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Let S£V denote the algebra of all linear transformations on an w-dimensional vector space
V over a field <I>. A subsemigroup S of the multiplicative semigroup of JS?F will be said to be
an affine semigroup over $ if S is a linear variety, i.e., a translate of a linear subspace of ££V.

This concept in a somewhat different form was introduced and studied by Haskell Cohen and
H. S. Collins [1]. In an appendix we give their definition and outline a method of describing
possibly infinite dimensional affine semigroups in terms of algebras and supplemented algebras.

Except in the appendix, V and hence also £PV will be supposed finite-dimensional.
In §1 we show that some power of every element of an affine semigroup S lies in a subgroup

of S and that S always contains a completely simple minimal ideal K. (For definitions see
below.) We then obtain a decomposition of S into a group, an algebra, and two vector spaces.

The minimal ideal K of an afflne semigroup is not in general a linear variety, as was ob-
served by Cohen and Collins [1]. When K is not a linear variety, one turns naturally to M(K),
the smallest linear variety containing K. We show in §2 that M(K)n — K for any integer n
exceeding the dimension of M{K).

UK^M(K) and every element ofKis idempotent, then we are able to find a subsemigroup
of M{K) isomorphic to the example of Cohen and Collins (see 2.1). In this case we also show
that M{K)2 = K. The requirement that every element of K be idempotent is of some interest
since this is always true for affine semigroups on locally convex linear topological spaces which
are generated by compact convex subsemigroups (see Theorem 3 of [1] and 2.10 below).

The author wishes to express his gratitude to Professor A. H. Clifford for his encourage-
ment and for many useful suggestions during the preparation of this paper.

0. Preliminaries.

(0.1) Let V and V be vector spaces over an arbitrary field $ . A mapping <j>: V-*V is
said to be affine if

(x+ay - az)<j) = xcj)+a. (y<t>) - a (z$)

for all x, y, z in V and all a in Q>. The more usual definition of an affine mapping is obtained
by taking x = z in that above. For fields of characteristic different from two the concepts
coincide. Note, however, that if O is the field of order two, then any mapping on V satisfies the
condition

since a can only be 0 or 1. On the other hand, a mapping on V will not in general satisfy

(0.2) A subset M of a vector space V over the field <D is said to be a linear variety over 0 if
M = x+N, where xeV and N is a linear subspace of V. A linear variety M of V may also be

t This paper is taken from the author's doctoral thesis, which was written at Tulane University under the
supervision of Professor A. H. Clifford.
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characterized as a subset M of V such that x, y, z e M implies x + <xy — <xz e M for all a e $ .
If M is a linear variety, then clearly M—x = M—y for all x,yeM. One is therefore

justified in defining the dimension of M to be the dimension, i.e., the cardinality of a basis, of
the subspace M—y for y e M.

(0.3) The intersection of any number of linear varieties, if not empty, is a linear variety.
Let A be a subset of the vector space V. We denote by M(A) the intersection of all linear
varieties containing A and call this the linear variety generated by A. It may be easily verified
that M(A) consists of all finite sums ^o^a,, where Jjxt = 1 and {a,} <=• A.

(0.4) JPV will denote the algebra of all linear transformations on an n-dimensional vector
space V over a field <&.

We shall say that a subset S of 3? V is an affine semigroup if S is both a subsemigroup of the
multiplicative semigroup of JSf V and a linear variety in the vector space S£V.

One easily verifies that the left and right translations x->ax and x->xa of an affine semi-
group S are affine mappings for each a in S.

(0.5) Let S be a semigroup. A non-empty subset / of S is an ideal of S if SIvIS is
contained in S. K is said to be a minimal ideal or kernel of S if K is an ideal of S and no other
ideal of S is properly contained in K. An element z [M] of S is a zero [an identity] of S if
z* = xz — z \ux — xu = x\ for all x in 5. 51 is simple if S contains no proper ideals. An
idempotent e of S is primitive if e is the only idempotent in eSe. A simple semigroup which
contains a primitive idempotent is called completely simple. The structure of such semigroups
is well known (see [4, Chapter 2]).

(0.6) If S is an affine semigroup, by ideal, zero, etc., of S is meant, of course, ideal, zero,
etc., of the multiplicative semigroup of S. On the other hand, if A is an algebra, and is being
considered as such, then by ideal o(A is meant, as usual, a subalgebra of A which is a ring ideal.

