INEQUALITIES FOR CERTAIN CYCLIC SUMS II

by J. C. BOARDER and D. E. DAYKIN
(Received 25th March 1972, revised 2nd August 1972)

1. Introduction

Let $k \geqq 2$ be an integer and each of $v_{1}, v_{2}, \ldots, v_{k}$ and $\delta_{1}, \delta_{2}, \ldots, \delta_{k}$ be 0 or 1 . Then given any positive integer M and non-negative reals $a_{1}, a_{2}, \ldots, a_{M}$ we put

$$
\begin{equation*}
S=S_{M}=S_{M}\left(a_{1}, a_{2}, \ldots, a_{M}\right)=\sum_{i=1}^{M} t_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{i}=\frac{v_{1} a_{i+1}+v_{2} a_{i+2}+\ldots+v_{k} a_{i+k}}{\delta_{1} a_{i+1}+\delta_{2} a_{i+2}+\ldots+\delta_{k} a_{i+k}} \text { for } 1 \leqq i \leqq M \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i+M}=a_{i} \text { for all } i . \tag{3}
\end{equation*}
$$

The object of our work is to evaluate inf S_{M} and $\sup S_{M}$, where the inf and sup are evaluated over all choices of $a_{1}, a_{2}, \ldots, a_{M}$. When unable to find these we try to estimate $\inf \left\{\inf S_{M} / M\right\}$. It is (3) which gives the sum S its cyclic character. Of course, we do not allow zero denominators. Also we ignore the trivial cases $v_{1}=v_{2}=\ldots=v_{k}=0$ and $v_{j}=\delta_{j}$ for $1 \leqq j \leqq k$. The cases with $k=3$ were discussed in (3). Here we report some interesting facts discovered by considering the case $k=4$ with the aid of a computer, complete details of the study are given in (1).

First we show that any given sup is either ∞ or obtainable from some inf. The best upper bounds we could find for $\inf S_{M}$ when $k=4$ are summarised in Tables 1 and 2, and we are able to prove that some of them are best possible. Our study has led us to believe that one can get very close to inf S_{M}, for any given sum S_{M}, by evaluating S_{M} for a sequence a_{1}, \ldots, a_{M} which is very simple, as simple for instance as those appearing in (5) and (6). Many of our examples are derived from the exponential sequence, and we discuss the local stability of this sequence in Section 8. Other examples are obtained by !repeating a few numbers like $0,4,0,3,2$. The nature of the sequences enables us to write down explicitly the value of S_{M}, and for a given sum S_{M} there are not too many kinds of sequence to choose between. We improve here on all earlier upper bounds for inf S_{M}, and in particular for Shapiro's sum. We hope we have in fact found $\lim \left\{\inf S_{M}\right\}$ for many sums, but we are by no means certain. The subject still abounds with open questions.

To simplify the notation we let

$$
\Sigma a c / a b \text { mean } \sum_{i=1}^{M} \frac{a_{i+1}+a_{i+3}}{a_{i+1}+a_{i+2}}
$$

which is the case $v_{1}=v_{3}=\delta_{1}=\delta_{2}=1$ and all other v_{i}, δ_{i} zero, and similarly for the other sums.

2. The supremum

We say that the numerator is contained in the denominator when $v_{j}=1$ implies $\delta_{j}=1$ for $1 \leqq j \leqq k$. In this case $S_{M} \leqq M$ because $t_{i} \leqq 1$ for every term t_{i} no matter how $a_{1}, a_{2}, \ldots, a_{M}$ are chosen. Moreover, there is another sum S^{\prime} such that

$$
\sup S=M-\inf S^{\prime}
$$

for example

$$
\sup \Sigma b / a b d=\Sigma a b d / a b d-\inf \Sigma a d / a b d .
$$

On the other hand, if the numerator is not contained in the denominator there is a j with $v_{j}=1$ but $\delta_{j}=0$, and then sup $S=\infty$ because $t_{1} \rightarrow \infty$ as $a_{1+j} \rightarrow \infty$. In view of these facts from now on we shall consider only inf S and not sup S.

