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Abstract

In this paper we investigate first passage percolation on an inhomogeneous random graph
model introduced by Bollobás et al. (2007). Each vertex in the graph has a type from
a type space, and edge probabilities are independent, but depend on the types of the
end vertices. Each edge is given an independent exponential weight. We determine the
distribution of the weight of the shortest path between uniformly chosen vertices in the
giant component and show that the hopcount, i.e. the number of edges on this minimal-
weight path, properly normalized, follows a central limit theorem. We handle the cases
where the average number of neighbors λ̃n of a vertex tends to a finite λ̃ in full generality
and consider λ̃ = ∞ under mild assumptions. This paper is a generalization of the paper
of Bhamidi et al. (2011), where first passage percolation is explored on the Erdős–Rényi
graphs.
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1. Introduction and the main results

First passage percolation (FPP), generally speaking, deals with the asymptotic behavior of
first passage times of a percolating fluid in some random environment. This topic has gained
much attention due to its application in various fields such as interacting particle systems,
statistical physics, epidemic models, and real-world networks, for example.

Particularly, when the random environment is a finite weighted random graph then FPP
corresponds to the distance, i.e. the minimal-weight path between two vertices. Also of interest
is the number of edges, often referred to as the hopcount, on this path. Without edge weights
these quantities coincide. Other natural questions can arise such as how to determine the
flooding time of the graph from a fixed vertex x or its diameter, i.e. the maximum of the shortest
paths between x and all other vertices and the maximum of the flooding times, respectively.
This paper investigates FPP on the inhomogeneous random graph (IHRG) model introduced in
[12] with independent and identically distributed (i.i.d.) exponential edge weights with rate 1.

The addition of edge weights on the network can be interpreted as the cost of carrying the
flow from one node to the other along the edge. Furthermore, edge weights can dramatically
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alter the geometry of the graph. For example, consider the complete graph on n vertices first
without edge weights. The hopcount between any two vertices is of course 1. However, by
adding i.i.d. exponential Exp(1) or uniform U(0, 1) edge weights, the weight of the shortest-
weight path is of order log n/n � 1 and the hopcount is about log n [19]. A similar phenomena
can be observed for the IHRG, see Section 1.2.

The proofs usually rely on results from branching processes. The use of exponential weights
imply that the exploration processes of the graph are Markovian. Only recently was FPP studied
on random graphs with general continuous edge weights [9]. We suspect that similar results also
hold in the IHRG for general weights. Other related results are discussed in Section 1.3. We
begin by introducing the IHRG model in Section 1.1. The main results are stated in Section 1.2
and then the main ideas of the proofs are sketched in Section 1.4. In Section 2 we examine
the multitype branching process and in Section 3 we relate the exploration process of the
neighborhood of a vertex in the IHRG model to the branching process of Section 2. In section 4
we make the intuitive picture of colliding flows mathematically precise. Finally, in Section 5
we present the proofs of the main results.

1.1. The model

We consider a general IHRG model introduced by Bollobás et al. [12]. We briefly describe
the model G(n, κ) on n vertices and kernel κ in the general setting and then turn to an important
special case.

Each vertex of the graph will be assigned a type from a separable metric space S which is
equipped with a Borel probability measure μ. For each n we have a deterministic or random
sample of n points xn = (x1, . . . , xn) from S. We assume that the empirical distribution
converges in probability to μ as n → ∞, i.e.

νn(S) := #{i : xi ∈ S}
n

P−→ μ(S) (1.1)

for every μ-continuity set S ⊂ S (S is measurable and there is no mass on the boundary of S).
The pair (S, μ) is called a ground space, and for a sequence (xn)n≥1 satisfying (1.1) we say
that the triplet (S, μ, (xn)n≥1) defines a vertex space ν. Furthermore, a kernel κ on a ground
space is a symmetric nonnegative measurable function on S × S. The natural interpretation
of κ is that it measures the density of edges.

Definition 1.1. Given a vertex space ν and kernel κ , for each pair (i, j), i 	= j , i, j ∈
{1, . . . , n} := [n], the edge {ij} is present in the IHRG G(n, κ) with probability

pij := min

{
κ(xi, xj )

n
, 1

}
independently of other edges. Conditioned on the edges of G(n, κ), we assign each edge an
independent Exp(1) edge weight.

Definition 1.2. (Quasi-irreducibility.) A kernel κ on a ground space (S, μ) is irreducible if
A ⊆ S and κ = 0 almost everywhere (a.e.) on A×(S\A) imply that μ(A) = 0 or μ(S\A) = 0.
A kernel κ is quasi-irreducible if there is a μ-continuity set S′ ⊆ S with μ(S′) > 0 such that
the restriction of κ to S′ × S′ is irreducible and κ(x, y) = 0 if x /∈ S′ or y /∈ S′.

Irreducibility of kernels ensures the emergence of a single giant component in the super-
critical regime. The next definition ensures that the graph has the ‘right’ number of edges e(G)

in expectation E.
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Definition 1.3. (Graphical kernels.) A sequence (κn)n≥1 of kernels on a vertex space (S, μ,

(xn)n≥1) is graphical with limit κ if, for almost every (y, z) ∈ S2, yn → y and zn → z imply
that κn(yn, zn) → κ(y, z), κ ∈ L1(S × S, μ × μ) and is continuous a.e. Furthermore,

1

n
E{e(G(n, κn))} → 1

2

∫∫
S2

κ(x, y) dμ(x) dμ(y). (1.2)

When κn ≡ κ we simply say that κ is graphical.

For example, condition (1.2) holds whenever κ is bounded and ν is a vertex space. For more
general conditions, see [12, Lemma 8.1].

Finite-type spaces. In the proof of the main theorem below, we approximate general kernels
by an appropriate sequence of step functions, referred to as regular finitary kernels. We call a
kernel regular finitary if the type space S has a finite partition into (μ-continuity) sets S1, . . . , Sr

such that κ is constant on each Si × Sj for all 1 ≤ i, j ≤ r . By identifying each Si with a
single point i with weight μi = μ(Si), a random graph G(n, κ) generated by a regular finitary
kernel has the same distribution as a finite-type kernel. That is, S = [r], κ = (κ(s, t))rs,t=1 is
a symmetric r × r matrix with nonnegative entries. Denoting the number of type t vertices by
nt , condition (1.1) becomes

nt

n

P−→ μt holds for every t ∈ S. (1.3)

All finite-type kernels are automatically graphical. The Erdős–Rényi random graph (ERRG) is
a special case of a finite-type graph when r = 1 and κ = c. In the finite-type case we also use
the notation for s, t ∈ S,

λst := κ(s, t)μt ,

where λst gives the limiting average number of type t neighbors of a type s vertex, since this
quantity is binomially distributed with parameters nt − 1{s=t} and κ(s, t)/n, where 1{·} is the
indicator function.

Stationary distributions and main assumption. Let us define the integral operator Tκ on (S, μ)

with kernel κ by

(Tκf )(s) :=
∫

S
κ(s, t)f (t)μ(dt).

Since Tκf ≥ 0 if f ≥ 0 (for further properties, see [12]), by the Perron–Frobenius theory
there is a single real main eigenvalue of Tκ, that we denote by λ̃ + 1, and, assuming quasi-
irreducibility of κ , let us denote the unique, nontrivial left eigenfunction by π(s) satisfying∫
S π(dt) = 1, so ∫

S
π(ds)(κ(s, t)μ(t)) = (̃λ + 1)π(t).

We call π the stationary type-distribution.

