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SEMIREGULAR MODULES AND RINGS 

W. K. NICHOLSON 

Introduction. Mares [9] has called a projective module semiperfect if every 
homomorphic image has a projective cover and has shown that many of the 
properties of semiperfect rings can be extended to these modules. More recently 
Zelmanowitz [16] has called a module regular if every finitely generated sub-
module is a projective direct summand. In the present paper a class of semi-
regular modules is introduced which contains all regular and all semiperfect 
modules. Several characterizations of these modules are given and a structure 
theorem is proved. In addition several theorems about regular and semiperfect 
modules are extended. 

In Section 2 these results are applied to the study of rings R (called semi-
regular rings) such that RR is semiregular. The basic properties of these rings 
are derived and theorems about regular and semiperfect rings are extended. It 
is shown thati? is semiregular if and only if R/J(R) is regular and idempotents 
can be lifted modulo J(R). 

Finally endomorphism rings are studied. Conditions under which a module 
has a semiregular endomorphism ring are given and applied to injective and 
semiperfect modules. It is shown that a ring is left perfect if and only if every 
projective left module has a semiregular endomorphism ring. Turning to semi-
regular modules, it is shown that the endomorphism ring of a semiregular 
module contains a semiregular ideal provided epimorphisms have left inverses. 

Unless stated otherwise, all rings are associative and have identity, all 
modules are unital left modules and module endomorphisms are written on the 
right of their arguments. 

1. Semiregular modules. 
If M is an i^-module the dual of M will be denoted by M* = HomB(M, R). 

A dual basis for M is a pair of subsets {xt\i £ /} C M and {(pt\i £ /} Q M* 
(indexed by the same set / ) such that, for each x £ M, x<pt = 0 for all but 
finitely many i £ I and x = J2i(X(Pi)xi- It is well known that M is (finitely 
generated) projective if and only if it has a (finite) dual basis. An element x in 
a module M is called regular if (xa)x = x for some a £ M*. Zelmanowitz calls 
a module regular if each of its elements is regular. 

LEMMA 1.1. Let M be a module and let x Ç M be a regular element. If a £ M* 
satisfies (xa)x = x and if we write e = xa, then: 
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(1) e2 = e and x = ex. 
OL . . . . . . 

(2) Rx —» Re is an isomorphism so Rx is projective. 
(3) M = Rx © W where W = {w G Af|(ze/a)x = 0}. 

a: 
Proof. (1) is obvious and Rx —» Pe is clearly an epimorphism. If (rx)û: = 0 

then rx = r(xa:)x = 0 proving (2). Since y — (ya)x G W for all y G M we have 
M = Rx + H7. This sum is direct since rx £ W implies rx = r(xa)x = 0. 

Let M be any module. A submodule K of M is said to be small in M if 
X + N 9e M for every submodule N 9e M. The Jacobson radical of a ring R 
will be denoted by J{R) and it is easily verified that J(R)x is small in M for 
each x £ M. The following submodules of M are equal: (1) the intersection of 
all the maximal submodules of M, (2) the sum of all the small submodules of 
M, and (3) {x G M\Rx is small in M). This submodule is called the radical of 
M and will be denoted by rad M. If a : M —> TV is an i?-homomorphism it is 
well known that (rad M)a C rad TV. 

A submodule Af of a module Af is said to lie over a summand of M it there 
exists a direct decomposition i f = P © Ç with P Q N and Q (^ N small in ikf. 
A projective cover of a module X is an i^-epimorphism P —> X" —» 0 with small 
kernel where P is projective. The following fact will be needed (Bass [2, Lemma 
2-3]). 

LEMMA 1.2. / / M is projective, a submodule N lies over a summand of M if and 
only if M/N has a projective cover. 

PROPOSITION 1.3. If M is any module, the following conditions are equivalent 
for x G M: 

(1) Rx lies over a projective summand of M. 
(2) There exists a G M* such that (xa)2 = (xa) and x — (xa)x G rad M. 
(3) There exists a regular element y G Rx such that x — y G rad M and 

Rx = Ry © R(x - y). 
(4) There exists a regular element y G M such that x — y G rad M. 
(5) There exists y : M —* Rx such that y2 = y, My is projective and 

x — xy G rad M. 

Proof. (1) =» (2). Let M = P © Q where P Ç Px is projective and Rx H Ç 
is small in if. Then P is finitely generated, so if <pu . . . , <pn; Xi, . . . , xn is a dual 
basis of P , write xf = rtx and define a G P* by a = Y^%W'i- Extend a to M by 
setting Qa = 0. If x = p + <?, £ G P , ç G (? then (xa)x = (£o:)x = £. Con­
sequently (xa:)2 = pa = xa and x — (xa)x = g G P K H Ç Ç rad Af. 