3. Type a sums

An elementary result from calculus is
Lemma 1. If r is an integer and $x_{i}=x_{i+M}>0$ for all i then

$$
\inf \sum_{i=1}^{M} x_{i} / x_{i+r}=M
$$

It immediately yields a result in (2), namely

$$
\inf S_{M}=\left(v_{1}+v_{2}+\ldots+v_{k}\right) M \text { if } \delta_{1}+\delta_{2}+\ldots+\delta_{k}=1
$$

so such sums need not be mentioned further. Also it gives

$$
\inf \Sigma a b / c d=\inf \Sigma a c / b d=M
$$

and so on. Other sums can be changed so that the lemma applies, for example

$$
\Sigma a d / b c=\Sigma a b / b c+\Sigma c d / b c-\Sigma b c / b c
$$

so inf $\Sigma a d / b c=M$, which is a neat proof of the main case of (2, Theorem 7). We say that the sums for which we can use Lemma 1 are of type a, they take their inf when $a_{1}=a_{2}=\ldots=a_{M}=1$.

4. Results Table 1

In the last section we dismissed those sums with only one non-zero δ. For $k=4$ all the remaining sums are considered in Table 1. The rows of the table correspond to the numerators and the columns to the denominators of the sums. Of course, if we reverse the order of the a 's the v 's and the δ 's in a sum S we get
Table 1

$=M$	Sab/ac	$=2$	$\leqq 3.5$	$\leqq 6$	$=2$	equal				
$=2 \mathrm{M}$	$=2 \mathrm{M}$	$M+\Sigma a / b c d$	M + Eb/acd	$M+\Sigma b c / a d$	equal	$=2 \mathrm{M}$				
$\leqq{ }_{3} M^{+}$	$\leqq \begin{aligned} & \text { 2 } \\ & 3\end{aligned}{ }^{+}$	Table 2	$\leqq \frac{1}{3} M^{+}$	equal	Table 2	$=M$				
$M+\Sigma a / c d$	Table 2	Table 2	equal	$M+\Sigma b / a d$	Table 2	Table 2	Table 2	§ 7	$M+\Sigma a / b d$	Table 2
$M+\Sigma a / b c$	$M+\Sigma b / a c$	equal	$\leqq 5$	$\leqq 9$	$=3$	$M+\Sigma a / b c$	$\leqq 5 \cdot 5$	$=M$	Table 2	Table 2
Table 2	equal	$=M-\left[\frac{1}{2} M\right]$	$\leqq 3.5$	$\leqq 6$	$=2$	इac/ab	$\leqq 3$	Table 2	$=M$	Table 2
equal	$=4$	$=2$	$\leqq 3$	$\leqq 6$	$=2$	$=M$	$\leqq 4$	§ 7	Table 2	$=M$
$=1$	$=2$	$=1$	$=1$	$\leqq 3$	$=1$	$=1$	$\leqq 2$	$=1$	Ealac	$\Sigma a / b c$
$=1$	2 cases	$=1$	$=1$	2 cases	$=1$	Table 2	$=1$	Table 2	$\leqq{ }^{+} M^{+}$	$\leqq \frac{1}{3} M^{+}$
$a b$	$a c$	$a b c$	$a b d$	ad	$a b c d$	$b c$	$a c d$	$b c d$	$b d$	${ }^{\text {c }}$ d

$\begin{array}{llllllll}\because & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0\end{array}$
another sum S^{\prime} which is essentially the same as S, and in the table only one of S and S^{\prime} appear in most cases. Also some further transformations are suggested in the table. For instance, reversing makes $\Sigma a b c d / a b d$ correspond to $M+\Sigma b / a c d$. Also $\Sigma a / a d$ is the same as three sums or one sum of the form $\Sigma a / a b$ depending upon whether 3 divides M or not. The entry $\leqq 3$ in the table for sum $\Sigma b / a d$ means that 3 is the best upper bound we have found for inf $\Sigma b / a d$. The entry $=2 M$ for sum $\Sigma a b c d / b c$ means that inf $\Sigma a b c d / b c=2 M$. The entry $\leqq \frac{2}{3} M^{+}$ for $\Sigma a d / a b$ means there is a (small) constant τ such that inf $S_{M} \leqq \frac{2}{3} M+\tau$ for $M \geqq 1$. The same interpretation applies to the other sums. Those sums whose entry says " Table 2 " will be discussed in Section 7. Notice that all sums with $=M$ or $=2 M$ as their entry are of type a.

5. Interval denominator sums

These are the sums for which $\delta_{s}=1$ whenever $1 \leqq r \leqq s \leqq t \leqq k$ and $\delta_{r}=\delta_{t}=1$. They include Shapiro's sum $\Sigma a / b c$ and Dianananda's generalisations of it, $\Sigma a / b c d, \Sigma a / b c d e$, etc.