(0.7) By isomorphism [homomorphism] of an affine semigroup we mean a semigroup
isomorphism [homomorphism] which is simultaneously an affine mapping.

(0.8) A linear combination Y?ixi W'M be called an affine combination if £<Xj = 1.

(0.9) LEMMA. Let M and M' be linear varieties over the same field $ and let x-*x' be an
affine mapping from M into M'. Then

for all affine combinations Yj*ixi of elements of M.

Proof. We observe that

where u = alxi + ... +an_2xn_2 + (an_1+an)xn_1.
Since M is a linear variety, u is an element of M. The proof now follows by induction on «.
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(0.10) COROLLARY. IfY&iXi is an affine combination of elements of an affine semigroup S,
then

and

for all y in S.

1. Let a be an element of jSf V. By the rank p (a) of a is meant the dimension of the range
of a.

If e is an idempotent of the semigroup S, we shall let H(e, S) = H{e) denote the maximal
subgroup of S containing e.

(1.1) THEOREM. If a is an element of the affine semigroup S such that p{a) = p(a2), then a
lies in a subgroup of S.

Proof. If p(a) = p(a2), then it is well known (see e.g. [6, p. 273]) that a lies in some sub-
group H(e, J2T) of i?K for some idempotent e'm&V. We shall show that e is in fact in S.
Let M = M{H{e,&V)) (see 0.3) and let 5' = SnM. Since M and S are affine semigroups,
5' is also. 5' is not empty since it contains a. Since all elements of S' are linear combinations
of elements of H(e, 3?V) and a belongs to H(e, 3?V), the mapping x-*xa of 5" into S'a is 1-1.
The fact that 5" is a semigroup implies that S'a £ 5' and, since 1-1 linear transformations
preserve dimension, we must have S'a = S'. Similarly, aS' = S'. Now, since ax = a has the
unique solution x = e in M, we have e e S' £ S. Likewise, the inverse of a in H(e, SCV) is
contained in S and hence a e H(e, S). This completes the proof.

(1.2) COROLLARY. Every affine semigroup contains an idempotent.

(1.3) COROLLARY. Some power of every element of an affine semigroup S lies in a subgroup
ofS.

Proof. Clearly, for each a in S, p(a") = p(an+i) for some positive integer n. Then
p[a2n) = p(a") and therefore, by 1.1, a" lies in a subgroup of S.

After Drazin [7] we shall say that a semigroup S is pseudo-invertible if for each x in S there
is an element 3c in 5 possessing the following properties:

(i) xx = xx,

(ii) x" = x"+1x for some positive integer n,

(iii) 3c = xzx.

Munn in [8] showed that a semigroup 5 is pseudo-invertible if and only if some power of
every element of S lies in a subgroup of S.

In [9] the author proves that a pseudo-invertible semigroup S of matrices has a completely
simple minimal ideal consisting precisely of those elements of S of least possible rank. This
fact together with (1.3) gives immediately the following theorem.

(1.4) THEOREM. If S is an affine semigroup, then the elements of minimal rank in Sform a
completely simple minimal ideal.
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Primarily for notational purposes we shall adopt the language of representation theory:
Let S be an affine semigroup over a field $ . By a representation TofS of degree n over $ is
meant an affine homomorphism of S into the multiplicative semigroup of the full matrix
algebra of degree n over 3>. If T is an isomorphism we shall say that T is faithful.

We shall now obtain a decomposition of S similar to the two-sided Peirce decomposition
in the theory of algebras. This decomposition will in fact be the translation of the Peirce
decomposition of S—e in the enveloping algebra [S] (see appendix) with respect to an idem-
potent e in S.

(1.5) Let e be any fixed idempotent in S, and define, for each x in 5,

xv = exe,

x2 = xe—exe+e,

x3 = ex—exe+e,

xA = x—ex—xe+exe+e.