(2) => (3). Given x and a as in (2) write y = (xa)x. Then (ya)y = 3> so, by 
Lemma 1.1, M = Ry © W where W = {w\(wa)y = 0}. The result follows 
since Px C\ W — P(x — y). 
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(3) => (4). This is obvious. 
(4) => (5) Let x — y £ rad M and suppose (ya)y = yy a Ç M*. lî e = ya 

then x — ex = (1 — e) (x — 3>) Ç rad M and we claim ex is regular. Indeed 
6 — xa = (3/ — x)a £ /(i?) so, if (1 — e + xa)6 = 1, then afr G Af* and 
[(ex)a:&)](ex) = e(ex) = ex. Hence, we may assume y 6 Rx. Write M = 
Ry © W where Ry is projective and W = {w G ilf| (wa)}' = 0} (Lemma 1.1). 
If 7 : M —•> ify is the projection, it remains to show x - X7 G rad Af. Write 
x — ry + w, r £ R, w £ W. Then 0 = (x — ry)ay = (xa)y — ry so xy — 
ry = (xa)y. Hence x — xy = (x — y) — [(x — y)a]y € rad M + J{R)y Q 
rad ilf. 

(5) => (1). This is clear. 

Definition. An element x in a module Mis said to be semiregular (in Af) if the 
conditions in Proposition 1.3 are satisfied. A module is called a semiregular 
module if each of its elements is semiregular. 

COROLLARY 1.4. Let M be a module and letx,y £ M. If x — y G rad M and y 
is semiregular then x is semiregular. 

The regular modules of Zelmanowitz [16] are precisely the semiregular 
modules with zero radical. On the other hand, Lemma 1.2 implies that every 
semiperfect module is semiregular. A ring is called local if it has a unique maxi­
mal left ideal and it is clear that, if R is local, then RR is a semiregular module. 
Many other examples of semiregular modules appear below. 

If M is a projective module and N C M it is well known that M/N is flat if 
and only if, given x £ N, there exists 7 : M —» N such that x = xy (see Ware 
[13, Lemma 2.2]). 

COROLLARY 1.5 (Ware [13, Proposition 2.1]). A projective module is regular if 
and only if every homomorphic image is flat. 

Proof. If M is projective, x G M and M/Rx is flat, let 7 : M —> Rx satisfy 
x = xy. Clearly 7 = y2 so Rx = Ry is a (projective) direct summand. It fol­
lows that M is semiregular and rad M = 0. The converse is immediate from 
Proposition 1.3. 

The next result gives some important characterizations of semiregular 
modules. 

THEOREM 1.6. The following conditions are equivalent for a module M: 
(1) M is semiregular. 
(2) If N Ç M is a finitely generated submodule there exists y : M —> N such 

that 72 = 7, My is projective and N(l — 7) Q rad M. 
(3) Every finitely generated submodule of M lies over a projective summand 

ofM. 

Proof. It is clear that (3) => (1) and (2) =» (3) since, if N and 7 are as in 
(2), N H M(l - 7) = N(l - 7) and N(l - 7) is small in M (being a finitely 
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generated submodule of rad M). T o prove (1) => (2), observe t ha t Proposition 
1.3 s ta r t s an induction on the number of generators of N. Suppose N = 
Rxo + . . . + Rxn. Choose /3 : M —• Rxn such t h a t j32 = /3, Mf3 is projective 
and xn(l - 13) e rad M. Wri te K = Rx0(l - 13) + . . . + Rxn^(l - 0) and, 
by induction, choose ô : M —• i£ such t ha t <52 = <5, if<5 is projective and 
K{\ - 5) C rad M. Define 7 = /3 + § - 05. T h e n y2 = 7 and M 7 = 
Jkf/3 © Af<5 (since 8/3 = 0) . Hence M 7 is projective and, since N = K + Rxn, it 
follows tha t My QN and N(l - 7) = iV(l - 0 ) (1 - ô) C rad M. 

COROLLARY 1.7. A projective module M is semiregular if and only if M/N has 
a projective cover for every finitely generated (cyclic) sub-module N. 

I t is clear t ha t a module has zero radical if each cyclic sub-module is a sum-
mand. Hence: 

COROLLARY 1.8. (Zelmanowitz [16, Theorem 2.2]). A module is regular if and 
only if every finitely generated (cyclic) submodule is a projective summand. 

The next result will be used with Corollary 1.4 to prove t h a t a direct sum of 
semiregular modules is semiregular. 

LEMMA 1.9. Let M be a module and let x (E M. If a G M* is such that {xa)2 = 
(xa) and x — (xa)x is semiregular, then x is semiregular. 

Proof. Wri te e = xa and choose (3 Ç M* such t h a t (x — ex)f3 = f is an 
idempotent and (x — ex) — f(x — ex) G rad M. Then e + / — fe is an idem-
potent (since ef = 0) and x — (e + / — fe)x G rad M. Define 7 = a + 
(f3 — a(x/3))(l — e) 6 M*. Since xy = e -\- f — fe, the lemma is proved. 

T H E O R E M 1.10. If M = © <€/ M* w a direct sum of modules then M is semi-
regular if and only if each Mt is semiregular. 