Lemma 2. If

$$
\begin{equation*}
t_{i}=a_{i+j} /\left(a_{i+1}+a_{i+2}+\ldots+a_{i+k}\right) \tag{4}
\end{equation*}
$$

where $0 \leqq j \leqq k+1$, and $a_{M} \leqq \min \left\{a_{1}, a_{2}, \ldots, a_{M-1}\right\}$ then

$$
S_{M-1}\left(a_{1}, a_{2}, \ldots, a_{M-1}\right) \leqq S_{M}\left(a_{1}, a_{2}, \ldots, a_{M-1}, a_{M}\right)
$$

Proof. First write out S_{M-1} and S_{M} and cancel terms which appear on both sides of the inequality $S_{M-1} \leqq S_{M}$. Then the remaining terms on the left pair off with terms on the right so that each left-hand term does not exceed its corresponding right-hand term. One term somewhere on the right-hand side is not paired off, but it will be non-negative. The other terms pair off in order of appearance. This completes our proof of the lemma.

The lemma immediately implies that inf $S_{M-1} \leqq \inf S_{M}$ whenever $\delta_{2}=\delta_{3}=\ldots=\delta_{k-1}=1$ in (1), and we feel that this is the case for all choices of the v 's and δ 's.

Lemma 3. Suppose t_{i} is as in (4) with $0<j \leqq k+1$, then

$$
S_{M+k}\left(a_{1}, a_{2}, \ldots, a_{M}, a_{1}, a_{2}, \ldots, a_{k}\right)=1+S_{M}\left(a_{1}, a_{2}, \ldots, a_{M}\right)
$$

This result is obvious upon expansion of S_{M+k}. It is interesting because it gives an upper bound on the rate of growth of the inf for many interval denominator sums, for example inf $S_{M+4} \leqq 2+\inf S_{M}$ when $S=\Sigma a b / b c d e$.

6. Type b sums

These are the sums with $v_{1} v_{k}=0$ and $\delta_{1} \delta_{k}=1$. It seems that they are the only ones for which inf S_{M} has an upper bound independent of M. We prove the existence of such a bound in

Lemma 4. If $v_{1} v_{k}=0$ and $\delta_{1} \delta_{k}=1$ then inf $S_{M} \leqq(k-1)^{2}$ for $1 \leqq M$.
Proof. We may assume $\nu_{k}=0$ and let $S^{\prime}=\Sigma t_{i}^{\prime}$ be the sum with

$$
t_{i}^{\prime}=\left(a_{i+1}+a_{i+2}+\ldots+a_{i+k-1}\right) /\left(a_{i+1}+a_{i+k}\right),
$$

then $S_{M} \leqq S_{M}^{\prime}$ for all a_{i}. Now $S_{M}^{\prime} \rightarrow(k-1)^{2}$ as $\alpha \rightarrow \infty$ when $M \geqq k$ and the a_{i} are

$$
\begin{equation*}
\alpha, \alpha^{2}, \ldots, \alpha^{N}, \alpha^{N}, \ldots, \alpha^{N} \tag{5}
\end{equation*}
$$

with $N=M-k+2$. Also $S_{M}^{\prime}(1,1, \ldots, 1)=\frac{1}{2}(k-1) M$ for $1 \leqq M<k$, and the lemma follows.

Theorem 1. If $v_{1} v_{k}=0$ and $\delta_{1}=\delta_{2}=\ldots=\delta_{k}=1$ then

$$
\inf S_{M}=v_{1}+v_{2}+\ldots+v_{k} \text { for } M \geqq k
$$

Proof. We have $S_{k}=v_{1}+\ldots+v_{k}$ whatever the values of a_{1}, \ldots, a_{k}. Also Lemma 2 shows that inf $S_{M-1} \leqq \inf S_{M}$. Finally either $S_{M}\left(\alpha, \alpha^{2}, \ldots, \alpha^{M}\right)$ or $S_{M}\left(\alpha^{M}, \ldots, \alpha^{2}, \alpha\right)$ tends to $v_{1}+\ldots+v_{k}$ as α tends to ∞. The theorem follows inductively.

