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1. Introduction
Let k ^ 2 be an integer and each of v,, v2, ..., vk and 5U 82, ..., 8k be 0 or 1.

Then given any positive integer M and non-negative reals au a2 aM we put

S = SM = SM(aua2,...,aM) = £ t,, (1)
i = I

where

h = Via,+ i + Viai+a + . - + v>a».> f o r ! ^ ; g M ( 2 )
8lai+1+d2ai+2 + ... + $kal+k

and
a.+M = a, for all i. (3)

The object of our work is to evaluate inf SM and sup SM, where the inf and sup
are evaluated over all choices of au a2, ..., aM. When unable to find these we
try to estimate inf {inf SM/M}. It is (3) which gives the sum S its cyclic character.

M

Of course, we do not allow zero denominators. Also we ignore the trivial cases
Vj = v2 = ... = vk = 0 and \j = Sj for 1 ^j^k. The cases with k = 3 were
discussed in (3). Here we report some interesting facts discovered by considering
the case k = 4 with the aid of a computer, complete details of the study are given
in (1).

First we show that any given sup is either oo or obtainable from some inf.
The best upper bounds we could find for inf SM when k = 4 are summarised in
Tables 1 and 2, and we are able to prove that some of them are best possible.
Our study has led us to believe that one can get very close to inf SM, for any
given sum SM, by evaluating SM for a sequence au ..., aM which is very simple,
as simple for instance as those appearing in (5) and (6). Many of our examples
are derived from the exponential sequence, and we discuss the local stability of
this sequence in Section 8. Other examples are obtained by [repeating a few
numbers like 0,4,0, 3, 2. The nature of the sequences enables us to write down
explicitly the value of SM, and for a given sum SM there are not too many kinds
of sequence to choose between. We improve here on all earlier upper bounds
for inf SM, and in particular for Shapiro's sum. We hope we have in fact found
lim {inf SM} for many sums, but we are by no means certain. The subject still

abounds with open questions.
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To simplify the notation we let
M

Xac/ab mean £

which is the case vt = v3 = 5t = S2 = 1 and all other v,, Si zero, and similarly
for the other sums.

2. The supremum
We say that the numerator is contained in the denominator when Vj = 1

implies 8j = 1 for 1 ^ j ^ k. In this case SM g M because tt ^ 1 for every
term /, no matter how au a2, ..., aM are chosen. Moreover, there is another
sum S" such that

sup S = Af-infS',
for example

sup Zb/abd = Habd/abd- inf Zad/abd.

On the other hand, if the numerator is not contained in the denominator there
is ay with Vj = 1 but 8j = 0, and then sup S = oo because f^oo as fli +;-KX>.
In view of these facts from now on we shall consider only inf S and not sup S.

3. Type a sums
An elementary result from calculus is

Lemma 1. Ifr is an integer and xt = xi+M>0for all i then
M

inf £ x,/xi+r = M.
i = 1

It immediately yields a result in (2), namely

inf SM = (v1 + v2 + ...+vk)M if 81 + 82 + ... + 8k = 1,

so such sums need not be mentioned further. Also it gives

inf Zab/cd = inf Xac/bd = M,

and so on. Other sums can be changed so that the lemma applies, for example

Had/be = Zab/bc+I,cd/bc-T.bc/bc

so inf Had/be = M, which is a neat proof of the main case of (2, Theorem 7).
We say that the sums for which we can use Lemma 1 are of type a, they take their
inf when at — a2 = ... = aM = 1.

4. Results Table 1
In the last section we dismissed those sums with only one non-zero 8. For

k = 4 all the remaining sums are considered in Table 1. The rows of the table
correspond to the numerators and the columns to the denominators of the sums.
Of course, if we reverse the order of the a's the v's and the <5's in a sum S we get
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another sum S' which is essentially the same as S, and in the table only one of S
and 5 ' appear in most cases. Also some further transformations are suggested
in the table. For instance, reversing makes Zabcd/abd correspond to M+Hbfacd.
Also ILafad is the same as three sums or one sum of the form Ya/ab depending
upon whether 3 divides M or not. The entry ^ 3 in the table for sum !b/ad
means that 3 is the best upper bound we have found for inf Yb\ad. The
entry = 2M for sum YMbcdjbc means that inf ILabcd/bc = 2M. The entry g |Af+

for lad/ah means there is a (small) constant T such that inf SM ^ | M + T for
M ^ 1. The same interpretation applies to the other sums. Those sums whose
entry says " Table 2 " will be discussed in Section 7. Notice that all sums with
= M or = 2M as their entry are of type a.