Proof. Let N be a direct summand of M and let x G N. Since rad N = 
N C\ rad M, it follows easily t h a t x is semiregular in M if and only if x is semi-
regular in N. Consequently it suffices to prove the theorem for two summands . 
Hence, let M = N © K where N and K are semiregular modules. Consider 
x + y Ç M where x G N, y G K. Choose a G iV* such t h a t (xa)2 = xa and 
x — (xa)x G rad N. Extend a: to i f by defining Ka = 0. Then (x + y)a = xa 
is an idempotent so, by Lemma 1.9, it suffices to show tha t 

(x + y) — [(x + y)a](x + y) = (x — (xa)x) + (3/ — (xa)y) 

is semiregular in AT. But x — (xa)x G rad N C rad AT and 3/ — (xa)y is semi-
regular in K (and hence in M). T h e result follows by Corollary 1.4. 

COROLLARY 1.11. (Zelmanowitz [16, Theorem 2.8]). A direct sum ®ieiMt 
is regular if and only if each Mi is regular. 

T h e next result contains s t ructure theorems for regular and semiperfect 
modules and for finitely generated semiregular modules. 
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THEOREM 1.12. Let M be a countably generated semiregular module. If rad M 
is small in M then M~ ®%=iRei where et

2 = e{ Ç R. In particular, M is 
projective. 

Proof. By Lemma 1.1 it suffices to show that M = © i=iœ Rji where each yt 

is a regular element of M. Let Xi, x2, . . . be a generating set for M. Since rad 
is small, it suffices to find regular elements yu submodules Wt C M and sub-
modules K{ C rad M such that 

(1) M = Ryi © . . . © Ryn © Wn 

(2) Rx! + . . . + Rxn c r ^ i © . . . © Ryn] + Kn 
hold for each n. By Proposition 1.3 write Xi = y\ + Si where 3>i G i ^ i is 
regular in M, zx £ rad M and itai = Ryi © ifei. Since M = Ryi © Wi by 
Lemma 1.1, this starts an inductive construction. Now suppose yu Wt and Kf 

have been constructed, 1 ^ i ^ n. Write Pn = Ryi © . . . © Ryn and let 
7T : M —> M be the projection with .MV = Pn and ker ?r = Wn. Then 

P„ + 2fon+1 = Pn © Jfon+i(l - 7r) 

so write £n+i = xn+i(l — 7r). Then /w+i G W^ and Wn is semiregular so tn+i = 
yn+1 + zn+1 where ;yn+i Ç Rtn+\ is regular in Wn (and so in M), zn+1 <E rad Wn C 
rad AT and i ^ + i = Ryn+i © ifen+i- If we write Wn = Ryn+i © M n̂+i it is clear 
that M = Ryi® ... ® Ryn+i © Wn+1 and 

2&x + . . . + Rxn+1 C [ ^ © . . . © 22yn+1] + ( ^ + i&n+1). 

This completes the construction with Kn+i = Kn + Rzn+i. 

COROLLARY 1.13. Every finitely generated semiregular module is projective of 
the form Rex © . . . © Ren, et

2 = et £ R. 

It is well known that every projective module is the direct sum of countably 
generated submodules. Hence: 

COROLLARY 1.14. A projective semiregular module with small radical is a direct 
sum of cyclic submodules. 

It was observed by Mares [9] that the radical of a semiperfect module is small 
(this follows from Lemma 3.6 below). The following structure theorems are 
now apparent: 

COROLLARY 1.15. (1) (Zelmanowitz [16, Theorem 1.6]). Every countably 
generated regular module is projective. 

(2) (Ware [13, Theorem 2.12]). Every projective regular module is a direct sum 
of cyclic left ideals. 

(3) (Mares [9]). Every semiperfect module is a direct sum of cyclic left ideals. 

We do not know whether the hypothesis that the radical is small can be 
deleted from Corollary 1.14. The hypothesis is unnecessary if the ring R is semi-
regular (that is RR is a semiregular module) by a result of Warfield (see 
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Theorem 2.11 below). We conjecture that it holds if idempotents can be lifted 
modulo J(R). 

The next result will be used below and may have some independent interest. 

LEMMA 1.16. Let M be a projective module. Suppose M = P + K where P and 
K are submodules and P is a direct summand of M. There exists a submodule 
Q Q K such that M = P © Q. 

Proof. Let y2 = y : M -» M be any projection with My = P. If <p : M -* M/K 
is the natural map let a : M —> M satisfy ay<p = <p (see diagram). Define 5 = 
7 + (1 - T ) « 7 . Then <52 = Ô, Mo = My = P and ker 5 = M{\ - Ô) = 
M{\ — y) (1 — ay) Ç ker <p = K. The proof is complete with Q = ker ô. 

^M 

M— > P ' > M/K • 0 

Mares [9] proves that a projective module M is semiperfect if and only if it 
has the following three properties: (1) Af/rad M is semisimple (that is every 
submodule is a summand), (2) each indempotent in end(M/rad M) is induced 
by an idempotent in end M, and (3) rad M is small in M. The analog for semi-
regular modules follows (recall that the radical need not be small). 

PROPOSITION 1.17. Let M be a projective module such that rad M is small in M. 
Let cp : M —> Af/rad M be the natural map. Then M is semiregular if and only if 
it satisfies the following two conditions: 

(1) Every finitely generated submodule of Mcp is a direct summand. 
(2) / / Mcp = A 0 B where A is finitely generated, there exists a decom­

position M = P 0 Q such that P<p = A and Q<p = B. 

