
(c) E(Ln)2 > E(Ln+1)E(Ln−1), that is, E(Ln )

E(Ln−1 ) >
E(Ln+1 )
E(Ln ) .

(d) E(Ln+1 )
E(Ln ) is increasing in d.

Proof.

(a) We use a coupling method here although we may also directly prove it by taking differences. Noting
that M/G/n/n and M/M/n/n have the same expression of E(Ln), we only need to consider the
Markovian case. Suppose that Process 1(P1) and Process 2(P2) is an M/M/n/n queueing process
and an M/M/(n + 1)/(n + 1) queueing process, respectively, and once customers enter the system,
they will not leave until the service is finished. Follow the sample paths of two processes defined
on the same probability space and starting in the same state s< n. Both processes remain coupled
and thus see the same arrivals, services for each customer when the number of customers shall not
exceed n. This implies that both systems have the same customers. Consider two processes enter
the state n for the first time and a new customer arrives. P1 rejects the customer but P2 accepts
this customer. At this point, the queue length of the P2 is greater than the length queue of the P1.
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Then, if P1 rejects an arriving customer at state n, P2 also rejects the customer at state n+ 1. If a
service is the next event for P1, P2 also completes a service with probability 1. If P1 accepts an
arriving customer, P2 must accept this customer and vice versa. If only P2 completes a service for
the “n+ 1” customer, both processes remain coupled until the next time in state n with an arriving
customer.

Thus, the queue length of P1 is always less than the queue length of P2. Since the state n is
positive recurrent for P2, the unequal relationship of expected queue length must be strict, that is,
E(Ln) < E(Ln+1), which completes the proof.

(b) We still use the coupling method and consider four systems, an M/M/n/n system P1, two M/M/(n+
1)/(n + 1) systems P2 and P2′, and an M/M/(n + 2)/(n + 2) system P3. All four systems share
the same arrival stream. The service times of an arrival to the four systems are not necessarily the
same but are coupled in the following way.

(i) If the customer enters service in all systems, the service times are all assigned by the same
random variable. We also say that the customer in system P1 is coupled with that in system P2,
and the customer in P3 is coupled with that in P2′.

(ii) If the customer enters service in system P2 and P3, the service times in the two system are
assigned by the same random variable. We say that the customer in P3 is coupled with that in
P2.

(iii) If the customer enters service in system P2′ and P3, the service times in the two system are
assigned by the same random variable. We say that the customer in P3 is coupled with that in
P2′.

(iv) If the customer enters service in system P2, P2′, and P3, the service times in system P2 and
P3 are assigned by the same random variable, while that in system P2′ is assigned with a new
independent random variable. We say that the customer in P3 is coupled with that in P2, while
the customer in P2′ is uncoupled.

(v) If the customer enters service in system P3 only, and the customer finds an uncoupled customer
in P2′, the service time of the customer in P3 is assigned by the remaining service time of the
uncoupled customer in P2′, which is exponentially distributed according to the memoryless
property. We say that the uncoupled customer is now coupled with the new arrival in P3.

(vi) The customer does not enters any system and there is nothing to consider.

One should argue that any arrival will see one case from (i) to (vi) using induction. In particular,
any arrival that enters P1 must enter the other three systems, while any arrival to P3 only must
find an uncoupled customer in P2′. The induction should also imply that each customer that enters
service in P1 or P3 has a coupled customer who enters service in P2 or P2′ either earlier or at the
same time, such that the services between coupled customers complete at the same time. Therefore,
one must have L1(t) + L3(t) ≤ L2(t) + L2′ (t) for any t, in which Li (t) is the head count in system
Pi (i = 1, 2, 2′, 3), implying Proposition 2(b) by sending t → ∞.

(c) It follows from (b) that

[2E(Ln)]2 > [E(Ln−1) + E(Ln+1)]2 ≥ [E(Ln−1) − E(Ln+1)]2 + 4E(Ln−1)E(Ln+1).