Assumption 1.1. Throughout this paper we assume that κ is quasi-irreducible, the main
eigenvalue of Tκ , λ̃ + 1 > 1, and the stationary type-distribution π satisfies∫

S

π(t)

μ(t)
π(dt) < ∞. (1.4)
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We also require that the second largest eigenvalue λ2 of Tκ−I in modulus satisfies 2 Re(λ2) < λ̃.
Equivalently, in the finite-type case we assume that the matrix A is irreducible, has a positive
eigenvalue λ̃ > 0, and 2 Re(λ2(A)) < λ̃ where

Ast = λst − 1{s=t} for 1 ≤ s, t ≤ r. (1.5)

Note that the stationary distribution in the finite-type case satisfiesπA = λ̃π , π(1, . . . , 1)T =
1. The λ̃ > 0 condition is necessary and sufficient for a giant component to emerge in G(n, κ),
which is in direct accordance with whether ‖Tκ‖2,2 > 1 (see [12, Theorem 3.1]).

We call a kernel homogeneous (see [12, Example 4.6]), if it satisfies∫
S

κ(s, t)μ(dt) = λ̃ + 1 for a.e. s ∈ S. (1.6)

Roughly speaking, asymptotically the average degree of a vertex in G(n, κ) generated by a
homogeneous kernel is independent of its type. In this case the symmetry of κ implies that
π = μ, thus, the quantity in (1.4) equals 1.

1.2. Main results

We investigate the weight and the number of edges on the shortest-weight path between two
uniformly selected vertices U and V . Let �UV denote the set of all π paths in G(n, κ) between
U and V . Denote the weight of the shortest-weight path by

Pn(U, V ) = min
π∈�UV

∑
e∈π

Xe,

where Xe is the exponential edge weight attached to edge e in the construction of G(n, κ).
Let Hn(U, V ) denote the number of edges or hopcount of this path. If the two vertices are
in different components of the graph then Pn, Hn := ∞. In the following two theorems we
describe the asymptotic behavior of these two quantities when the average degree remains finite
(sparse regime) or goes to ∞ (dense regime), respectively.

Theorem 1.1. (Sparse setting.) Let (S, μ) be an arbitrary ground space and (κn)n≥1 be a
sequence of uniformly continuous, graphical kernels on (S, μ) that satisfy Assumption 1.1 and
supn,x,y κn(x, y) < ∞ with limn→∞ λ̃n = λ̃ < ∞. Conditioned on (U, V ) being connected,
it follows that(

Hn(U, V ) − ((̃λ + 1)/̃λ) log n√
((̃λ + 1)/̃λ) log n

, Pn(U, V ) − 1

λ̃
log n

)
d−→ (Z, L),

where Z is a standard normal variable. Furthermore, L is a nondegenerate real-valued random
variable whose distribution can be determined from the multitype branching process that arises
when exploring a component of G(n, κ), see Remark 2.2.

Theorem 1.2. (Dense setting.) (i) Under the assumptions of Theorem 1.1 and (1.6) with
limn→∞ λ̃n = ∞, or

(ii) for a κ satisfying the assumptions of Theorem 1.1 and (κn)n≥1 := (̃λn + 1)κ with
limn→∞ λ̃n = ∞,(

Hn(U, V ) − ((̃λn + 1)/̃λn) log n√
log n

, λ̃nPn(U, V ) − log n

)
d−→ (Z, L̃),
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where Z is a standard normal variable, L̃ is equal in distribution to the sum of independent
random variables �1 + �2 − �3 − c with �i i.i.d. standard Gumbel random variables, c = 0
for case (i), and c = log

∫
S π(s)/μ(s)π(ds) for case (ii). Furthermore, we can substitute

(̃λn + 1)/̃λn in the centering of the hopcount by 1 if and only if λ̃n/
√

log n → ∞.

Remark 1.1. Comparing these results with the graph distance Dn(U, V ) in the unweighted
IHRG, we have

• Sparse setting. In this case Dn � log n/log(̃λ + 1) (see [12, Theorem 3.14]), thus,
Pn < Dn < Hn. This shows that the structure of the graph changes with the addition
of edge weights. The shortest-weight path is no longer the path with the least number of
edges: among the paths with slightly more edges some paths have less weight than the
path with the least number of edges.

• Dense setting. In this case with high probability (w.h.p.) the giant component contains
n(1−o(1)) vertices (see [12]). The change in the graph structure is even more significant.
Without edge weights the graph is ultra-small, i.e. Dn(U, V ) = o(log n). However,
adding the edge weights, Hn and Pn remain O(log n).

1.3. Related work

First passage percolation has been investigated on various models such as the integer lattice,
the mean-field model, configuration model, and graphs with i.i.d. vertex degrees both without
edge weights (see, e.g. [6], [11], [12], [13], [16], [17], [22], [24], and [25]) and with exponential
weights (see, e.g. [1], [5], [7], [8], [18], and [19]). The list of results are far from complete, we
only attempt to discuss the results directly related to this paper.

The IHRG model was extensively investigated by Bollobás et al. [12] from many different
aspects, including typical distances without edge weights. We have already shown what effect
the addition of edge weights has on the structure of the graph in Section 1.2. Many other models
are closely related to the IHRG model, for full details, see [12, Sections 4 and 16].

The classical supercritical ERRG G(n, c/n) (c > 1) is the special case when |S| = 1. Our
results generalize the FPP results of Bhamidi et al. [8] on ERRGs with i.i.d. exponential edge
weights. Finite-type graphs were previously studied by Soderberg [23].

A class of IHRGs is the rank-1 class. The kernel κ has the special form κ(x, y) = φ(x)φ(y),
where the positive function φ on S can be interpreted as the ‘activity’ of a type x vertex. In
the Chung–Lu model [15], [16], each vertex i is given a positive weight wi and the edge
probabilities pij are given by pij := wiwj/	n, where 	n = ∑n

i=1 wi . Norros and Reittu
[22] presented results on the existence and size of a giant component with random wi . For
deterministic wi , Chung and Lu [15], [16] showed that, under certain conditions, (without edge
weights) the typical distance between two vertices is log n/log d̄, where d̄ = ∑

w2
i /	n.

An asymptotically equivalent model is the generalized random graph introduced by Britton
et al. [13] with edge probabilities pij = wiwj/(	n +wiwj ), 	n = ∑

k wk . Conditioned on the
vertex degrees, the resulting graph is uniformly distributed over all graphs with the given degree
sequence. Hence, the result of Bhamidi et al. [9] concerning FPP for the configuration model
with general continuous edge weights, implies these results by noting that the configuration
model conditioned on it being simple is also uniformly distributed over all graphs with the
given degree sequence.

First passage percolation results have a deep connection with epidemics with exponential
spreading times on supercritical random graphs. Let I (t) := {v ∈ [n], Pn(x, v) ≤ t} denote
the number of points that have distance less than t from vertex x; equivalently, the number of
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infected vertices up to time t in the epidemic started from x. Then the first and second moment
method for I (t) combined with Theorem 1.1 yields, for t = λ̃−1 log n + u, where W 1 and W 2

are i.i.d. copies of the limit variable below in Proposition 2.2,

I

(
u + log n

λ̃

)
= P

{
Pn(U, V ) − log n

λ̃
≤ u

}
d−→ P{−̃λ−1(log(W 1W 2) + �) + c ≤ u},

i.e. a deterministic function of u, often called the epidemic curve. We omit the details and refer
the reader to [4] and [10].

1.4. Sketch of the proofs

To find the shortest-weight path between two vertices x and y, we consider the edge weights
as lengths and let fluid percolate through the edges of the graph simultaneously at a constant rate,
starting from both vertices. We call this procedure the exploration processes of the neighbor-
hoods of vertices x and y. Intuitively, when the flows collide, the shortest-weight path has been
found: up to any time τ each exploration process contains the vertices with distance at most τ

from x or y. It is standard to relate an exploration process to a branching process (BP). In our
context this BP is a continuous-time multitype BP, which we introduce in Section 2.