Proof. Suppose M is semiregular and let A Ç M(p be finitely generated. 
Write A = Nip where N Ç M is finitely generated. By Theorem 1.6 choose 
y2 = y : M —> N such that 7V(1 - 7) Q rad M. Clearly M = N + ker 7 
and it follows easily that Mp = i © (ker y)<p. This proves (1). 

Now assume M<p = A 0 B where A is finitely generated. Choose N and 7 
as above. If y Ç M choose x £ N and b Ç B such that yep = x<p + b. Since 
Xip = xy<p, this means M = Ny + B<p~l where Bcp~l = {x Ç M\x<p G B). 
Since iV7 = My is a direct summand of M, apply Lemma 1.16 to write M = 
Ny 0 Q where Q Ç 5^""1. Then (2) follows because Ny<p = N<p = A and 
Qv Q B-

Conversely, assume (1) and (2) hold. If N C M is finitely generated, there 
exists a direct summand Q oî M such that 7kf<p = N<p 0 Q<p. Since rad M is 
small, this means N Pi Ç is small and M = N + Q. The proof is completely by 
Lemma 1.16. 

The proof shows that every semiregular module has property (1) and every 

https://doi.org/10.4153/CJM-1976-109-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-109-2


SEMIREGULAR MODULES 1111 

projective semiregular module has property (2). We do not know an example 
showing tha t the radical must be small for the converse to hold. 

COROLLARY 1.18. A finitely generated projective module M is semiregular if and 
only if it satisfies the following conditions: 

(1) Every finitely generated submodule of M / r a d M is a direct summand. 
(2) Direct decompositions of M/md M can be lifted to M. 

A variat ion of this was announced by Jansen [6]. He replaces (1) by the con­
dition tha t Af/rad M is regular in the sense of Fieldhouse ([5, Section 8]). 

The next result characterizes the semiperfect modules among the projective 
semiregular ones. 

PROPOSITION 1.19. A projective module M is semiperfect if and only if it is 
semiregular, rad M is small in M and M/rad M is semisimple. 

Proof. Mares ([9, Theorem 5.2]) shows tha t a direct sum of semiperfect 
modules is semiperfect if and only if the radical is small. If M is semiperfect, 
MI rad M is semisimple by the proof of Proposition 1.17. For the converse we 
may assume M is finitely generated by Mares ' theorem and Theorem 1.12. Bu t 
then, if the conditions hold, every submodule of M / r a d M is finitely generated 
so the proof of Proposition 1.17 goes through. 

Note t ha t the theorem of Mares used in the proof is in fact a consequence of 
Proposition 1.19. 

If idempotents can be lifted modulo the Jacobson radical a bet ter version of 
Proposition 1.17 is possible. 

PROPOSITION 1.20. Let R be a ring in which indempotents can be lifted modulo 
J{R). The following conditions are equivalent for a projective R-module M: 

(1) M is semiregular. 
(2) Every finitely generated submodule of M/rad M is a direct summand. 
(3) Every cyclic submodule of M/rad M is direct summand. 

Proof. We prove (3) =» (1). Let x £ M and let Q be a submodule such tha t 
M = Rx + Q and Rx H Q C rad M. Define \p : R —» Rx by rxp = rx and let 
<p : M—+M/Q be the natural map (see d iagram). If a 6 M* is such tha t 
œp<p = <p then x — (xa)x G Rx C\ Q Ç rad M and so xa — (xa)2 d J(R). By 
hypothesis choose e2 = e £ R such tha t e — xa G J(R). Then u = 1 — e + xa 
is a unit and u~l(xa)e = e. Define & G M* by fi = aeu~l. Then (x/3)2 = x/3and 
xfi — {xa)eu~l = (xa)e = xa modulo J(R). Hence x — (x/3)x = (x — (xa)x) + 
{xa — x/3)x Ç rad M. 

M 

a,' 
<p 

R—JL^Rx—L^M/Q——>0 
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Let N C M be modules. A submodule K is said to be a complement of N in Af 
if AT = N + X and TV C\ K is small in X . Kasch and Mares [8] have shown 
tha t a projective module is semiperfect if and only if every submodule has a 
complement. 

P R O P O S I T I O N 1.21. A finitely generated module M is semiregular if and only if 
it is projective and every finitely generated (cyclic) submodule has a complement 
in M. 

Proof. The necessity of the conditions is clear. Conversely, let N Ç M be 
finitely generated and let K be a complement of N in M. If <p : M —> M/N is 
the natura l map there exists a : M —•» i£ such t h a t acp = p (see d iagram) . This 

a/ 

K ' > M/7V • 0 

means X = i£a + (N C\ K) and consequently t ha t X" = Ka = Ma is finitely 
generated. Bu t then K also has a complement in M and so the a rgument in [8] 
goes through to show K is a direct summand of M. T h u s 

K-^M/N >0 

is a projective cover as required. 

This was announced for projective modules by Jansen [6]. We do not know 
whether an arbi t rary projective module is semiregular if every finitely gen­
erated submodule has a complement. The answer is affirmative for noetherian 
rings. 