Theorem 2. If $v_{j}=\delta_{j}=\delta_{j+1}=1$ and all other v 's are zero then $\inf S_{M}=1$
Proof. We have $1 \leqq \inf S_{M}$ by Theorem 1 and $S_{M}\left(\alpha, \alpha^{2}, \ldots, \alpha^{M}\right) \rightarrow 1$ as $\alpha \rightarrow \infty$.

It is possible to extend Theorem 2. For instance, inf $\Sigma a / a c d=1$ by Theorem 1 and the example $\alpha^{N}, 0, \alpha^{N-1}, 0, \ldots$ with $N=\left[\frac{1}{2}(M+1)\right]$. It was by choosing sequences in this sort of way that we were able to establish the various bounds in Table 1 for the infs of the type b sums, full details are given in (1). Each sum with a constant entry in Table 1 is of type b.

7. Computer results

The sums in Table 2. In Table 2 we give the smallest values of S_{M} / M we could get for various sums S. The sequences $a_{1}, a_{2}, \ldots, a_{M}$ referred to in the table are

$$
\begin{array}{r}
\ldots, \beta^{4}, 0, \beta^{2}, 0, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\theta M} \\
\ldots, \beta^{8}, \beta^{7}, 0,0, \beta^{4}, \beta^{3}, 0,0, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\theta M} \\
\ldots, \beta^{6}, 0,0, \beta^{3}, 0,0, \tag{8}\\
\underbrace{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{\theta M}}_{(1-\theta) M \text { terms }}
\end{array}
$$

and

$$
\begin{align*}
& 1,0,0,1,0,0,1,0,0, \ldots \tag{9}\\
& \quad \ldots, 0, \alpha^{8}, 1,0, \alpha^{5}, 1,0, \alpha^{2}, 1 \tag{10}\\
& \quad \ldots, \alpha^{9}, 0,1, \alpha^{6}, 0,1, \alpha^{3}, 0,1 \tag{11}\\
& \alpha, 0, \alpha^{3}, 0, \alpha^{5}, 0, \ldots \tag{12}
\end{align*}
$$

or their reverses. To see how we made these choices consider the sum $\Sigma a b c / b d$. Examination of the computer output suggested that we might get a good value of S_{M} / M with sequence (7) when α, β, θ are suitably chosen. Now in S_{M} there are at most four terms t_{i} which involve both powers of α and powers of β, and we must ensure that these t_{i} are not too big. Therefore we would like α and β to be of the same order of magnitude, and similarly for $\beta^{(1-\theta) M}$ and $\alpha^{\theta M}$.

Table 2

Sum	S_{M} / M	Sequence	α	θ
$\Sigma a / b c$	0.49457	6 Reversed	1-10562	0.43493
$\Sigma a c / a b$	0.97801	6	1.21383	0.46034
इabd/cd	1.49814	6 reversed	1.03769	0.40000
$\Sigma a b c / c d$	1.49811	6	1.03866	0.40000
$\Sigma a b d / b c$	1.49732	6 reversed	1.05304	0.41441
$\Sigma a b c / b d$	1.48408	7	$1 \cdot 19486$	0.34900
इabd/ac	1.48306	7 reversed	$1 \cdot 18083$	0.41074
$\Sigma a / b c d$	0.32598	8 reversed	1.11653	0.40640
$\Sigma a d / a b c$	0.63755	8	1.22208	0.44910
$\Sigma \mathrm{ac} / \mathrm{bcd}$	0.65870	8 reversed	1.13410	0.38500
$\Sigma a b d / a b c$	0.96872	8	$1 \cdot 24974$	0.43357
Sad/abcd	$\frac{1}{3}$	9		
इac/cd	$\frac{2}{3}$	10	$\rightarrow 0$	
$\Sigma \mathrm{\Sigma ab} / \mathrm{bd}$	$\frac{2}{3}$	11	$\rightarrow 0$	
Sabd/acd	$\frac{1}{2}$	12	$\rightarrow \infty$	
$\Sigma a b d / a b c d$	$\frac{1}{2}$	12	$\rightarrow \infty$	

Therefore we make

$$
\begin{equation*}
\beta^{(1-\theta)}=\alpha^{\theta}, \tag{13}
\end{equation*}
$$

and for large M the value of S_{M} / M is approximately
$\frac{1}{4}(1-\theta)\left\{\frac{\beta^{9}+\beta^{8}+0}{\beta^{8}+0}+\frac{\beta^{8}+0+0}{0+\beta^{5}}+\frac{0+0+\beta^{5}}{0+\beta^{4}}+\frac{0+\beta^{5}+\beta^{4}}{\beta^{5}+0}\right\}+\theta\left\{\frac{\alpha+\alpha^{2}+\alpha^{3}}{\alpha^{2}+\alpha^{4}}\right\}$.
Minimising this expression, subject to (13), over $0<0<1$ and $0<\alpha$ gave us the asymptotic result in Table 2 for $\Sigma a b c / b d$. The other choices were made in a similar way.