(1)

Now, if F is any representation of S, since inner automorphisms are affine, by choosing a
suitable basis we may assume that

rw-(o (2)

where Ik is the identity matrix of degree k. We now partition all matrices F(x) (x e S) by
n = k + (n—k) as in (2) and write

r3(x)'
r4(x) (3)

One easily obtains from (1), (2) and (3) that

,(x) 0N

0

h

0 / 0 0

0
r4(x)

(4)

(1.6) LEMMA. If T is the representation in (1.5) of the affine semigroup S, where e is any
idempotent in S, then

(i) if x, y, z, we S, there exists urn Ssuch that

r3(z)
(5)

(ii) T2(S) and T3(S) are vector spaces;

(iii) T4(S) is an algebra.
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Proof. Using the notation of (1), we let

u =
It is easily seen from (4) that (5) holds. F2 (S) and T3 (5) are obviously linear varieties and are
vector spaces since 0 = rf(e) e Ff(5) for / = 1,2, where 0 denotes the zero matrix of the
appropriate dimensions. It is likewise clear that TA(S) is a subspace. Therefore to prove (iii)
it suffices to prove that T4(S) is a semigroup. But this is clear since from (1) and (4) we see that

r4(x)r4o>) = r4(x4j4)6r4(S)
for all x, y in S.

(1.7) By an affine group is meant an affine semigroup which is a group. Affine groups have a
particularly simple representation:

Let G be an affine group of non-singular matrices of degree n. One may easily verify that
the vector space (? — /„, where /„ denotes the identity matrix, is a radical algebra since G is a
group. Since it is finite-dimensional it is a nilpotent algebra [5, p. 390] and hence, by [5, p.
202], the elements of G—/„ may be simultaneously triangulated with only zeros on the main
diagonal. It follows that for a proper choice of basis all the elements of G will be triangular
with ones on the main diagonal.

The reader will also note that the correspondence between G and G—/„ is a one-one
correspondence between affine groups and finite dimensional nilpotent algebras.

(1.8) THEOREM. IfT is a faithful representation of the affine semigroup S and T{x) (x e S)
is partitioned as above with the idempotent e being taken from the kernel K of S, then

(i) rx(S) is an affine group of non-singular matrices of degree k = p(e);

(ii) x G K if and only if
rA(x) = r2(x)r1(xyir3(x). (6)

Proof, (i) follows from the well-known fact [4, Ex. 14, p. 84] that for all idempotents/in
K we have H(f, S) =fSf. By (1.4), the kernel of an affine semigroup consists of the elements of
minimal rank. Since we know by (i) that r \ (x) is non-singular for all x in S, F(x) has rank k
if and only if the last n-k columns are linear combinations of the first k, i.e. if and only if

T3(x) = T1(x)A, r^(x) = T2(x)A (7)

for some kx(n-k) matrix A = A (x). Now if x e K, T(x) has rank k and therefore (7) holds.
(6) is immediate from (7). Conversely, if (6) holds, (7) holds with A = rl(x)~1r3(x); hence
T(x) has rank k and x is therefore in K.

(1.9) The direct product of two affine semigroups 5 and J i s the set of all ordered pairs
(s, t) with coordinate-wise multiplication and the natural affine structure induced by the direct
sum of the containing vector spaces. It will be denoted by 5 x T.

(1.10) COROLLARY. If the kernel of the affine semigroup S is a group, then S is isomorphic
to AxG, where A is an algebra and G is an affine semigroup which is isomorphic to the kernel K
ofS, and conversely.
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Proof. Let F be the representation in the above theorem, where e is taken to be the sole
idempotent in K. e commutes with all elements of S, since xe and ex are both elements of
K = H(e), so that ex = exe = xe. Applying F to both sides of the equation ex = xe, we see
that T2(x) = r3(x) = 0 for all x in S. Hence S is isomorphic to F^S) x F4(S).

(1.11) COROLLARY. If S is a commutative affine semigroup, then S is isomorphic to AxG,
where A is an algebra and G is an affine group.

Proof. A completely simple semigroup whose idempotents commute must be a group
(see the remark on p. 127 of [4]). The kernel of 5 is therefore a group; the result now follows
from (1.10).

2. The kernel of an affine semigroup is not in general a linear variety, as was observed by
Cohen and Collins [1]. They gave the following example for fl) the field of real numbers.