P R O P O S I T I O N 1.22. If R is a left noetherian ring, the following conditions are 
equivalent for a projective R-module M: 

(1) M is semiregular. 
(2) Every finitely generated submodule has a complement in M. 
(3) Every cyclic submodule has a complement in M. 

Proof. We need only show (3) => (1). If x G M let K be a complement of Rx 
in M. Let <p : M —» M/Rx be the natura l map and, as in the preceding proof, 
choose a : M —» K such t h a t a<p = cp and K = Ka = Ma. Then M = ker a + 
K and ker a C Rx so it remains to show ker a P\ K = 0. Now ker a £ ker a2 C 
. . . C ifo so, since X is noetherian, let ker an = ker an+1. If x £ ker a C\ K then 
x G i£aw so let x = ^an , y £ K. Then ;y G ker an+1 = ker an and consequently 
x = 0. 

2 . S e m i r e é u l a r r ings . An impor t an t application of the results of the pre­
vious section is to the s tudy of rings R such t h a t RR is a semiregular module. 
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This condition turns out be left-right symmetric and several characterizations 
of such rings will be given. 

An element a of a ring R is said to be regular (in the sense of von Neumann) 
if aba = a for some b G R. If each element of a ring R is regular, R is said to be 
a regular ring. It is clear that an element a in a ring R is regular if and only if it 
is regular in RR (regular in RR). The following fact is equally easy to verify. 

LEMMA 2.1. Let a be an element of a ring R. Then a is semiregular in RR if and 
only if there exists e2 = e G aR such that (1 — é)a G J(R)- An analogous result 
holds for RR. 

PROPOSITION 2.2. The following are equivalent for an element a of a ring R: 
(1) There exists e2 = e G aR such that (1 — e)a G J(R). 
(2) There exists e2 = e G Ra such that a{\ — e) G J(R)-
(3) There exists a regular element b G R with a — b G J(R). 
(4) There exists b G R with bob = b and a — aba G J(R). 

Proof. In the presence of Lemma 2.1, Proposition 1.3 gives (1) <=> (3) and 
(1) <=> (4) is easily verified. The rest follows by symmetry. 

Definition. An element a of a ring R is called semiregular (in R) if it satisfies 
these conditions. A ring is a semiregular ring if each of its elements is semi-
regular. 

It is clear that every regular ring is semiregular. A ring R is called semiper-
fect if R/J(R) is semisimple and idempotents can be lifted modulo J(R). Since 
this is equivalent to RR being a semiperfect module, every semiperfect ring is 
semiregular. (Another proof of this is given in Theorem 2.9 below). 

The next two results are easy consequences of Proposition 2.2. 

COROLLARY 2.3. If R is a semiregular ring so also is every homomorphic image 
of R and every subring of the form eRe, e2 = e. 

COROLLARY 2.4. If a — b G J(R) and b is semiregular, so is a. 

An idempotent e in a ring R is called primitive if eRe has no proper idempo­
tents and e is called local if eRe is a local ring. The following result is well known 
for regular and semiperfect rings. 

COROLLARY 2.5. In a semiregular ring every primitive idempotent is local. 

Proof, lie2 = e G R is primitive let a G eRe, a G J {eRe). Choose/2 = / G aR 
with a —fa G J{R)> Then / ^ 0 (since a G J(R)) and ef = f. Since e is prim­
itive it follows that fe = e and consequently that aR = eR. Hence a has a 
right inverse in eRe. 

A useful device in the study of regular rings is McCoy's lemma which states 
that an element a in a ring R is regular if a — aba is regular for some b G R-
The analog of McCoy's lemma for semiregular rings seems to be the following: 
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LEMMA 2.6. Let R be a ring and let a Ç R. If there exists e2 = e G aR such that 
(1 — e)a is semiregular then a is semiregular. 

Proof. Choose an idempotent / £ (1 — e)aR such that (1 — / ) (1 
J(R). lig = e+f-fe then g2 = g 6 aR and (1 - g)a £ J(R). 

e)a G 

McCoy's lemma can be used to show that the n X n matrix ring Mn(R) over 
a regular ring is again regular. The analogous result for semiregular rings is also 
true. 

PROPOSITION 2.7. If R is semiregular so is Mn(R). 

Proof. It suffices to prove the result for n = 2. Write M = M2(R) and let 
a & 

0 are 
0 e 

6 if. Choose e2 = e = cr, r £ R, such that c — ec G J(R). Then 

is an idempotent so, by Lemma 2.6, it suf-

+ 

0 re 
0 0 

fices to show that (1 — E)A is semiregular. But (1 — E)A Ç 

J(M) for some a',bf ,df 6 R so, by Corollary 2.4, we may assume A = 

a' 6' 

a 6 
_0 d 

In this case choose f2 — f = as, s £ R, such that a — /a G J(R). Then F 
'/ o" a b\ [s 0 
.0 0_ _0 dj Lo o_ 

is an idempotent and (1 — F)A G b' 
d' + 

J(M) for some /V, d' G i? so we may assume A — 

continues. 

. The process clearly 

If R is semiregular so is eRe for any e2 = e Ç i?. This combined with Propo­
sition 2.7 gives: 

COROLLARY 2.8. Semiregularity is a Morita invariant. 