The sums $\Sigma a / b d, \Sigma a / c d, \Sigma a d / a b, \Sigma a d / a c, \Sigma a d / a b d$. The computer indicated that these sums tend towards their smallest values as $\alpha \rightarrow \infty$ with $1, \alpha, 0,1, \alpha, 0, \ldots$ or its reverse for the a_{i}. In any case it was these a_{i} which yielded the bounds for inf S_{M} for these sums in Table 1.

The sum $\Sigma a b d / b c d$. Here the smallest value of S_{M} / M that we found was just less than 0.96 , and was attained with M divisible by 5 and the a_{i} repetitions of a five-term sequence almost exactly $0,4,0,3,2$. This sum and the next one are the only two we know which behave in this way.

The sum $\Sigma a b / b c d$. In this case our best result was $S_{11} / 11=0.65191$ with approximately $61,0,212,0,73,184,0,146,128,0,195$ for the a_{i}. We found this sum to be particularly interesting because for $M=100$ our computer program would consistently lead to stable choices of a_{i} which were not as good as the ones we could construct by repeating the above eleven terms.

The pair of sums $\Sigma a b d / c d$ and $\Sigma a b c / c d$. For reasons that we do not understand, for these sums our computer program led to identical values of S_{M} and the a_{i}, but with the a_{i} terms in reverse order. We got $S_{99} / 99=1.4985$ with the a_{i} as follows for the latter sum

18	18	19	20	20	21	21	23	22	24
23	25	26	25	30	24	36	19	45	12
53	4	58	0	56	0	53	0	50	0
47	0	44	0	41	0	39	0	36	0
34	0	32	0	30	0	28	0	26	0
25	0	23	0	22	0	20	0	19	0
18	0	17	0	16	0	14	1	12	3
11	5	9	7	9	8	9	9	9	10
10	11	10	11	11	12	12	12	13	13
13	14	14	15	15	16	16	17	17.	

Another sum with a very similar sequence is $\Sigma a b d / b c$. In Table 2 we give better values of S_{M} / M for large M.

The turning value of M. For any sum S_{M} we define its turning value to be the largest integer M_{0} such that inf $S_{M}=S_{M}(1,1, \ldots, 1)$ for $1 \leqq M \leqq M_{0}$. It was shown by P. Nowosad (5) that $M_{0} \geqq 10$ for Shapiro's sum $\Sigma a / b c$. For each of the sums (1) with $k \leqq 4$ we found an upper bound for M_{0} by the computer and they are given in (1). We only got $M_{0} \leqq 39$ for $\Sigma a b d / b c$ and this is surprising because we got $M_{0} \leqq 22$ for all the other sums.

8. Local stability

A sequence a_{1}, \ldots, a_{M} is locally stable at a_{i} when

$$
\partial S / \partial a_{i}>0 \text { if } a_{i}=0
$$

but

$$
\partial S / \partial a_{i}=0 \text { and } \partial^{2} S / \partial a_{i}^{2}>0 \text { if } a_{i}>0
$$

E.M.S.-O

We will show in Lemma 5 that exponential sequences like $\alpha, \alpha^{2}, \alpha^{3}, \ldots$ and $0, \alpha^{2}, 0, \alpha^{4}, \ldots$ are almost locally stable for all our sums. First we introduce some notation. Let

$$
N_{i}=v_{1} a_{i+1}+\ldots+v_{k} a_{i+k} \text { and } D_{i}=\delta_{1} a_{i+1}+\ldots+\delta_{k} a_{i+k}
$$

so $t_{i}=N_{i} / D_{i}$. Then since a_{k} occurs only in $t_{0}, t_{1}, \ldots, t_{k-1}$ we have