We can apply BP theory once we embed the BP into the IHRG: in Section 3 we assign labels
to the vertices of the BP according to their type in a way that we can rule out loop and multiple
edges in the embedding in the IHRG. We thin the BP to deal with cycles.

The problem with the scenario of colliding flows in continuous time is that we can keep
track of the flows only in discrete steps as new vertices are explored. So we first start the
exploration process from x until a given number of vertices are explored and stop. Then we
start the flow from y and wait until a vertex vy which shares an edge with a wet vertex vx in
the flow of x becomes wet. We have then just found a path between x and y through vx and
vy , which, however, might not be the shortest one. Thus, we have to minimize over all such
possible choices of vx and vy . The rigorous treatment of the connection time is contained in
Section 4. Finally, in Section 5 we prove our main results, Theorems 1.1 and 1.2.

2. Multitype branching processes

In this section we collect the required properties of the branching process that arises when
exploring a component of G(n, κ).

Let us define a multitype continuous-time branching process (CTBP) with type space S,
where a particle of type x ∈ S, when it splits (dies), gives birth to a set of offsprings distributed
as a Poisson process on S with intensity measure κ(x, y) dμ(y): the number of children with
types in a subset S ⊂ S has a Poisson distribution with mean

∫
S

κ(x, y) dμ(y). Each offspring
lives for an Exp(1) amount of time independently of everything else. We denote this branching
process with root of type s up to time t by �s

κ(t). For a set E ⊆ S, DE
m and AE

m stand for the set
of dead and alive particles after the mth split whose type belongs to the set E. Let NE

m := |DE
m |

and SE
m := |AE

m|, and we simply write Dm := DS
m, Am := AS

m, and Sm := |AS
m|, Nm := |DS

m|.
Let us also write τm for the time of the mth split. With a slight abuse of notation we write AE

t

for the size of alive individuals in the set E at real time t ∈ R.

Remark 2.1. The BP �s
κ survives with positive probability if and only if ‖Tκ‖2,2 > 1 (see

[12, Theorem 6.1]). The survival probability ρ(s) is the maximal fixed point of the nonlinear
operator 
κ , defined by 
κf := 1 − exp{−Tκf } for f ≥ 0. For homogeneous kernels
ρ(s) ≡ ρ is the maximal solution of the equation ρ = 1 − exp{−(̃λ + 1)ρ}.
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Throughout the proofs, we mainly work with the finite-type S = {1, . . . , r} case given with
the mean-offspring matrix A in (1.5). Recall that πA = λ̃π . We need the following limit
theorems for Ss

m and Ns
m, the number of alive and dead individuals of a given type s ∈ S.

Proposition 2.1. (BP-asymptotics, see Athreya and Ney [3].) For a finite-type continuous-time
branching process as defined above, on the set of nonextinction as m → ∞,

(S1
m, . . . , Sr

m)

λ̃m
→ π and

(N1
m, . . . , Nr

m)

m
→ π almost surely (a.s.). (2.1)

This result implies that

1

m
Sm → λ̃ and

Ss
m

Sm

→ πs a.s. (2.2)

We provide the continuous-time version of these results in the following proposition.

Proposition 2.2. (BP-asymptotics [3].) For a finite-type CTBP as defined above, on the set of
nonextinction as t → ∞,

e−̃λt (A1
t , . . . , A

r
t ) → πW a.s.,

where W is an absolutely continuous random variable with W > 0 on nonextinction, and
Px{W > 0} = ρ(x).

In the following result we obtain a nontrivial consequence of Proposition 2.2 when setting
t := τm.

Proposition 2.3. (Split-time asymptotics [3].) On the set of nonextinction

τm − 1

λ̃
log m → −1

λ̃
log

(
1

λ̃
W

)
a.s.

Remark 2.2. The distribution of W depends on the type of the root, say s. Since in our process
the root dies immediately, As(t) (the number of alive particles at time t) satisfies the stochastic
equation As(t) = ∫

S Au(t − Ei) 1{Ei<t} + 1{Ei>t} ξs(du), with Ei being i.i.d. exponentials,
and ξs(du) ∼ Poi(κ(s, u)μ(du)). Multiplying both sides by e−̃λt we obtain the distributional
identity for Ws : Ws d= ∫

S e−̃λEi Wuξs(du). From here, by the Poissonian property we have
E{exp{∫S f (u)ξs(du)}} = exp{∫S(ef (u) − 1)κ(s, u)μ(du)}. Hence, first conditioning on all
the Poisson points and then using this identity, it follows that the moment generating function
MWs (θ) of Ws satisfies the functional equation

MWs (θ) = exp

{∫
S

∫ ∞

0
(MWu(θe−̃λx) − 1)e−x dxκ(s, u)μ(du)

}
.

The generation of a particle in the branching process corresponds to the hopcount of the
vertex in the IHRG. We use the following theorem which is an immediate consequence of
Kharlamov [21, Theorem 2].

Theorem 2.1. (Generation of a uniformly picked particle in a given type set [21].) Let GE
m

denote the generation of a uniformly picked individual from AE(m), E ⊂ S. Then, conditioned
on survival, for m → ∞, with Z a standard normal variable,

GE
m − ((̃λ + 1)/̃λ) log m√

((̃λ + 1)/̃λ) log m

d−→ Z.
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Note that the parameters are independent of the type. Kharlamov [21] proved the result in the
continuous-time case (i.e. for GE

t ), for an arbitrary set of types E ∈ S under the conditions that
the type distribution is tending to π exponentially fast, and that the expectation and variance of
the generation of type s individuals after unit time for any type s ∈ S is uniformly bounded in s.
These conditions clearly hold if the lifetime is exponential and the total number of children is
Poi(

∫
S κ(s, t)μ(dt)). The result for discrete time (at τm), follows by aperiodicity of the types

along generations.
To bound the error terms of coupling of the BP to the IHRG, we need the following lemma.

Note that this is slightly stronger than what follows from (2.1).

Lemma 2.1. (Law of iterated logarithm for Sj .) Suppose that Assumption 1.1 holds. Then,
conditioned on survival, for every ε > 0, there exists a constant C > 0 such that

|Sj − λ̃j | ≤ C(j)1/2+ε for all j ≥ log log m

holds a.s.

Proof (sketch). The proof follows from Asmussen [2, Theorem 2]. There, Asmussen derives
a law of iterated logarithm for (finite-type) multitype Markov branching processes: he shows
the law of the iterated algorithm for scalar products of the vector of alive individuals with
vectors that are perpendicular to the stationary distribution π for the process at time t . The
conditions in [2, Theorem 2] correspond to the assumption that the real part of the second
largest eigenvalue of A (corresponding to Tκ − I ) is at most λ̃/2. The normalization is different
for equality and strict inequality, but in both case less then t1/2+ε for ε > 0. Applying this
theorem at the split times τm and using the fact that τm − λ̃−1 log m converges, the statement
of the lemma follows by using the projections of the vector Sj to the subspace formed by the
eigenvectors that are perpendicular to π . This can be achieved in the exact same manner as in
Corollaries 3.16 and 3.17 of Janson [20, Theorem 3.15]. Continuous-type spaces can then be
handled by approximation methods.

3. Embedding the BP into the IHRG

In this section we relate the exploration process of the neighborhood of a vertex in the IHRG
model G(n, κ) of Section 1 to the branching process �κ of Section 2.