The equivalence of (2), (4) and (5) in the next result was first proved by 
Oberst and Schneider ([11, Satz 1.2]) who called these semiregular rings 
F-semiperfect. Conditions (2) and (4) show that these rings generalize the 
semiperfect rings in a natural way. A module M is said to be finitely related if 
there is an exact sequence 0—> K —> F -^ M -^> 0 with F free and both F and 
K finitely generated. 

THEOREM 2.9. The following statements (and their left-right analogs) are equiva­
lent for a ring R: 

(1) R is semiregular. 
(2) R/J(R) is regular and idempotents can be lifted modulo J{R). 
(3) Every finitely generated (cyclic) left ideal lies over a direct summand. 
(4) Every finitely related (finitely related and cyclic) left R-module has a 

projective cover. 
(5) Every finitely generated (cyclic) left ideal has a complement in R. 
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Proof. I t is clear t ha t (1) ^ (3) and (1) <=» (5) by Proposition 1.21. If R is 
semiregular every free i^-module is semiregular by Theorem 1.10 so (1) <=> (4). 
Since (2) =» (1) by Proposition 1.20, it remains to prove (1) =^> (2). If R is 
semiregular then R/J{R) is regular by Proposition 2.2. Let a £ R, 
a2 — a G J(R) and choose e2 = e Ç aR with a — ea £ J(R)- If / = e + 
ea( l — e) t h e n / 2 = / and (since e — ae £ J(R)) f — a £ J(R)> 

If L is a left ideal of i?, it is easy to see tha t L lies over a summand of R if and 
only if there exists an idempotent e £ L and a left ideal M C J ( i^ ) such t ha t 
L = Re ® M. Fur thermore, it is clear from (2) of Theorem 2.9 tha t a semi-
regular ring is semiperfect if and only if it contains no infinite family of ortho­
gonal idempotents . 

COROLLARY 2.10. A ring is semiperfect if and only if every countably generated 
left ideal lies over a direct summand. 

Proof. If R satisfies the condition, let eu e2, . . . be orthogonal idempotents . 
P u t L = Re1 + Re2 + . . . and let L = Re + M, e2 = e} M C J(R). If e = 
rid + . . . + rnen then eek = 0 for all k > n and so ek — eke is an idempotent 
in J{R). Consequently ek = 0 for all k > n and the result follows. 

The following theorem is due to Warfield and is included here for complete­
ness. 

T H E O R E M 2.11. (Warfield [14, Theorem 3]). If R is a semiregular ring, then 
every projective module is isomorphic to a direct sum of left ideals of the form Re, 
e2 — e. 

The cases when R is local or regular are due to Kaplansky ([7, Theorems 2 
and 4]) and the semiperfect case is due to Mueller ([10, Theorem 3]). T h e case 
when R is semiregular and right coherent was proved by Oberst and Schneider 
(2.4 of [11]). 

I t is worth noting here tha t , if e2 = e Ç R, the left ideal Re is a semiregular 
module if and only if each element of Re is a semiregular element of R (Propo­
sition 2.2). 

A module M is local if it is projective and M = Rx for each x G M — rad M. 
(Recall t h a t M ^ rad M for a projective module M 5* 0 by Proposition 2.7 
of Bass [2]). The equivalence of (2) and (3) in the next result was given by 
Ware ([13, Theorem 4.2]) bu t the present proof is shorter. Denote the endo-
morphism ring of a module M by end M. 

P R O P O S I T I O N 2.12. The following are equivalent for a module M ^ rad M. 
(1) M is semiregular and indécomposable. 
(2) M is projective and end M is a local ring. 
(3) M is local. 

Proof. (1) => (2). Let N CI M be finitely generated. Then TV lies over a 
summand so N C rad M or N = M. If follows t h a t M is cyclic (since M j* 
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rad M) and hence projective. But then each element outside the ideal A = 
{a G end M\Ma Ç rad M) has a left inverse, proving (2). 

(2) =» (3). If x i rad M let x G i£ where X" is maximal in M. If 
<p : M -* M/K is na tura l then <p : Rx -* M/K is an epimorphism so there 
exists a : M —» i^x such t h a t a^ = #>. Since <£> ^ 0 it follows t h a t a $ / ( e n d AT). 
Bu t then a: is a uni t by (2) and so Rx = M. 

(3) => (1). This is immediate since rad M is small. 

The next result is immediate and provides an al ternat ive proof of Corol­
lary 2.5. 

COROLLARY 2.13. Over a semiregular ring every indecomposable projective 
module is local. 

A well known theorem of Auslander, McLaughl in and Connell asserts tha t , 
if G is a group and R is a ring, the group ring RG is regular if and only if R is 
regular, G is locally finite and each element of G is a uni t in R. An extension of 
this to semiregular rings is impossible as the next example shows. 

Example 2.14. Woods [15] has shown tha t , if R is the ring of rat ional num­
bers with denominator prime to 7 and G is the group of order three, then RG 
is not semiperfect. Since G is (locally) finite it follows t h a t J(R)G Q J (AG) 
and this is equali ty in this case since RG / J (R)G = [R/J(R)]G is semisimple. 
Hence RG/J(RG) is semisimple and it follows t h a t RG is not semiregular. 