Thus, E(Ln)2 > E(Ln+1)E(Ln−1).
(d) It follows from (3) that dE(Ln )

dd = d−1E(Ln) [1 − E(Ln) + E(Ln−1)]. This, together with (b), shows
that

d( E(Ln+1 )
E(Ln ) )
dd

=
d−1E(Ln+1) [1 − E(Ln+1) + E(Ln)]E(Ln) − E(Ln+1)d−1E(Ln) [1 − E(Ln) + E(Ln−1)]

E(Ln)2

=
E(Ln+1)E(Ln) [2E(Ln) − E(Ln+1) − E(Ln)]

dE(Ln)2 > 0.
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Thus, E(Ln+1 )
E(Ln ) is strictly increasing in d. The proof is complete.

�

Proof of Theorem 3 By the definition of nm, we have S(nm) ≥ S(nm − 1) and S(nm) > S(nm + 1).
Applying a similar argument to that in the proof of Theorem 2, these relations can also be rewritten as∑2

i=1 Ci [E(Lnm+1) (nm)i−E(Lnm ) (nm−1)i]
E(Lnm+1) − E(Lnm )

>R ≥
∑2

i=1 Ci [E(Lnm ) (nm−1)i−E(Lnm−1) (nm−2)i]
E(Lnm ) − E(Lnm−1)

.

Note that

E(Ln+1)ni − E(Ln) (n − 1)i

E(Ln+1) − E(Ln)
= ni + E(Ln) (ni − (n − 1)i)

E(Ln+1) − E(Ln)

= (n + 1)i + ni − (n − 1)i

E(Ln+1 )
E(Ln ) − 1

.

By Lemma 2(c), E(Ln+1 )
E(Ln ) is strictly decreasing in n and ni − (n − 1)i is increasing in n for n ≥ 1, which

means that E(Ln+1 )ni−E(Ln ) (n−1) i

E(Ln+1 )−E(Ln ) is strictly increasing in n. Thus, nm is unique. By Lemma 2(d), we have

that ni−(n−1) i

E(Ln+1 )
E(Ln ) −1

is decreasing in d, which immediately shows that nm is increasing in d. The proof is

complete. �

Remark 7. Although the cost function in Theorems 2 and 3 is a combination of a linear function and
a quadratic function, the methods in these two proofs are very general and suitable for any i ≥ 1. Thus,
the results of Theorems 2 and 3 can be generalized to the case in which the cost is any finite polynomial
function with nonnegative coefficients.

7. Conclusions and extensions

In this paper, we consider the equilibrium, social welfare, and revenue of an infinite-server queue in both
observable and unobservable contexts and get the existence, uniqueness, and computable expressions of
optimal strategies for these goals. We also numerically compare the social welfare and the revenue with
different thresholds and information levels, and insight into some useful information under different
conditions.

On this topic, there is no denying that our hypothesis is somewhat rough compared to the actual
background. Because of this, many expansion questions are worth studying. We make some comments
on potential problems in the following.

1. In the actual environment, the arrival of customers is affected by many aspects, such as weather or
holidays in the park examples. Therefore, analogous to Chen and Hasenbein [4], it is interesting and
practical to study the model with uncertain arrival rates. For unobservable case, we could investigate
it by similar methods. However, for the observable case, affected by expectations, we still encounter
some monotonic proofs that need to be solved urgently, although a large number of numerical results
show that they are correct. We look forward to proving it in the future.

2. In the notices posted in the system, we often see that customers are non-homogeneous and the sys-
tem has price discrimination. For example, ticket prices of (toll) parks are related to age groups,
regions or other requirements. Therefore, it is a meaningful direction to research and design (pric-
ing) the infinite-server queue with multiple types of customers. There is a lot of literature focusing
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on such queueing problems, such as Feinberg and Yang [10], Zhou, Chao, and Gong [32], Liu and
Hasenbein [20], etc., so we believe that a similar method can be used to solve the infinite-server
queue. Furthermore, considering the model of customers arriving in batches is also a more practical
problem.
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