Coupling of BPs. Denote the following continuous-time multitype BP by �bin
κ : the children

of the root are born immediately, and each particle lives for an i.i.d. Exp(1) random time and
upon death (split) gives birth to its children. The offspring distribution Dbin conditioned on the
event that the particle to split is of type s is

Dbin,(s) = ηs1 + ηs2 + · · · + ηsr ,

where ηst
d= bin(nt − 1{s=t}, κ(s, t)/n) is the distribution of the number of type t neighbors of

a type s vertex. By the standard coupling of binomial and Poisson random variables we obtain
the following lemma.

Lemma 3.1. (Coupling error to Poisson offsprings.) The multitype branching processes �bin
κ

and �κ (defined in Section 2) can be coupled up to the mth split with error

P{there exists j ≤ m, Dbin
j 	= DPoi

j } ≤ m

n
(̃λ + 1) max κ(1 + o(1)). (3.1)

The coupling carries through for τm and GE
m for any set E ⊆ S with the same error bound as

in (3.1).
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Proof. By the standard coupling of binomial and Poisson random variables, we couple ηst

to ξst ∼ Poi(λst ) with error probability nt (κ(s, t)2/n2) = λstκ(s, t)/n(1 + o(1)). Under the
assumption that max κ < ∞, the coupling error up to split m becomes∑

s

Ns
m

∑
t

λst κ(s, t)

n
≤ m

n
max κ

∑
s,t

πsλst = m

n
max κ

∑
t

(̃λ + 1)πt (1 + o(1)),

where we used (2.1) in the inequality and πA = λ̃π in the equality. Clearly the error
probabilities P{Gbin,E

m 	= G
Poi,E
m } and P{τ bin

m 	= τPoi
m } can be bounded from above by the

probability that the coupling fails between the two BPs up to the mth step.

Now, by using a two-step coupling, we can apply the following labeling procedure to �κ in
order to couple it to the neighborhood of a vertex v in the IHRG.

Labeling procedure. Fix n ≥ 1 and denote the set of labels (vertices of the graph) by [n] =
{1, 2, . . . , n}. The labels are distinguished according to the types, so [n] is the disjoint union of
the sets of labels [n](1), . . . , [n](r), where there are nt different labels in [n](t). An individual
of type s in �κ will be assigned a label from [n](s). Given that the root is of type s, we choose
its label i0 uniformly from [n](s).

At any split time τm, assuming that the vertex to split has label im and type s, we assign to its
ηst , t ∈ [r] children different labels drawn without replacement uniformly at random for t 	= s

from [n](t); for t = s from [n](s) \ {im}. As a result, siblings have different labels from each
other and from their parents: this corresponds to excluding multiple and loop edges in G(n, κ).

It can still happen that vertices of the same type that are not siblings are assigned the same
label. Such multiple labels correspond to cycles in G(n, κ). We keep only the shortest path by
thinning the BP as follows.

Thinning the BP. We obtained a cycle in the exploration of the IHRG when a label in the labeled
CTBP reappears among the labels of the previously split vertices, i.e.

ik ∈ D(k − 1) := {i0, i1, . . . , ik−1}
for some k. By deleting ik and the whole subtree starting from it in �κ we keeponly the
shortest-weight paths between pairs of vertices. We call the label ik and its subtree thinned.
We refer to the remaining process as th�κ .

The total number of labels is finite (= n), so a.s. at some random time th�κ dies out. At
this time the minimal-weight spanning tree of a component of G(n, κ) is found. It is clear that
for each t ≥ 0, the set of labels reached in th�κ(t) and the set of vertices reached by time t in
G(n, κ) are equal in distribution. So we arrive at the following lemma.

Lemma 3.2. (FPP on G(n, κ) is thinned labeled CTBP.) For any fixed n ≥ 1, consider th�κ

and G(n, κ) as defined above. Then, for any i0 ∈ [n], the weight Pn(i0, j) and the hopcount
Hn(i0, j) in G(n, κ) is equal in distribution to the split time and generation of the individual
with label j in th�κ with root i0.

Remark 3.1. Lemma 3.2 holds for i.i.d. edge weights with arbitrary continuous distribution
supported on (0, ∞), not only for Exp(1) weights.

3.1. Analysis of thinning

Here we bound the difference between th�κ and �κ . More precisely, the connection will
happen at some alive vertex, so we need to give a bound of the proportion of thinned alive
vertices among each type in �κ .
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To keep track of the exploration processes at each split time τk , we introduce shortest-weight
trees SWTk . With a slight misuse of notation, let D(k) and A(k) stand for the collection of dead
and alive labels of the vertices that the flow reaches up to and including time τk (as a list, with
multiple occurrences). Clearly |A(k)| = Sk , the number of alive vertices and |D(k)| = k + 1.
Let SWT0 = ({i0}, τ0 = 0), and define

SWTk = (D(k), A(k), {τ0, τ1, . . . , τk}), k ≥ 1. (3.2)

The labeled CTBP �κ(t) can be uniquely reconstructed from the sequence (SWTk)
∞
k=1. Note

that SWTk contains all the labels in �κ , also the thinned labels and possibly some multiple
labels among alive vertices. Next, we bound the number of such labels in order to guarantee
that the shortest-weight path w.h.p. does not fall in a thinned subtree.

Lemma 3.3. (Expected number of thinned alive labels.) Let At (k) and thCAt (k) denote the
number of alive and thinned alive labels of type t ∈ S at split time τk in the labeled CTBP. Then
for k = nβ , under Assumption 1.1,

E

{
thCAt (nβ)

At (nβ)

}
= o(1) whenever β < 3

4 . (3.3)

Proof. We calculate thCAt (k)by checking to see if the particle that splits at time τj is thinned,
then see how many type t alive descendants it has in its subtree at the kth split. Denoting these

descendants by A
{ij }→t

j (k) and the type of ij by t (ij ), we obtain

thCAt (k) =
k∑

j=1

∑
s∈S

|A{ij }→t

j (k)| 1{ij is thinned | t (ij )=s} 1{t (ij )=s} . (3.4)

Let Au(j+) denote the type u alive labels immediately after τj and

Au→t
j (k) := {v ∈ At (k) : v is a descendant of w with w ∈ Au(j+)}.

In Figure 1 we give an example to illustrate the notation.
Note that by symmetry, immediately following τj , the subtrees of the active individuals of

the same type are i.i.d., so A
{x}→t
j (k) are i.i.d. over all alive particles x ∈ Au

j . Hence,

E

{
A

{x}→t
j+ (k)

Au→t
j+ (k)

∣∣∣∣ Su
j

}
= 1

Su
j

.

If the j th splitting particle was of type s, it had ηsu type u children, so we obtain

E{A{ij }→t

j (k) | ηsu, S
u
j , Au→t

j (k)} =
∑
u∈S

ηsu

Su
j

|Au→t
j (k)|.

Combining this and (3.4) with the fact that the event that ij is thinned and A
{ij }→t

j (k) are
conditionally independent yields that the expectation in (3.3) is at most

k∑
j=1

∑
s,u∈S

E

{
ηsu

|Su
j |

|Au→t
j (k)|

|At (k)|
}

P{ij is thinned | t (ij ) = s}︸ ︷︷ ︸
(∗)

P{t (ij ) = s}︸ ︷︷ ︸
(�)

.
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τ6

τ0

τ2

i6

i5

i4

i3

i2

i1

i0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Illustration for the notation A
{ij }→t

j (k) and Au→t
j (k) with j = 2, k = 6, and two types

s and t . Here, A
{i2}→s
2 (6) = {6, 8} and A

{i2}→t
2 (6) = {7, 9}. Furthermore, As→s

2 (6) = {1, 5, 6, 8},
As→t

2 (6) = {7}, At→s
2 (6) = {2, 10, 11}, and At→t

2 (6) = {3, 4, 9, 12}.