If L is a left ideal of a ring R the idealizer of L is defined by 

I(L) = K R\La Ç L } . 
I t is known [1] tha t , if R is semiperfect and L is maximal then I(L) is again 
semiperfect. However I(L) can fail to be semiregular even when L is maximal 
and R is regular. 

Example 2.15. Let F be a field, M = M2(F), K = ' ° ? Then K is a 

maximal left ideal in M and the idealizer / = 

0 F_ 

is not regular. Let R = 
F F 

_0 F_ 
{(xi, . . . , xn, x, x, . . .)\xit x G M, n è 1}- Wi th component-wise operations 
this is a regular ring and L = { (xi, . . . , xn, x, x, . . .) |x G X} is a maximal left 
ideal. I t is easily verified t ha t I(L) = {(xi, . . . , xn, x, . . .) |x G /} and 
J[I(L)] = 0 since each non-zero ideal of I(L) contains a non-zero idempotent . 
Hence the fact t ha t I(L) is not regular (it has / as homomorphic image) shows 
it is not semiregular. 

3. E n d o m o r p h i s m r ings . If M is a module, denote the endomorphism ring 
of M by end M. The module M will be called direct-projective if, given any 
direct summand P of M with projection -K : M —• P and any epimorphism 
a : M—^P, there exists ]3 G end M such t h a t fia = w. Dually, M is direct-
injective if, given any direct summand P of M with inclusion i : P —> M and 
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any monomorphism a : P —> M} there exists (3 Ç end M such tha t a/3 = i. I t is 
clear t ha t projective (injective) modules are direct-projective (direct-injec-
t ive) . In addition, it is not difficult to verify t ha t a module M is direct-pro­
jective (direct-injective) provided ker a (respectively Ma) is a direct sum-
mand for each a £ end M. In particular, any module M for which end M is a 
regular ring is both direct-projective and direct-injective. 

Let N Q M be modules. N is said to be large in M if N P\ K ^ 0 for each 
non-zero submodule K oî M. N is said to Zie w«&r a direct summand of M if 
there exists a decomposition M = P © Q where N Ç P and iV is large in P . If 
M is injective it is well known tha t every submodule lies under a direct sum­
mand of M. 

T H E O R E M 3.1. Let M be a module. Write E = end M and put A = {a £ E\Ma 
is small in M\ and B = {a £ E\ker a is large in M}. 

(1) If M is direct-projective then A C J(E). Moreover E is semiregular and 
A = J (JE) if and only if Ma lies over a direct summand of M for all a Ç E. 

(2) If M is direct-injective then B C J (JE). Moreover E is semiregular and 
B = J(E) if and only if ker a lies under a direct summand of M for each a £ E. 

Proof. We prove only (1) as the proof of (2) is dual. If a £ A then 
M {I — a) = M (since M = Ma + M (1 — a)) and so 1 — a has a left inverse 
(since M is direct-projective). The fact tha t A is an ideal of E implies 
A QJ(E). 

Suppose now tha t Ma lies over a direct summand of M for each a G E. Let 
M = P © Q where P Q Ma and Ma H Ç is small in M. Let TT2 = TT G E be 

ai7r 
such tha t ÏWV = P and ker 7r = Q. Then ikf —> P is an epimorphism so there 
exists (3 Ç P such tha t /fo:7r = 7r. Define r = 7r/fa. Then T2 = r £ Ea, Mr C jkfa 
and ker r = ker 7r = Q. Hence M {a — ar) Ç Ma Pi Q so t ha t a — ar £ A. 
But this implies P/^4 is regular and so A = J{E). T h u s E is semiregular by 
Proposition 2.2. 

Conversely, assume E is semiregular and A = J{E). Given a G E there 
exists 7T2 = 7T G P a such tha t a — air G / ( £ ) = A Then M = 
Mir © M ( 1 - TT) where Mir C Ma and Ma H M ( l - TT) = M a ( l - TT) is 
small in M. 

If M is projective (injective) it is well known that , in the notat ion of the 
theorem, J(E) = A (respectively J(E) = B). Hence: 

COROLLARY 3.2. If M is injective then end M is semiregular. 

COROLLARY 3.3. If M is projective, end M is semiregular if and only if Ma lies 
over a direct summand for all a Ç E(M). In particular, if M is semiperfect then 
end M is semiregular. 

A module is called finite-dimensional if it contains no infinite direct sum of 
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non-zero submodules. In this case it is clear that end M has no infinite family 
of orthogonal idempotents so: 

COROLLARY 3.4. If a finite-dimensional module M is either injective or semi-
perfect, end M is a semiperfect ring. 

The following result (announced by Jansen [6]) is immediate from Corollary 
3.3 and Theorem 1.6. 

COROLLARY 3.5. If M is semiregular and finitely generated then end M is a 
semiregular ring. 

This includes the result of Ware ([13, Theorem 3.6)] that end M is regular 
if M is regular and finitely generated. It also provides another proof that, if R 
is a semiregular ring, so also is Mn(R). 

LEMMA 3.6. If M is a projective module and end M is a semiregular ring then 
rad M is small in AI. 