(2.1) Example. Let S be a three-dimensional vector space over a field d>, with multiplication

(x,y, z){a, b, c) = (x, b, xb),

where xb denotes the product of x and b in <J>. This semigroup may be faithfully represented
as a semigroup of 3 x 3 matrices by letting (x, y, z) correspond to

'1 y (T

0 0 0

Z 0 ,

It is not difficult to see that the kernel K of S is the set of all (x, y, z) such that z = xy. K
is not however a linear variety, for if it were, it would be a subspace, since (0, 0, 0) e K; but
(1, 0, 0) and (1, 1, 1) are elements of K whose sum (2, 1, 1) lies in K if and only if 2 . 1 = 1,
which is impossible in any field. (If $ is the field of real numbers, then K forms a hyperbolic
paraboloid, which is obviously not a linear variety.)

In this example we have S = M(K), every element of K is idempotent, and M(K)2 = K.
We shall see later that the second of these two properties always implies the third. The next
example shows, however, that it is not always true that M(K)2 = K.

(2.2) Example. Let 21 be a nilpotent algebra of n x n matrices which contains an element
whose index of nilpotency is 5. Assume that the characteristic of $ is not equal to two. Let
S be the set of all 2« x 2« matrices of the form

One easily sees that S is an affine semigroup and that the elements of the form In + Al(Ale2l)
are a group, since ( /„+A , )" 1 = /„ - A! + A \ - A \ + . . . . All elements of this group have rank
n; hence the minimal rank of elements of S is n. Therefore, by (1.8), an element of S is in the
kernel K if and only if A± = A2(In—Al + Al— ...)A3.

Letting A be an element which is nilpotent of index 5, we have

> = A2-A3+A\
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Hence the two matrices

A A2 — A J 4 - A I \ —A

both lie in K. It follows that
fL + A 0

is an element of M(K). Now

2_f(In + A)2 0
0 A*)'

and, since A* # 0, Y2 £ K. Hence M(K)2 ¥= K.
By the same argument, if 21 has an element whose index of nilpotency is 2fc + l, then

M(K)k^K. It is true, however, that M(K)m =K if m exceeds the dimensions of M(K). The
proof of this fact will be the primary objective of the next five lemmas.

Suppose now that S is any affine semigroup with kernel K. As in (1.5), let e be an idem-
potent in K and let T be a faithful representation of S of degree n over O such that (2) and (3)
hold. By (1.8) we know that r t (S) is a group of non-singular matrices of order k. Let
A = rl(S) — Ik. As noted in (1.7), A is a nilpotent algebra. We set F0(x) = rx(x) — Ik for all
x in S. Then

!(x) = Ik+To(x), To(x)eA, for all x e S . (8)

We shall make constant use of this faithful representation T and the nilpotent algebra A
throughout this section.

(2.3) LEMMA. Let T be the above faithful representation of the affine semigroup S. Then
r3(x)r2(y) e A for all x, y in S.

Proof By (1.6), there exists u in S such that

o
Now clearly r\(u2) = Ik + T3(x)T2(y), and hence, by (8), we have r3(x)r20>) =To(u

2) e A.

(2.4) LEMMA. Let S be an affine semigroup with kernel K, and let T be as above. If
S = M(K), then F4(S) is a nilpotent algebra.

Proof. Since S = M(K), x e 5 implies that x =Yjaixi' where xteK and £a, = 1. Hence

r4(x) =5>,r4(*,) for all x in S. (9)

Since x{ e K, by (1.8), we have

for each i. Now, by (1.6) and (1.8), there exist u, and y, in 5 such that

and r ( ) ( 1V l>
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for each i. If we set pt = UjU,, then we obtain

Let m be the index of nilpotency of A. We will show that F4(S)m+1 = 0. By (9), (10), and (11),
for each x in S, F4(x) =£air2(/?,)r2(jt1). Hence a product

of m +1 elements of F4(S) will be a sum of terms of the form

This may be written

where «! = r3(x,)r2(#,•), etc. Each a, (t = 1, 2, ..., m) is contained in ,4 by (2.3) and, since
Am = 0, we may clearly infer that F4(S)m + 1 = 0.

(2.5) LEMMA. Let S be an affine semigroup such that S = M(K), where K is the kernel ofS.
Then some power of every element of S lies in K.