Recall that N
(t)
k denotes the number of type t vertices among the first k splits and nt is the

total number of type t labels. So (∗) is at most Ns
k /ns . Since the lifetimes are i.i.d. exponential,

the j th split is uniform among the Sj−1 alive vertices, thus, (�) equals St
j−1/Sj−1. Hence,

E

{
thCAt (k)

At (k)

}
≤

k∑
j=1

∑
s,u∈S

E

{
ηsu

Su
j

|Au→t
j (k)|

|At (k)|
}

Ns
j

ns

Ss
j−1

Sj−1
. (3.5)

The random variables in the expectation are positively correlated, thus, we cannot take expec-
tations separately. Instead, we split the sum in j into two parts: from 1 to nα (α < β) and from
nα to nβ .

In the first sum we use ηsu/S
u
j ≤ 1, while in the second ηsu ≤ πun

β−α , the number of
type u vertices in the whole subtree of ij (from Propositions 2.2 and 2.3). Also observe that∑

u |Au→t
j (k)| = |At (k)| for every j . Thus,

(3.5) ≤
nα∑

j=1

∑
s∈S

π2
s

μs

j

n
(1 + o(1)) +

nβ∑
j=nα

∑
s∈S

πun
β−α

πũλj

π2
s

μs

j

n
(1 + o(1)), (3.6)

where we used (1.3), (2.1), and (2.2). Under Assumption 1.1 the sum in s is O(1) even as
|S| → ∞ later (for homogeneous kernels π = μ, thus,

∑
s∈S π2

s /μs = 1).
As a result, the first sum in (3.6) is of order n2α−1 which is o(1) if and only if α < 1

2 . The
second sum is of order n2β−α−1 = o(1) if and only if β < (1 + α)/2 < 3

4 .

Lemma 3.4. (Expected number of different labels.) For all k ≥ 1 and t ∈ S, the number of
different labels of alive vertices after the kth split is

|At (k)| = St
k

(
1 − λ̃πt

2μt

k

n

)
.

Proof. We assign the labels of new active vertices of type t by sampling with constraints on
the set [n](t), see Section 3. As a result, the number of different labels in At (k) is dominated
by uniform sampling from [n](t) with replacement. Since by (2.1), St

k = λ̃πt k(1 + o(1)), we
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sample λ̃πt k(1 + o(1)) labels from [n](t). Let Xi , i ∈ [n](t), be the number of times label i

was chosen: Xi ∼ bin(̃λπtk(1 + o(1)), 1/nt ). Hence,

P{Xi ≥ 2} = λ̃2π2
t

2

k2

n2
t

+ O

(
k3

n3
t

)
.

Thus, the expected number of type t labels chosen multiple times satisfies

E

{ ∑
i∈[n](t)

1{Xi≥2}
}

=
∑

i∈[n](t)
P{Xi ≥ 2} = λ̃2π2

t

2μt

k2

n
+ o(1).

Similarly, the expected number of labels chosen more than three times is O(k3/n2). The
statement of the lemma immediately follows since the number of different labels equals the
number of alive vertices St

k = λ̃πt k(1 + o(1)) minus the multiple labels.

4. Connection time

In this section we make the intuitive picture of colliding flows mathematically precise.
Computationally, it is slightly easier to let the fluid flow from source U until it reaches some
an = o(n) vertices, then ‘freeze’ it, and then start a flow from source V until the random time
of connection, i.e. when the two flows collide.

The exploration process from U := x until the split time τx
an

is coded in SWTx
an

(see (3.2)).
Conditioned on the frozen flow of x, the flow from V := y can only connect to the flow from
x via an alive vertex in SWTx

an
. Hence, we must leave out the labels Dx(an) from the possible

labels [n] in the labeling procedure of the BP from y. A collision edge appears when a label
from Ax(an) appears among the labels in Dy(k). The ith (i ≥ 1) collision edge appears at
split

C(i)
n = min{k ≥ C(i−1)

n : |Ax(an) ∩ Dy(k)| = i} at time τ
y

C
(i)
n

.

Note that the weight of a path between x and y is τx
an

+ τ
y

C
(i)
n

+ Ei , where Ei is the remaining

lifetime of the collision edge after time τx
an

(This is the remaining time needed for the collision
vertex to split in the flow of x). The memoryless property of exponential weights implies that
Ei

d= Exp(1). So the shortest path is through the collision edge that minimizes the expression
τ

y

C
(i)
n

+ Ei . Hence, the shortest path has length

Pn = τx
an

+ min
i

{τy

C
(i)
n

+ Ei}. (4.1)

Let us denote the split which minimizes the above expression by Ccon
n . In Figure 2 we illustrate

the connection time.
Next, we determine the distribution of the minimum in (4.1): the following proposition

states that collision edges appear around time O(n/an), forming a Poisson point process (PPP).

Proposition 4.1. (PPP limit of collision edges.) Denote a homogeneous PPP with intensity λ

by PPP(λ) and let λ̂ = λ̃
∑

s∈S π2
s /μs . Conditioned on the event that both CTBPs survive, the

point process {
C

(i)
n an

n

}
i

d−→ PPP(λ̂) as n → ∞.
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Connection time

x y

SWT ( )x SWT ( )y

anτ
Ccon

nτ

C(1)
nτ

vertices in D (a )x
n

vertices in A (a )x
n

optimal path

1st collision edge

Figure 2: Illustration of the connection time. The first collision edge to appear is not necessarily the one
which will be on the optimal path.

Proof. We first show by induction that for fixed n,

C
(i)
n an

n

d= gamma(i, λ̂n) with λ̂n := n

an

∑
s∈S

S
x,s
an

ns

πs(1 + o(1)) + o(1). (4.2)

For C
(1)
n we can write

P

{
C(1)

n > x
n

an

}
=

xn/an∏
j=1

E{P{C(1)
n > j | C(1)

n > j − 1, Fj−1}},

where Fj−1 := σ(SWTx
an

, SWTy
j−1). To calculate P{C(1)

n > j | C
(1)
n > j − 1, Fj−1}, we

condition on the type of the splitting vertex in SWTy and find the probability that its label is
not an alive label in SWTx . Combining the results of Lemmas 3.3 and 3.4, we can substitute
the number of nonthinned different marks in Ax,t (an) by S

x,t
an

, and neglect the error factor of
order (1 − λ̃an/n) along the lines. This error can be included in the o(1) term of the last line
of the following:

P

{
C(1)

n >
xn

an

}
=

xn/an∏
j=1

[∑
t∈S

S
y,t
j−1

S
y
j−1

(
1 − S

x,t
an

nt

)]

=
xn/an∏
j=1

[
1 −

∑
t∈S

S
y,t
j−1

S
y
j−1

S
x,t
an

nt

]

= exp

(
−x

n

an

∑
t∈S

S
x,t
an

nt

an

xn

xn/an∑
j=1

S
y,t
j−1

S
y
j−1︸ ︷︷ ︸

(∗)

+o(1)

)
,

where (∗) equals πt (1 + o(1)) by (2.2). So C
(1)
n an/n

d= Exp(λ̂n) = gamma(1, λ̂n). From the
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induction hypothesis,

P

{
C(i+1)

n >
xn

an

}
=

∫ x

0
P

{
C(i+1)

n >
xn

an

∣∣∣∣ C
(i)
n an

n
= s + o(1)

}
λ̂i

ns
i−1

(i − 1)!e−λ̂ns ds + P

{
C(i)

n >
xn

an

}

=
∫ x

0

xn/an∏
j=sn/an

[
1 −

∑
t∈S

S
y,t
j−1

S
y
j−1

S
x,t
an

nt

]
λ̂i

ns
i−1

(i − 1)!e−λ̂ns ds + P

{
C(i)

n >
xn

an

}

= λ̂i
nx

i

i! e−λ̂nx + P

{
C(i)

n >
xn

an

}
.