5. Interval denominator sums
These are the sums for which Ss = 1 whenever 1 £r^s£t£k and

<5r = 8, = 1. They include Shapiro's sum ~£a/bc and Dianananda's generalisa-
tions of it, T,a/bcd, I,a/bcde, etc.

Lemma 2. If

ti = al+j/(ai+1+ai+2 + ...+ai+k) (4)

where 0 ^ j ^ k+1, andaM ^ min {at, a2, ••-, OM-I) then

•Sjif-iCflu a2 % - i ) S SM{au a2, ..., aM_l5 aM).
Proof. First write out SM_ j and SM and cancel terms which appear on both

sides of the inequality 5M_! ^ SM. Then the remaining terms on the left pair
off with terms on the right so that each left-hand term does not exceed its
corresponding right-hand term. One term somewhere on the right-hand side
is not paired off, but it will be non-negative. The other terms pair off in order
of appearance. This completes our proof of the lemma.

The lemma immediately implies that inf S^-! ^ inf SM whenever
<52 = (53 = ... = dk-1 = 1 in (1), and we feel that this is the case for all choices
of the v's and d's.

Lemma 3. Suppose tt is as in (4) with 0 < / ^ k+\, then

SM+k(Pi, a2, ..., aM, au a2, ••-, ak) = l + SM(au a2, ..., aM).

This result is obvious upon expansion of SM+k. It is interesting because it
gives an upper bound on the rate of growth of the inf for many interval de-
nominator sums, for example inf SM+4. ^ 2+inf SM when S = lab/bcde.

6. Type b sums
These are the sums with v±vk = 0 and <5t(5t = 1. It seems that they are the

only ones for which inf SM has an upper bound independent of M. We prove
the existence of such a bound in
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Lemma 4. Ifv^ = 0 and 6^ = 1 then inf SM ^ (A;-1)2 for 1 g M.

Proof. We may assume vk = 0 and let S' = 2f,' be the sum with

then SM ^ S'M for all a(. Now S'M-+(k-l)2 as ce-+oo when M ^ k and the <z(

are
a,a2, . . . , a V " aN (5)

with iV = M-k+2. Also SJ,(1, 1, ..., 1) = i(fc-l)M for 1 ^ M<A:, and the
lemma follows.

Theorem 1. T f v ^ = 0 and5^ = 82 = ... = 6k = 1 then

inf SM = v 1 + v 2 + . . . + v t / o r M ^ A:.

Proof. We have Sk = vl + ... + vk whatever the values of a,, ..., ak. Also
Lemma 2 shows that inf 5M_j ^ inf SM. Finally either SM(a, a2, ..., <xM) or
SM(a.M, ..., a2, a) tends to v1 + ... + vJk as a tends to oo. The theorem follows
inductively.

Theorem 2. If Vj — 8j = SJ+1 = 1 and all other Vs are zero then inf SM = 1

Proof. We have 1 ^ inf SM by Theorem 1 and SM(x, a2, ..., aM)-+l as
<x->oo.

It is possible to extend Theorem 2. For instance, inf I,a/acd = 1 by Theorem
1 and the example a", 0, a""1, 0, ... with iV = [ i (M+1) ] . It was by choosing
sequences in this sort of way that we were able to establish the various bounds in
Table 1 for the infs of the type b sums, full details are given in (1). Each sum
with a constant entry in Table 1 is of type b.

7. Computer results
The sums in Table 2. In Table 2 we give the smallest values of SM/M we

could get for various sums S. The sequences ax, a2, •••, aM referred to in the
table are

...,P\0, j?2,O,a, a2, a3, ..., aeM (6)

..., p8, P1, 0, 0, p\ fS\ 0, 0, a, a2, a3, ..., a"M (7)

- , / ? 6 , 0 , 0 , 13,O, 0, a, «2, a3, ..., a0M (8)

(1 - 0)M terms 6M terms
and

1 ,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 , . . . (9)

..., 0, a8, 1, 0, a5, 1, O, a2, 1 (10)

..,, a9, 0, 1, a6, 0, 1, a3, 0, 1 (11)

a, 0, a3, 0, a5, 0, ... (12)
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or their reverses. To see how we made these choices consider the sum T,abc/bd.
Examination of the computer output suggested that we might get a good value
of SM/M with sequence (7) when a, /?, 9 are suitably chosen. Now in SM there
are at most four terms tt which involve both powers of a and powers of /?, and
we must ensure that these tt are not too big. Therefore we would like a and /?
to be of the same order of magnitude, and similarly for /J^-w** and am.