$$
\begin{equation*}
\partial S / \partial a_{k}=+\left\{v_{k} D_{0}^{-1}+\ldots+v_{1} D_{k-1}^{-1}\right\}-\left\{\delta_{k} N_{0} D_{0}^{-2}+\ldots+\delta_{1} N_{k-1} D_{k-1}^{-2}\right\} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} \partial^{2} S / \partial a_{k}^{2}=-\left\{v_{k} \delta_{k} D_{0}^{-2}+\ldots+v_{1} \delta_{1} D_{k-1}^{-2}\right\}+\left\{\delta_{k} N_{0} D_{0}^{-3}+\ldots+\delta_{1} N_{k-1} D_{k-1}^{-3}\right\} \tag{15}
\end{equation*}
$$

and our result is
Lemma 5. Suppose $\alpha>0$ and p divides k and $M \geqq 2 k$. If $a_{i p}=\alpha^{r+i p}$ when $1 \leqq i<2 k / p$ but $a_{i}=0$ otherwise, then $\partial S_{M} / \partial a_{k}=0$ when $a_{k} \neq 0$.

Proof. Without loss of generality we assume $r=0$. The choice of a_{i} makes the N 's in (14) as follows

$$
\begin{aligned}
& N_{0}=v_{p} \alpha^{p}+v_{2 p} \alpha^{2 p}+\ldots+v_{k} \alpha^{k} \\
& N_{1}=v_{p-1} \alpha^{p}+v_{2 p-1} \alpha^{2 p}+\ldots+v_{k-1} \alpha^{k}
\end{aligned}
$$

and so on. So $N_{i+p}=\alpha^{p} N_{i}$ and similarly for the D 's in (14). Hence (14) becomes

$$
\begin{aligned}
\partial S_{M} / \partial a_{k}= & \sum_{i=0}^{p-1}\left\{v_{k-i} D_{i}^{-1}+v_{k-i-p} D_{i+p}^{-1}+v_{k-i-2 p} D_{i+2 p}^{-1}+\ldots\right\} \\
& -\sum_{i=0}^{p-1}\left\{\delta_{k-i} N_{i} D_{i}^{-2}+\delta_{k-i-p} N_{i+p} D_{i+p}^{-2}+\delta_{k-i-2 p} N_{i+2 p} D_{i+2 p}^{-2}+\ldots\right\} \\
& =\sum_{i=0}^{p-1}\left\{v_{k-i} \alpha^{k-i}+v_{k-i-p} \alpha^{k-i-p}+v_{k-i-2 p} \alpha^{k-i-2 p}+\ldots\right\} \alpha^{i-k} D_{i}^{-1} \\
& -\sum_{i=0}^{p-1}\left\{\delta_{k-i} \alpha^{k-i}+\delta_{k-i-p} \alpha^{k-i-p}+\delta_{k-i-2 p} \alpha^{k-i-2 p}+\ldots\right\} \alpha^{i-k} N_{i} D_{i}^{-2} \\
= & \alpha^{i-k} \sum_{i=0}^{p-1}\left(\left\{N_{i}\right\} D_{i}^{-1}-\left\{D_{i}\right\} N_{i} D_{i}^{-2}\right)=0,
\end{aligned}
$$

as stated.
In the lemma we checked $\partial S / \partial a$ only at a non-zero term a. Unfortunately at a zero term a of a sequence like $0, \alpha^{2}, 0, \alpha^{4}, \ldots$, the sign of $\partial S / \partial a$ depends on the sum under consideration. The value of (15) always seems to depend on the sum S being considered. However each of the sequences in Table 2 are locally stable at all but a few of their terms a_{i}. This fact encourages us to hope that Table 2 gives the correct asymptotic value of inf S_{M} / M.

9. The computer program

This is much better than the one described in (2), and very simple. Given $a_{1}, a_{2}, \ldots, a_{M}$ and $\varepsilon>0$ and j in $1 \leqq j \leqq M$ put

$$
u_{j}^{+}, u_{j}^{-}=S_{M}\left(a_{1}, \ldots, a_{j-1}, a_{j} \pm \varepsilon, a_{j+1}, \ldots, a_{M}\right)-S_{M}\left(a_{1}, a_{2}, \ldots, a_{M}\right)
$$