Differentiating the cumulative distribution function of C
(i+1)
n an/n with respect to x yields the

probability density function of gamma(i + 1, λ̂n), which proves (4.2). Thus, for fixed n the
point process, {

C
(i)
n an

n

}
i

is a PPP(λ̂n).

From (1.3) and (2.1) it follows that λ̂n → λ̂ a.s. as n → ∞. Hence, the assertion holds.

We will see below in Section 5.1 that since τ
C

(i)
n

− (1/̃λ) log C
(i)
n → −(1/̃λ) log(W/̃λ) a.s.,

to determine the distribution of τCcon
n

+ Econ we need the following lemma.

Lemma 4.1. Let (Pi)i denote the points of a PPP(1) process and independent of the (Pi)i let
(Ei)i be i.i.d. Exp(1) random variables. Then

min
i

{
1

λ̃
log Pi + Ei

}
d= −1

λ̃
� + 1

λ̃
log(̃λ + 1),

where � follows a standard Gumbel distribution, i.e. P{� ≤ x} = e−e−x
.

Proof. For convenience let Xi ∼ (1/̃λ) log Pi . We will calculate the tail distribution of the
minimum by conditioning on the Poisson points first. Thus,

P

{
min

i
(Xi + Ei) ≥ z

}
= E{P{for all i, Xi + Ei > z | X1, X2, . . .}}

= E

{∏
i

e−(z−Xi)+
}

= E

{ ∏
i : Pi<ẽλz

e−z(Pi)
1/̃λ

}
.

The number of Poisson points Z in the interval [0, ẽλz] follows a Poisson random variable with
parameter ẽλz. Conditioning on Z, the points Pi , i ≤ Z, are independent and uniform in the
interval [0, ẽλz]. Thus,

E

{ ∏
i : Pi<ẽλz

e−z(Pi)
1/̃λ

}
= E{E{e−zU

1/̃λ
i }Z} = E

{(
λ̃

λ̃ + 1

)Z}
= exp

{
ẽλz

(
1 − λ̃

λ̃ + 1

)}
.

It is easy to see that if � is a standard Gumbel then P{−a� + b > x} = e−ex/ae−b/a
. Thus,

here a = 1/̃λ and b = (1/̃λ) log(̃λ + 1), and the lemma follows.

https://doi.org/10.1239/aap/1435236989 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236989


First passage percolation on IHRGs 603

Note that the Poisson convergence is true only for finitely many collision edges, hence, we
need a stochastic bound on the index i where the minimum in (4.1) is attained.

Lemma 4.2. The probability that the shortest-weight path is not among the first k collision
edges decays exponentially in k, i.e.

P{arg(C(i)
n = Ccon

n ) > k} ≤
(

λ̃

λ̃ + 1

)k

.

Consequently, the distribution of the rescaled connection time is stochastically dominated
by the geo(1/(̃λ + 1))th point in the PPP in Proposition 4.1. Thus,

P con
n := anC

con
n

n
≤

N∑
i=1

Ẽi , (4.3)

where N ∼ geo(1/(̃λ + 1)) and independently Ẽis are independent Exp(λ̂)s.

Proof of Lemma 4.2. We use again the notation Xi ∼ (1/̃λ) log(Pi), where Pi is the ith
point in a PPP(1) process. To bound the event that the minimum is taken at an index at least
k + 1, we condition on the value of the minimum (= z) and also on the value of the Xk+1 = c

with z ≥ c so that

P{arg min > k} = P

{
min
i≤k

(Xi + Ei) > min
j≥k+1

(Xj + Ej)
}

= E

{
P

{
for all i ≤ k, Ei > z − Xi

∣∣∣ Xk+1 = c, min
j≥k+1

(Xj + Ej) = z
}}

= E

{
E

[∏
i≤k

e−(z−Xi)

∣∣∣∣ Xk+1 = c, min = z

]}
.

Now Xk+1 = c means that the (k + 1)th point in the Poisson process is Pk+1 = ẽλc.
Conditioning on this information means that the first k points have the same distribution as
(Ui)1≤i≤k independent uniform points on [0, ẽλc]. Thus,

E

{∏
i≤k

e−(z−Xi)

∣∣∣∣ Xk+1 = c

}
=

∏
i≤k

E{e−zU
1/̃λ
i } =

(
ec−z λ̃

λ̃ + 1

)k

.

Then clearly we have

P{arg min > k} =
(

λ̃

λ̃ + 1

)k

E

{
E

[
ek(c−z)

∣∣∣ Xj+1 = c, min
j≥k+1

= z
]}

≤
(

λ̃

λ̃ + 1

)k

,

where the last inequality comes from the fact that z − c ≥ 0 a.s. This is immediate since the
sequence of Xj s are increasing Xj ≥ Xk+1 for all j ≥ k+1. Thus, z = minj≥k+1(Xj +Ej) ≥
Xk+1 = c.

5. Proof of the main results

We begin this section with the proof of Theorem 1.1 for finite-type graphs. Then, for the
general setting, we approximate general kernels by regular finitary kernels. We conclude with
the proof of Theorem 1.2. The proofs are analogous to the proofs of [8].
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5.1. Proof of Theorem 1.1: finite-type space

Let (S, μ) be an arbitrary finite-type ground space and κ a kernel that satisfies Assump-
tion 1.1. Denote the split of a type t vertex by t†, the event that the connection happens by ‘con’
and recall that Ax,t (k) is the collection of labels of alive type t vertices after the kth split in
the flow of x. We first argue that the probability that the shortest-weight path contains thinned
vertices, i.e. it is not a real shortest path, is o(1).

From a union bound, the probability that the connection happens through a thinned alive
vertex v can be bounded from above by∑

t∈S

(
P{v ∈ thCAx,t (an)}︸ ︷︷ ︸

(∗)

+ P{v ∈ thCAy,t (Ccon
n )}︸ ︷︷ ︸

(�)

)
P{con, t†}.

Using Lemma 3.3, the probability (∗) is o(1) for every t ∈ S if an = nα with α < 3
4 . Similarly,

by Lemma 3.3, Proposition 4.1, and (4.3) the probability (�) is also o(1) for every t ∈ S if
α > 1

4 . Hence, for all choices of α ∈ ( 1
4 , 3

4 ), the shortest-weight path w.h.p. does not contain a
thinned vertex.

Now we determine the distribution of the shortest-weight path. Recall (4.1),

Pn = τx
an

+ min
i

{τy

C
(i)
n

+ Ei}. (5.1)

In �κ(t), Mt = e−̃λt |S(t)| is a martingale. Thus, τk can be expressed as

τk = −1

λ̃
log

Mτk

λ̃
+ 1

λ̃
log

Sk

λ̃k
+ 1

λ̃
log k. (5.2)

Applying (5.2) to the minimum in (5.1), we have

min
i

{τ
C

(i)
n

+ Ei} = min
i

{
−1

λ̃
log

( λ̂M
y
τ
C

(i)
n

λ̃

)
+ 1

λ̃
log

( S
y

C
(i)
n

λ̃C
(i)
n

)
+ 1

λ̃
log(λ̂C(i)

n ) + Ei

}
.