Proof. If rad M + K = M and <p : M —> M/K is the natural map there 
exists a : M —» rad AI with a<p = <p. Choose TT2 = ir £ (end M)a with 
a — aw G / (end AI). Then AIw Ç Ala C rad M so AIw = 0 by Proposition 
2.7 of Bass [2]. But then a £ / (end Af) and so <p = 0. 

COROLLARY 3.7. i j J? is a semiperfect ring, the following are equivalent for a 
projective R-module M: 

(1) AI is semiperfect. 
(2) end M is semiregular. 
(3) rad AI is small. 

Proof. M/rad M is semisimple since R is semiperfect and M is semiregular 
since R is semiregular. Hence (3) => (1) by Proposition 1.19. 

The endomorphism ring of a regular projective module need not be a semi-
regular ring. Indeed: 

Example 3.8. Ware ([13, Example 3.4]) gives an example of a regular ring R 
and a projective regular module AI = P © Q such that end P = R ~ end Q 
but end AI is not regular. Since J(R) = 0 it follows that rad M = 0 and con­
sequently that / (end AI) = 0. This means end M is not semiregular. 

If M is a finitely generated projective module and end M is a semiregular 
ring, we do not know whether M is necessarily a semiregular module. In this 
connection, it is known that end M is semiperfect if and only if M is semiper­
fect and finitely generated (see Ware [13, Proposition 5.1]). 

An ideal A in a. ring R is left T-nilpotent if, given elements ax, a2, . . . from A, 
there exists an integer n such that aia2 . . . an = 0. A ring R is /e/£ perfect if 
R/J(R) is semisimple and /(i^) is left T-nilpotent or, equivalently, if every 
left i^-module has a projective cover. These are just the rings for which endo­
morphism rings of projective modules are semiregular. 
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T H E O R E M 3.9. The following are equivalent for a ring R: 

(1) R is left perfect. 

(2) Every projective left R-module is semiperfect. 

(3) end M is semiregular for all projective left R-modules M. 

(4) end M is semiregular for a countably generated free left R-module M. 

Proof. (1) => (2) by Lemma 1.2, (2) => (3) by Corollary 3.3 and (3) => (4) 
is obvious. Given (4) let F be free with basis Xi, x2, . . . . Then rad F is small in 
F by Lemma 3.6 and it is well known tha t this implies J(R) is left T-nilpotent. 
Let L = Rai + Ra2 + . . . be a countably generated left ideal of R and define 
a : F —•» F by (J^rtx^OL = (J2riai)xi- Then Fa lies over a direct summand of 
F (by Corollary 3.3) and hence lies over a direct summand of Rxi. Bu t the 
isomorphism Rx\ -—> R given by rx\ i—> r carries Fa to L so R is semiperfect by 
Corollary 2.10. Hence (4) => (1). 

COROLLARY 3.10. 4̂ riwg is semisimple if and only if some countably generated 

free module has regular endomorphism ring. 

Proof. If M is free and E = end M is regular then R 9= 7r£7r for some 7r2 = 
7T G E so / ( i ? ) = 0. 

Corollary 3.10 was proved by Cukerman [4], then by Shanny [12], and finally 
by Ware [13]. The proof of Theorem 3.9 is modeled on the proof of Shanny. 

A ring R, possibly with no identity, is called semiregular if R/J(R) is regular 
and idempotents can be lifted modulo J(R). The proof of (1) «=» (2) in Theorem 
2.9 shows tha t this is equivalent to each element of R having the equivalent 
properties in Proposition 2.2. 

T H E O R E M 3.11. Let M be a semiregular module such that every epimorphism 
in end M has a left inverse. Write G = {a £ end M\Ma is noetherian). Then G is 
a semiregular ring and is an ideal of end M. 

Proof. Wri te E = end M. I t is clear tha t G is an ideal of E so let a Ç G. Since 
Ma is finitely generated, write M = P © Q where P Ç Ma is projective and 
Ma P\ Q is small in M. Let T be the projection with Mir = P and ker ir = Q. 
There exists (3 : P —> M such tha t (3a = TV (see d iagram). If we set Q/3 = 0 

P 

0,' 

K 

7r |p 

M >Ma ^ 0 

then 13 G G because P Ç Ma is noetherian. Moreover M (a — air) Ç Ma C\ 
ker 7T = Mx n Ç s o a - a f G i ^ G where A = {7 G £ | M 7 is small in M } . 
This A is an ideal of E and we claim tha t J(G) = A C\ G. We have shown t h a t 
G/{A C\ G) is regular so J(G) Q A (^ G. On the other hand, the hypothesis 

https://doi.org/10.4153/CJM-1976-109-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-109-2


1120 W. K. NICHOLSON 

that epimorphisms in E have left inverses guarantees that A Ç J(E) and so 
A r\GQJ(E) C\G = J{G). 

If M is regular, Zelmanowitz ([16, Theorem 4.3]) has shown that G is a regu­
lar ideal of end M without using the condition that epimorphisms of M have 
left inverses. This lends credence to the conjecture that this hypothesis is un­
necessary in Theorem 3.11. 
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