Very little work is required to evaluate u_{j}^{+}, u_{j}^{-}as we only need to consider those terms of S_{M} which involve a_{j}. Since the a_{j} must remain non-negative when $a_{j}-\varepsilon<0$ the computer considers $a_{j}-\varepsilon$ to be equal to 0 . If, however, this condition gives a zero denominator the computer in fact only evaluates u_{j}^{+}and puts $u_{j}^{-}=+\infty$. The program consists of repeating the following process. With $j=1,2, \ldots, M$ in turn, (i) if $0 \leqq u_{j}^{+}$and $0 \leqq u_{j}^{-}$do nothing, (ii) if $u_{j}^{+}<0$ and $u_{j}^{+} \leqq u_{j}^{-}$replace a_{j} by $a_{j}+\varepsilon$, (iii) if $u_{j}^{-}<0$ and $u_{j}^{-}<u_{j}^{+}$replace a_{j} by $a_{j}-\varepsilon$ when $a_{j}-\varepsilon>0$ but by 0 when $a_{j}-\varepsilon \leqq 0$. In case it turned out that $0 \leqq u_{j}^{+}, u_{j}^{-}$ for $j=1,2, \ldots, M$ so that there were no replacements then halve ε before the next repetition. The program stops when ε is sufficiently small.

Clearly the program reduces S_{M} at each replacement and leads to a sequence a_{1}, \ldots, a_{M} which is locally stable. We have already remarked that it may not yield $\inf S_{M}$ from all initial values of a_{1}, \ldots, a_{M}. An improved version of the program only increments j when it enters case (i) above. When it enters cases (ii) or (iii) it re-evaluates u_{j}^{+}, u_{j}^{-}with the same j but the new value of a_{j} and obeys (i), (ii) or (iii) again.

We stopped using the method described in (3), even though it is potentially very fast, because it tends to produce an oscillating sequence of a_{i} 's and we could not get the machine to take over the smoothing of the sequence which was previously done by human interpolation.

10. Diananda's sums

The generalisations in (16) below of Shapiro's sum $\Sigma a / b c$ were considered by P. H. Diananda (4). In particular he proved

Theorem 3.

$$
\left.\begin{array}{c}
\sum a_{i} /\left(a_{i+1}+a_{i+2}+\ldots+a_{i+k}\right) \geqq M / k \\
\text { if } k \text { divides } M+2 \text { or } 2 M \text { or } 2 M+1 \text { or } 2 M+2 \tag{17}\\
\text { or } k \equiv 5(\bmod 8) \text { or } k \equiv 6(\bmod 9) \text { or } k \equiv 8,9(\bmod 12) .
\end{array}\right\}
$$

To conclude this paper we report some computer results obtained by K. Y. Choong and one of us (D. E. D.) at the University of Malaya in 1968. Examples of a_{1}, \ldots, a_{M} were sought for which (16) is false. In other words, an effort was made to determine the turning value of M for small fixed values of k. The results indicated that conditions (17) are the best possible for k sufficiently large, and enough examples were found to establish that this is the case for $k=11,23,24$. In the cases of (k, M) listed below inequality (16) is not proved true by (17) or Nowosad (5) but no example was found which made it false. For $k \leqq 12$ the list contains all cases (k, M) for which it is not yet known whether (16) holds for all a_{i}.

$(2,11)$	$(2,13)$	$(2,15)$	$(2,17)$	$(2,19)$	$(2,21)$	$(2,23)$	$(2,12)$
$(3,10)$	$(3,13)$	$(3,16)$	$(3,19)$	$(3,9)$	$(3,12)$	$(4,13)$	$(4,17)$
$(4,12)$	$(4,16)$	$(5,16)$	$(5,15)$	$(6,19)$	$(6,18)$	$(7,22)$	$(7,11)$
$(7,21)$	$(8,25)$	$(8,24)$	$(9,27)$	$(10,15)$	$(10,30)$	$(12,18)$	$(12,9)$.

REFERENCES

(1) J. C. Boarder, M.Phil. Thesis, University of Reading, (1972).
(2) D. E. Daykin, Inequalities for functions of a cyclic nature, J. London Math. Soc. (2) 3 (1971), 453-462.
(3) D. E. Daykin, Inequalities for certain cyclic sums, Proc. Edinburgh Math. Soc. (2) 17 (1971), 257-262.
(4) P. H. Diananda, Extensions of an inequality of H. S. Shapiro, Amer. Math. Monthly, 66 (1959), 489-491.
(5) P. Nowosad, Isoperimetric eigenvalue problems in algebra, Comm. Pure Appl Math. 21 (1968), 401-465.

University of Reading
Berkshire