For i fixed, n → ∞, λ̂C
(i)
n = (n/an)λ̂Pi → ∞ and, thus, conditioned on the survival of the

branching process, τ
C

(i)
n

→ ∞ holds also, implying that M
y
τ
C

(i)
n

→ (Wy | Wy > 0) := Ŵ y a.s.

and in L2, and S
y

C
(i)
n

/(̃λC
(i)
n ) → 1 also a.s. Furthermore, we also know from Proposition 4.1 that

the law of (λ̂C
(i)
n )i converges to a PPP(1) process. Thus, the minimum becomes asymptotically

as n → ∞:

min
i

{τ
C

(i)
n

+ Ei} = −1

λ̃
log

Ŵ yλ̂

λ̃
+ 1

λ̃
log

n

an

+ min
i

{
1

λ̃
log(λ̂Pi) + Ei

}
.

For the last term we can apply Lemma 4.1 to obtain

min
i

{τ
C

(i)
n

+ Ei} = −1

λ̃
log

Ŵ yλ̂

λ̃(̃λ + 1)
+ 1

λ̃
log

n

an

− 1

λ̃
�. (5.3)

Now (5.2), (5.3), and λ̂ = λ̃
∑

s∈S π(s)2/μ(s) imply that

Pn = 1

λ̃
log n − 1

λ̃
log Ŵ xŴ y − 1

λ̃
� + 1

λ̃
log

λ̃(̃λ + 1)∑
s∈S π(s)2/μ(s)

,
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with � being a standard Gumbel, Ŵ z, z = x, y, the limits of the (independent) martingales
e−̃λt |S(t)z| in �z

κ , z = x, y, conditioned on nonextinction. Since Wi > 0 a.s. on nonextinction
and

∑
s∈S π(s)2/μ(s) < ∞ under Assumption 1.1, these quantities are well defined.

Next, we derive the central limit theorem for the hopcount Hn. We start by proving that the
hopcount of the connecting vertices in the processes �x

κ and �
y
κ are independent conditioned

on their types. We remind the reader that first the flow of x is constructed, which is then frozen
at time an. Then, each time a vertex splits in �

y
κ , the label of its type t children are picked

uniformly at random without replacement amongst the possible labels nt \ {Dx(an)}.
Lemma 5.1. Conditioned on the event {collision happens from SWT(y) to SWT(x) at the Cnth
split at a type t vertex},

(a) the label vC where this happens is uniform among all labels in Ax,t
an

,

(b) the hopcounts G
x,t
an

, G
y,t
Cn

are independent given that the collision happens at a type t

vertex,

(c) the distribution of G
x,t
an

and G
y,t
Cn

is the same as of a uniformly picked type t alive
individual from Ax

an
and A

y
Cn

, respectively.

Proof. The first two statements of the lemma are a straightforward consequence of the
following urn problem: in an urn there are M balls of type A (alive) and N balls of type U

(untouched), each of them labeled. We carry out the following procedure: in the kth step we
draw dk balls without replacement, record the label of type A and type U balls in sets LA and
LU , respectively, and then put the balls back in to the urn. Thus, Li(k) consists of all the labels
of type i balls i = A, U that have been drawn up to step k. It is easy to show that at any time
the content of the set LA and LU is a uniformly picked set of size |LA| and |LB | among all the
labels in A and B, respectively. In particular, for every label v ∈ A we have

P{v /∈ LA(k)} =
∏
j≤k

(
1 − dj

M + N

)
.

Now let A = Ax,t
an

and U = [nt ] \ (Dx,t
an

∪ Ax,t
an

). Then, LA(k) ∪ LU(k) = Ay,t (k). The
previous argument states that at any time the labels in LA = Ay,t ∩ Ax,t are uniformly picked
from the labels of Ax,t .

The collision edges between the processes x and y are established such that, in each step k, if
a type t particle dies in �

y
κ , we pick a uniform label among LA(k)∪LU(k), and collision happens

if it is of type A. Clearly, by the previous argument, whenever this is the case, conditioned
on the picked label being in LA(k), the its label is a uniformly picked label among Ax,t

an
(and

clearly also uniform in LA(k)). Furthermore, the step k when a label of type A enters LA is
independent of the label itself, thus, the generation of the label at the connection in SWTx and
in SWTy are independent and equal to the generation of a uniformly picked alive individuals
of type t .

Next, we determine the limit distribution of the hopcount. Let G
z,t
k denote the generation

of a uniformly picked alive individual of type t in Az(k), z = x, y, and recall the definition of
Ccon

n given just after (4.1). Then

Hn =
∑
t∈S

1{Ccon
n ∩t†}(Gx,t

an
+ G

y,t
Ccon

n
).
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Thus,

Hn − ((̃λ + 1)/̃λ) log n√
((̃λ + 1)/̃λ) log n

=
∑
t∈S

1{Ccon
n ∩t†}

G
x,t
an

− ((̃λ + 1)/̃λ) log an√
((̃λ + 1)/̃λ) log an

√
log an

log n

+
∑
t∈S

1{Ccon
n ∩t†}

G
y,t
Ccon

n
− ((̃λ + 1)/̃λ) log Ccon

n√
((̃λ + 1)/̃λ) log Ccon

n

√
log Ccon

n

log n

+ ((̃λ + 1)/̃λ) log(Ccon
n an/n)√

((̃λ + 1)/̃λ) log n

.

First, using the fact that conditioned on Ccon
n and the type, the two terms containing G

z,t∗
converge to independent standard normal variables (independently of the type). Furthermore,
by Lemma 4.2, the last term tends to 0. From Lemma 5.1 we ensure the independence of the
two limiting normal variables, thus, it follows that the right-hand side is tending to

N

(
0,

log an

log n

)
+ N

(
0,

log(nCcon
n /an)

log n

)
→ N(0, 1).

We used the fact that Lemma 4.2 and (4.3) imply that the total variance is tending to 1.

5.2. Proof of Theorem 1.1: general kernels

We approximate a general kernel κ by a sequence of regular finitary kernels, where we
assume that |S| < ∞ (the regular finitary case and the finite-type case differ only in notation).
Types with zero measure cannot be simply ignored, since they can alter G(n, κ) significantly.
However, with a simple argument from [12], we can assume that μs > 0 for every s ∈ S.

Given a sequence of finite partitions αm = {Am1, . . . , AmMm}, m ≥ 1, of S and an
x ∈ S, we define Ax

m as the element of αm for which x ∈ Ax
m. As usual, diam(A) denotes

sup{d(x, y) : x, y ∈ A} for A ⊂ S, where d is the metric on S. For any ground space (S, μ)

there exists a sequence of finite partitions αm (see [12, Lemma 7.1]) such that

(1) each Ami is a μ-continuity set,

(2) for each m, αm+1 refines αm,

(3) for a.e. x ∈ S, diam(Ax
m) → 0, as m → ∞.

For such a sequence αm, m ≥ 1, we define the regular finitary kernel

κ̄m(x, y) := 1

μ(Ax
m)μ(A

y
m)

∫∫
Ax

m×A
y
m

κ(s, t) dμ(s) dμ(t). (5.4)

If κ is continuous a.e. then property (3) implies that κ̄m(x, y) → κ(x, y) for a.e. (x, y) ∈ S2.
If the original κ is homogeneous, then so is κ̄m, with

∫
S κ̄m(x, y) dμ(y) = λ̃ + 1.