TABLE 2

Sum

2,a/bc

T-acjab

Xabd/cd

labeled

Xabd/bc

Zabc/bd

'Zabdjac

Xa/bcd

"Zadfabc

Zac/bcd

Xabd/abc

2,ad/abcd

Xac/cd

Xab/bd

Habdlacd

'Labdlabcd

SJM

0-49457

0-97801

1-49814

1-49811

1-49732

1-48408

1-48306

0-32598

0-63755

0-65870

0-96872

i

i

i

i

Sequence

6 Reversed

6

6 reversed

6

6 reversed

7

7 reversed

8 reversed

8

8 reversed

8

9

10

11

12

12

a

1 10562

1-21383

103769

1-03866

105304

1-19486

1-18083

1-11653

1-22208

113410

1-24974

- • 0

—0

— • 0 0

e

0-43493

0-46034

0-40000

0-40000

0-41441

0-34900

0-41074

0-40640

0-44910

0-38500

0-43357

Therefore we make

and for large M the value of SM/M is approximately

88 + 0 j88+0+0i-«f + o±o±£ +

(13)

r9!1q-l-a

a 2 +a68 + 0 O+05 0+/34

Minimising this expression, subject to (13), over O<0< 1 and 0<a gave us the
asymptotic result in Table 2 for labc/bd. The other choices were made in a
similar way.
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The sums talbd, Ta/cd, Had/ab, 'Lad/ac, "Ladjabd. The computer indicated
that these sums tend towards their smallest values as a-»oo with 1, a, 0,1, a, 0,...
or its reverse for the af. In any case it was these at which yielded the bounds
for inf SM for these sums in Table 1.

The sum Yabd/bcd. Here the smallest value of SM/M that we found was just
less than 0-96, and was attained with M divisible by 5 and the at repetitions of a
five-term sequence almost exactly 0, 4, 0, 3, 2. This sum and the next one are
the only two we know which behave in this way.

The sum T,ab/bcd. In this case our best result was Sn/11 = 0-65191 with
approximately 61,0,212,0,73,184,0,146,128,0,195 for the at. We found this
sum to be particularly interesting because for M = 100 our computer program
would consistently lead to stable choices of a{ which were not as good as the ones
we could construct by repeating the above eleven terms.

The pair of sums Habd/cd and "Labeled. For reasons that we do not under-
stand, for these sums our computer program led to identical values of SM and
the at, but with the a, terms in reverse order. We got 599/99 = 1-4985 with the
at as follows for the latter sum

18 18 19 20 20 21 21 23 22 24
23 25 26 25 30 24 36 19 45 12
53
47
34
25
18
11
10
13

4
0
0
0
0
5

11
14

a with a -

58
44
32
23
17
9

10
14

verv

0
0
0
0
0
7

11
15

similar

56
41
30
22
16
9

11
15

seaii

0
0
0
0
0
8

12
16

lence

53
39
28
20
14
9

12
16

is lai

0
0
0
0
1
9

12
17

bdlbc.

50
36
26
19
12
9

13
17.

In

0
0
0
0
3

10
13

Table 2 we give
better values of SM/M for large M.

The turning value of M. For any sum SM we define its turning value to be
the largest integer Mo such that inf SM = 5M(1, 1 1) for l g M g Mo.
It was shown by P. Nowosad (5) that Mo ^ 10 for Shapiro's sum T,a/bc. For
each of the sums (1) with k :g 4 we found an upper bound for Mo by the
computer and they are given in (1). We only got Mo ^ 39 for Habd/bc and
this is surprising because we got Mo g 22 for all the other sums.

8. Local stability
A sequence au ..., aM is locally stable at a, when

dS/dat>0 if a, = 0,
but

dS/da, = 0 and d2S/da2
i>0 if at>0.

E.M.S.-
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We will show in Lemma 5 that exponential sequences like a, a2, a3, ... and
0, a2, 0, a4, ... are almost locally stable for all our sums. First we introduce
some notation. Let

N, =

so tt = Ni/Di. Then since ak occurs only in t0, tlt ..., tk_1 we have

dS/3ak= +{vkDo1 + ... + v1Dk-}i}-{SkNQDo2 + ...+81Nk.1Dk3i} (14)

i32S/da2
k = -{vkSkDo2 + ... + v151Dk\

2
l} + {SkNoDo3 + ... + 81Nk_1Dk-Jl} (15)

and our result is

Lemma 5. Suppose <x>0 andp divides k and M ^ 2k. If aip = of+'p when
1 ^ i<2k/p but a, = 0 otherwise, then dSM/dak = 0 when ak # 0.