Proof. Since some power of every element of S belongs to a subgroup of 5 by (1.3), it
suffices to show that every idempotent of S lies in K. Let/be any idempotent of S. Identifying
S with F(S), by (8) and (2.4) we may assume that

f=(lk+A C

\ B D

where A and D are nilpotent matrices. Since/is idempotent, it follows that

AC+CD^O (12)

and BC+D2 = D. (13)

From (12) we obtain BA'C = ( - l)'BCDl, for / = 1, 2 , . . . . By (13), BC = D-D2, and so

BA'C = ( - i y i ) ' + 1 + ( - l ) i + 1 I» ( + 2 . (14)

From (14), we find, by summing over /, that

B(Ik-A + A2- ... +(-A)')C •= D-Di+2. (15)

Since A is nilpotent, (Jk+A)~l — Ik — A + A2 — A3 + .... Hence, if we let /exceed the index of
nilpotency of both A and D in (15), we obtain B{Ik+A)~lC = D, and therefore, by (1.8),/e K.

(2.6) LEMMA. Let S be any semigroup and I be an ideal of S. Assume that the following two
properties hold:

(i) There exists an integer N>0 such that, for any xux2, •••,xn in S, at most N of the fol-
lowing inequalities are proper:

S2Sxn^Sxn.iXn^ ... 2&t ,x2 ... xn. (16)
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(ii) Some power of every element of S is contained in the ideal I.

Proof. Let y = xtx2 •• • xn e S", where n = N+1. Then in (16) at least one inequality is
an equality. For convenience let z = xn-txn-i+i ...xn, and assume that Sz = SXH-^^Z.
Then xn-i-tz = sxn-i-xz for some s in S; hence xn.i_lz = sJxn.i.1z for j= 1,2, ... . By
(ii), S* belongs to / f o r somey; hence x^^^ e /. Consequently y = x ^ ••• * n - i - i 2 is c o n"
tained in /.

(2.7) THEOREM. IfS is an affine semigroup with kernelK, then M(K)n = Kifn> dim M(K).

Proof. Apply (2.6) with / = K and S = M(K). Since, for every y in S1, Sy is a linear
variety, the finite dimensionality of S clearly implies that (i) is satisfied with N — dim M(K).
(ii) holds by (2.5).

Let E = Es denote the set of idempotents of the semigroup S.

(2.8) THEOREM. If S is an affine semigroup with kernel K^E, then M(K)2 = K.

Proof. Let e be an idempotent in K and let T be the faithful representation used in (2.3)
and (2.4). Since KzE and Tj (S) is isomorphic to a subgroup of K, we must have Tt (x) = Ik

for all x in S. Hence /4 = T , ( S ) - / t = 0 and, by 2.3, r30>)r2(z) = 0 for all y, z e S.
Now if x e M(K), x =%OLIX,, with xt e K, and £ a ; = 1. Thus r4(x) =£a,r4(xf) . By

(1.8), r4(xf) = T2(Xi)T3(Xi). Hencer4(x) ^ a A C * , - ) ^ ^ ) . Sincer3O0r2(z) = Oforah>,z
in 5", we have r^(x)T2(y) = 0, r3(>>)r4(;c) = 0 and r4(jc)r40>) = 0 for all x,y in M{K).
Therefore, by multiplying the partitioned matrices T(x) and T(y), one finds that

h
T2(x)

This shows that T4(xy) = r2(xy)T3(xy), which implies that xy e K.
(2.9) LEMMA. If S^S^V {Aim F<oo) is a semigroup (not necessarily affine) with a com-

pletely simple kernel K, then K is the set of elements of minimal rank in S.

Proof. (See [9]).
If T is a compact convex subsemigroup of an affine semigroup on a locally convex linear

topological space, then the kernel K of T is contained in E = Es, the set of idempotents of 5
[1, Theorem 3]. The following theorem shows that this is also true for the affine semigroup
M{T) spanned by T.

(2.10) THEOREM. Let S be an affine semigroup and let Tbe a subsemigroup of S such that
S= M(T). Suppose also that Thas a kernel KT^ET. Then, denoting the kernel of S by Ks,
we have

Ks = M(KT)nEs

and
KT = TnKs.
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Proof. Since KT is a union of groups, by (2.9), KT is the set of elements of T of minimal
rank. Let k = p(KT). We shall show that k^Lp{x) for all x in S and hence, by (1.4), Ks is the
set of elements in S of rank k.

Let e be an idempotent in KT and choose a basis so that

[0 Oj

Now, since eTesKTQET, it follows easily that every element of T has the form

h
A C

An affine combination of elements of this form will be of this form also. Therefore every
element of M(T) = S has rank no less than k, the rank of Jk. It is now clear that KTsKs.