Let (S, μ) be an arbitrary ground space and assume that kernel κ satisfies the conditions of
Theorem 1.1. These define the sequence of random graphs (G(n, κ))n≥1. Take any sequence
of finite partitions αm = {Am1, . . . , AmMm}, m ≥ 1, that satisfy properties (1), (2), and (3)
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described above. For each m, κ̄m (defined in (5.4), with ground space (Sm, μ)) defines the
sequence (G(n, κ̄m))n,m≥1. Note that in the proofs for finite-type kernels, none of the estimates
depend on μt or |Sm|, so all the error terms are uniform. The condition sup κ(x, y) < ∞ is
necessary because it is used in the proof of Lemma 3.1.

In the proof we let n and m tend to ∞ simultaneously in a carefully chosen way and
couple (G(n, κ̄m))n,m≥1 and (G(n, κ))n≥1. For fixed m, from the proof of [14, Lemma 2.1 and
Theorem 3.1] it is easy to see that∣∣∣∣P{

H
m(n)
n − ((̃λ + 1)/̃λ) log n√

((̃λ + 1)/̃λ) log n

< x

}
− 
(x)

∣∣∣∣ ≤ C(̃λ)

(
1√

log an

+ 1√
log(n/an)

)
, (5.5)

where C(̃λ) is a λ̃-dependent constant. Setting an := √
n, the error is O(1/

√
log n).

Let δm = maxi diam(Ami). Since κ is uniformly continuous, there exists εm = εm(κ, δm)

such that for all x, y, and all (u, v) ∈ Ax
m × A

y
m : |κ̄m(u, v) − κ(x, y)| ≤ εm. Recall that an

edge is present with probability κ(·, ·)/n, thus,

P{1{{x,y}∈e(G(n,κ))} 	= 1{{Ax
m,A

y
m}∈e(G(n,κ̄m))}} ≤ 2εm

n
.

Summing over all possible edges, we find for the edge sets that

P{e(G(n, κ)) 	= e(G(n, κ̄m))} ≤ 2n2εm

2n
= nεm.

For a fixed n, define
m(n) := inf{m : εmn

√
log n ≤ 1}.

Then for all m > m(n), the coupling between G(n, κ̄m) and G(n, κ) fails with probability less
than 1/

√
log n. Under this coupling and also for the hopcount, we have

P{Hn 	= Hm(n)
n } ≤ 1√

log n
= o(1).

Combining this error bound with the error bound in (5.5), we obtain the desired central limit
theorem (CLT) for the hopcount Hn in the sequence (G(n, κ))n≥1 as n → ∞.

Now we turn to the proof of the convergence of the shortest-weight path. To avoid conflicting
notation we will denote Pn(κ) to be the shortest-weight path belonging to G(n, κ). The same
coupling argument as for the hopcount yields

P{Pn(κ) 	= Pn(κ̄m(n))} ≤ 1√
log n

. (5.6)

The result for the finite-type case is

Pn(κ̄m) − 1

λ̃
log n

d−→ −1

λ̃
Ŵ x

(m)Ŵ
y

(m) − 1

λ̃
� + 1

λ̃
log

λ̃(̃λ + 1)∑
s∈S πm(s)2/μm(s)

,

where � is a standard Gumbel, Ŵ i
(m), i = x, y, are i.i.d. limits of the martingales from the

branching processes with kernel κ̄m(n), conditioned on being positive. Note that we can take
m = m(n) so that κm(n) → κ as n → ∞. The coupling (5.6) implies that Pn(κ) and Pn(κ̄m(n))
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must have the same limit, hence, Ŵ x
(m(n))Ŵ

y

(m(n)) → Ŵ xŴ y . Also, by the properties of the
partition Am(n), we have ∑

s∈Sm(n)

πm(n)(s)
2

μm(n)(s)
→

∫
S

π(s)

μ(s)
π(ds).

This completes the proof.

5.3. Proof of Theorem 1.2: dense setting

In the dense setting, where λ̃n → ∞, we have a sequence of kernels κn, n ≥ 1. The
type t neighbors of a type s vertex have distribution η

(n)
st

d= bin(nt − δst , κn(s, t)/n). Note
that under both assumptions E{η(n)

s,t } → ∞, hence, we avoid the coupling to Poisson variables
as in Lemma 3.1, and immediately apply the CLT result of [21] to �κn , where the offspring
distribution (D

(n)
i | type s splits) is the sum of independent binomial variables η

(n)
st , t ∈ S. We

apply a similar argument as for the general case. Namely, in �κn , for a uniformly picked type t

individual at step k,∣∣∣∣P{
G

(n),t
k − ((̃λn + 1)/̃λn) log k√

((̃λn + 1)/̃λ) log k

< x

}
− 
(x)

∣∣∣∣ ≤ C(̃λ)
1√

log k
,

which, when considering the connection of the flows at k = an and Ccon
n = �(n/an), will yield

an error term of 1/
√

log n for Hn. Considering λ̃n → ∞, the term (̃λn + 1)/̃λn → 1 in the
denominator and this immediately yields the desired result for the hopcount in Theorem 1.2.
The centering constant can be replaced by log n if and only if

√
log n = o(̃λn).

For the shortest-weight path, we have to reinvestigate the distribution of the split times τan

and τCcon
n

. Since the time between two consecutive splits, given the number of alive individuals
in the BP, is the minimum of that many independent exponentials, for every m,

τm
d=

m∑
i=1

Ei

S
(n)
i

, (5.7)

with Ei i.i.d. Exp(1). Recall that D
(n)
j denotes the number of children of the j th dying

particle. Then, since both in case (1) D
(n)
j ∼ Poi(̃λn + 1) and in case (2) D

(n)
j ∼ Poi((̃λn +

1)
∫
S κ(s, t)μ(dt)) if j is of type s, by the usual CLT for Poisson variables, we have, for

S
(n)
i = ∑i

j=1 D
(n)
j − (i − 1),

S
(n)
i − ĩλn√
i(̃λn + 1)

d−→ N(0, 1).

From this we only need S
(n)
i = λ̃ni(1 + o(1)) for all i ≥ 1, combined with (5.7), yielding

λ̃nτm ≈ ∑m
i=1 Ei/i. Note that the sequenceEm/m, Em−1/m−1, . . . , E1/1 has the same distri-

bution as the spacings between m i.i.d. exponentials E′
i , so

∑m
i=1 Ei/i

d= max1≤i≤m E′
i := Bm.

From here it is straightforward that

P{̃λnτ
(x)
an

− log an ≤ x} = P{Ban ≤ x + log an} = (1 − e−(x+log an))an → exp(−e−x)

is the distribution function of a standard Gumbel. Similarly to the proof in Section 5.1, we
conclude that

(̃λnτ
(x)
an

− log an, λ̃nτ
(y)
Ccon

n
− log Ccon

n )
d−→ (�1, �2),
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where �1, �2 are i.i.d. standard Gumbels. From (5.1) we obtain

λ̃nPn − log n
d= λ̃nτ

(x)
an

− log an︸ ︷︷ ︸
d−→�1

− log
n

an

+ min
i

{̃
λnτ

(y)

C
(i)
n

− log C(i)
n︸ ︷︷ ︸

d−→�2

+̃λn

(
1

λ̃n

log C(i)
n + Ei

)}
. (5.8)

Proposition 4.1 yields C
(i)
n = n/anP

(i)
n , with P

(i)
n PPP(λ̂n) points, and then Lemma 4.1 yields

that the last term in the minimum equals

λ̃n min
i

{
1

λ̃n

log C(i)
n + Ei

}
= log

n

an

− �3 + log
(̃λn + 1)

λ̃n

∫
S(π(t)/μ(t))π(dt)

,

with �3 again a standard Gumbel. Since λ̃n → ∞, the (̃λ + 1)/̃λ term vanishes in the limit, and,
under (1.6), it follows that

∫
S(π(t)/μ(t))π(dt) = 1. Combining these with (5.8) completes

the proof.
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