Proof. Without loss of generality we assume r = 0. The choice of at makes
the N's in (14) as follows

No = v p
2 *

and so on. So Ni+P — u"N, and similarly for the X>'s in (14). Hence (14) be-
comes

p-i
d S J d a k = ^ K 1 1 }

i = 0

f p p p p p
i = 0

"f K_ia*-i+v4_i_pa*-i-"+vt_1._2pa'I-i-2''+...>ai-*£>r1
« = o

f { ^ i ^ i y t i 2 p } i r
i = 0

= a'"* "f ({^Dr'-iD^Dr2) = 0,
i =0

as stated.

In the lemma we checked dS/da only at a non-zero term a. Unfortunately
at a zero term a of a sequence like 0, a2, 0, a4, ..., the sign of dS/da depends on
the sum under consideration. The value of (15) always seems to depend on the
sum S being considered. However each of the sequences in Table 2 are locally
stable at all but a few of their terms at. This fact encourages us to hope that
Table 2 gives the correct asymptotic value of inf SM/M.

9. The computer program
This is much better than the one described in (2), and very simple. Given

au a2, •••, aM and e>0 and./in 1 ^y ^ Mput
u h " 7 = S M ( ° I > •••> aj-i> aj±e> aj+n •••, aM)-SM{au a2, ..., aM).
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Very little work is required to evaluate uj, uj as we only need to consider
those terms of SM which involve a}. Since the at must remain non-negative
when a}—£<0 the computer considers aj—e to be equal to 0. If, however, this
condition gives a zero denominator the computer in fact only evaluates u* and
puts uj = +00. The program consists of repeating the following process.
With j = 1,2, ..., M in turn, (i) if 0 ^ «/ and 0 g uj do nothing, (ii) if w/ < 0
and «/ g uj replace a} by cij + e, (iii) if uj <0 and uj <uf replace a,- by a, — e
when dj—£>0 but by 0 when a,- — E ^ 0. In case it turned out that 0 ^ uf, uj
forj = 1, 2, ..., M so that there were no replacements then halve £ before the
next repetition. The program stops when e is sufficiently small.

Clearly the program reduces SM at each replacement and leads to a sequence
au ..., aM which is locally stable. We have already remarked that it may not
yield inf SM from all initial values of au ..., aM. An improved version of the
program only increments j when it enters case (i) above. When it enters cases
(ii) or (iii) it re-evaluates u / , uj with the same j but the new value of as and
obeys (i), (ii) or (iii) again.

We stopped using the method described in (3), even though it is potentially
very fast, because it tends to produce an oscillating sequence of a('s and we could
not get the machine to take over the smoothing of the sequence which was
previously done by human interpolation.

10. Diananda's sums
The generalisations in (16) below of Shapiro's sum "Lajbc were considered

by P. H. Diananda (4). In particular he proved
Theorem 3.

Zaj/(aI+1 + ai+2 + ... + ai+k) ^ M/fc (16)
ifk divides M + 2 or 2M or 2M + 1 or 2M + 2

(17)
ork = 5(mod 8) or k = 6(mod 9) or k = 8, 9(mod 12)..

To conclude this paper we report some computer results obtained by K. Y.
Choong and one of us (D. E. D.) at the University of Malaya in 1968. Examples
of au ..., aM were sought for which (16) is false. In other words, an effort was
made to determine the turning value of M for small fixed values of &. The results
indicated that conditions (17) are the best possible for k sufficiently large, and
enough examples were found to establish that this is the case for k = 11, 23, 24.
In the cases of (k, M) listed below inequality (16) is not proved true by (17) or
Nowosad (5) but no example was found which made it false. For k ^ 12 the
list contains all cases (k, M) for which it is not yet known whether (16) holds
for all at.

(2,
(3,
(4,
(7,

11)
10)
12)
21)

(2,
(3,
(4,
(8,

13)
13)
16)
25)

(2,
(3,
(5,
(8,

15)
16)
16)
24)

(2,
(3,
(5,
(9,

17)
19)
15)
27)

(2,
(3,
(6,

(10,

19)
9)

19)
15)

(2,
(3,
(6,

(10,

21)
12)
18)
30)

(2,
(4,
(7,

(12,

23)
13)
22)
18)

(2,
(4,
(7,

(12,

12)
17)
11)
9).
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