Since M(KT) is an ideal of S, KS^M(KT). To show that KS^ES, let x e H(e, Ks) for
some e in KT. Since KS^M(KT) and KT^ET, we must have x = £a(e,, where £a ( = 1 and
e, = e2 e /fT. Now, since e e KT, eete = e for all i, and so

x = exe =Y«.ieeie =£a,-e = e.

Therefore H{e, Ks) = {e}, if e e /sTr. Since all groups of Ks are isomorphic, we have KszEs.
Hence KscM(KT)nEs.

From the fact that KT^KS^M(KT), we have M(ATr)£M(ATS)£M(ATT), and so

M(KT) =

By (2.8), M(KS)
2 = Ks; hence M(KT)2 = ATS and

M(KT)nEs =

Therefore M(KT)nEs = Ks.
That KT = rn^fs is clear since both KT and ^ s consist of the elements of minimal rank in

their respective semigroups. This completes the proof.

If x, y e V or ££V, we shall denote the 1-dimensional linear variety generated by x and y
by M(x, y). M{x, y) consists of all elements a.x+{\-<x)y, where a e Q>.

The following two lemmas are due to H. S. Collins [2].

(2.11) LEMMA. IfS is an affine semigroup over afield of cardinality greater than two, then,
for e,fe E, the following are equivalent:

® M(e,f)£E;

(ii) e+f= ef+fe;

(iii) M(e,f)nE*{e,f}.

(2.12) LEMMA. IfS is an affine semigroup, and M{e,f)<=zE, then gM(e,f)g = gfor allg in
M(e,f).
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(2.13) THEOREM. Let S be an affine semigroup over afield of characteristic different from
two with kernel K<=-E. If KJ=M(K), then M{K) contains a semigroup isomorphic to the semi-
group T on Q> ® <S> ® <S> with multiplication

(x, y, z)(a, b, c) = (x, b, xb),

where xb denotes multiplication in $ (see (2.1)).

Proof. A linear variety in a vector space V over a field of characteristic different from two
may be characterized as a subset Mof Vsuch that x,yeMimplies that M(x,y)^M.

Thus, since K=?M(K), there exist e,fe K^E such that M(e,f) is not contained in K. Let
M = M(e,f effe). We shall show that M is a semigroup isomorphic to T. It is known [4,
p. 77] that gKg = H{g) for g e KnE and, since K^E, it is clear that gKg = g for all g e K. In
particular efe = e and fef=f. It is now apparent that {e,f effe} is a semigroup. We shall
now show that {e,f effe) is an affine basis (see [1, p. 102]) for M. Note first that
M(e,f)nE={e,f}; forifnot,by(2.n)and(2.12,)forallginM(e,/)wehavegr = gegeK, con-
tradicting the fact that M{e,f) is not contained in K. Hence, if efe M(e,f), then efe M(e,f)nK,
which is contained in M(e,f)r>E = {e, / } ; this implies that ef= e or ef=f. If ef= e, then
fe =fef=f which implies that M(e,f) is a left zero semigroup and is therefore contained in
K since it meets K. Thus the supposition that ef= e leads to a contradiction. Similarly, ef=f
is impossible. Consequently, ef$ M(e,f).

Suppose however that fee M{e,f ef). Then fe = cte+fif+yef where tx+P+y = l;
hence fe =f2e = ofe+Pf2+yfef= <rfe+(fi+y)f, which implies that (1 -a)fe = (fi+y)f. As
above, fe cannot be equal t o / ; hence 1— a = 0. Now/e = e+Pf— fief Multiplying this
equation on the right by e and repeating the above procedure, we find that p = 1. Therefore
fe = e+f—ef and so e+f= ef+fe, which implies, by (2.11), that M(esf)^E, a contradiction.
Thus/e is not contained in M(e,f, ef) and it follows that [e,f effe} is an affine basis for M.

One may see without difficulty that the set P = {(I, 0,0), (0, 1, 0), (1, 1, 1), (0,0, 0)} is an
affine basis for the affine semigroup T. Moreover, P is a semigroup isomorphic to the semi-
group {e,f effe} under the correspondence:

e ^ (1,0,0),

/ « - > (0,1,0),

e / W (1,1,1),

f e ^ (0,0,0).

It is now obvious that M is isomorphic to T. This completes the proof.

3. Appendix. In [1], Haskell Cohen and H. S. Collins introduced the notion of an affine
semigroup in a locally convex real linear topological space V. They defined an affine semi-
group to be a convex subset S of V endowed with an associative product for which the trans-
lations x-*xy and x-*yx are affine mappings for all y in S. Thus in the sense of Cohen and

https://doi.org/10.1017/S2040618500035231 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035231


AFFINE SEMIGROUPS OVER AN ARBITRARY FIELD 91

Collins an affine semigroup need not be a linear variety, but merely a convex set. Further-
more, it is not obvious from their definition that an affine semigroup may always be embedded
in an algebra. They did point out, however, that the multiplication on S can always be ex-
tended uniquely to the linear variety M(S) generated by S so that the affine property of the
multiplication holds throughout M(S).

We shall show here that an affine semigroup (in the sense of Cohen and Collins) may
always be embedded in a uniquely determined enveloping algebra. To do this it is clear from
the above remarks that we need only consider affine semigroups which are linear varieties.
Hence by an affine semigroup S we shall henceforth mean a linear variety S (see (0.2) above)
in a possibly infinite-dimensional vector space over an arbitrary field <D which is endowed with
an associative product whose left and right translates are affine mappings. (The reader will
note that, in these more general terms, the main body of this paper is concerned with finite-
dimensional affine semigroups which, due to (3.3) below, are merely linear varieties of matrices
which are closed under matrix multiplication.)

In what follows we shall at most suggest proofs, most of which are similar in nature to
those of Theorem 7 and Theorem 8 of [1].

If S is an affine semigroup with zero z, one may without difficulty see that the vector space
S—z may be endowed with the structure of an algebra isomorphic to S under the affine
mapping x-*x—z, thus obtaining

(3.1) LEMMA. IfS is an affine semigroup with zero, then S is isomorphic to the multiplicative
semigroup of an algebra.

Clearly we may without loss of generality assume that S does not contain the origin of the
containing vector space V. As in the proof of Theorem 7 of [1], one may then easily extend
the multiplication on S to the vector space [S] spanned by S in V to obtain the following result:

(3.2) LEMMA. Any affine semigroup S can be embedded in an algebra [5] , unique to within
isomorphism, such that 0 £ S and S generates [5] .

(3.3) COROLLARY. IfS is an affine semigroup of finite dimension n, then S can be faithfully
represented as a semigroup of matrices of degree n + 2 with entries from the field <f>.

(3.4) The algebra [5] of (3.2) will be referred to as the enveloping algebra of S. If the
affine semigroup Sis isomorphic to a subsemigroup S' of an algebra A and if 0 £ S', then [S] is
clearly isomorphic to the subalgebra generated by 5" in A.

We shall say that a proper two-sided ideal M in an algebra A over O is a hyper-ideal if
there exists an element e in A such that e and M generate A and e is an identity for A modulo
M. Note that an ideal M is a hyper-ideal of A if and only if AIM is isomorphic to <£.

It is now easy to deduce from the above the following theorem:

(3.5) THEOREM. If M is a hyper-ideal of the algebra A and e is an identity for A modulo M,
then M+e is a subsemigroup of the multiplicative semigroup of A and hence an affine semigroup.

Conversely, if S is any affine semigroup, then there exist A, M and e as above such that S
is isomorphic to M + e. Moreover, A and M are unique to within isomorphism. We may, in
fact, take A = [S], e any element of S, and M=S - e.
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If A is any algebra, a new multiplication o may be defined on A by setting ao b = a+b—ab
for alia, be A, where ab denotes the multiplication in A. This is the so-called circle composi-
tion. One may quickly verify that {A, o) is an affine semigroup with identity the zero of A.

(3.6) COROLLARY. If an affine semigroup S has an identity, then S is isomorphic to {A, o)
for some algebra A.

An algebra A over <1>, together with a O-epimorphism </>: A-><& is called a supplemented
algebra [10, p. 182]. The epimorphism <f> is called the augmentation epimorphism. In this
terminology Theorem (3.5) becomes

(3.7) THEOREM. If A is a supplemented algebra over <J> with augmentation epimorphism $,
then S = $~1(1) is an affine semigroup.

Conversely, if S is any affine semigroup, then there exists a supplemented algebra A and an
augmentation epimorphism $ such that S is isomorphic to cf)'1^).
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