
The effectiveness of streak modes in controlling the oblique-type breakdown in
a supersonic boundary-layer at Mach 2.0 is investigated using direct numerical
simulations. Investigations in the literature have shown the effectiveness of streak
modes in delaying the onset of transition dominated by two-dimensional waves, but
in oblique breakdown, three-dimensional waves and a strong streak mode dominate
the transition process. Paredes et al. (J. Fluid Mech., vol. 831, 2017, pp. 524–553)
discussed the possible stabilization of supersonic boundary layers by optimally
growing streaks using parabolized stability equations. However, no study has as
yet been reported regarding direct nonlinear control of oblique breakdown. This
study deals with the effects of large-amplitude decaying streak modes generated
by a blowing–suction strip at the wall to control full breakdown in a reference
case. Modes with four to five times the fundamental wavenumber are found to be
beneficial for controlling the transition. In the first region after the control-mode
forcing, the beneficial mean-flow distortion (MFD), generated by inducing the control
mode, is solely responsible for hampering the growth of the fundamental-mode. On
the whole, the MFD and the three-dimensional part of the control contribute equally
towards controlling the oblique breakdown. The results show significant suppression
of transition, and substantial improvements have been observed in the levels of
the skin-friction coefficient and wall-temperature in comparison to the uncontrolled
case. Moreover, refreshing the control using an additional downstream control strip
increases the gain. However, the forcing amplitude must be carefully chosen in order
not to introduce a generalized inflection point in the spanwise averaged mean flow
invoking enhanced disturbance growth.
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1. Introduction

Precise prediction of laminar breakdown to turbulence in the boundary-layer flow is
indispensable for the design of modern supersonic aircraft, not only due to drag and
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Control of oblique-type breakdown in a supersonic boundary layer 1073

separation control but also wall heating by friction. With an ever-increasing focus on
cutting emissions and increasing the efficiency of the next-generation of supersonic
carriers, it has therefore become of vital, topical interest to control the onset of
turbulence for high-speed boundary layers.

The oblique-type, first-mode instabilities, breakdown scenario is dominant for the
supersonic boundary layer while the acoustic-mode instabilities (Mack modes, Mack
(1984)) often dominate in the hypersonic regime. The direct numerical simulation
(DNS) studies of Thumm (1991) and Fasel, Thumm & Bestek (1993), for the
supersonic boundary layers at Mach number 1.6, were the first ones to report
the oblique-type breakdown mechanism. Fezer & Kloker (2000) have investigated
the standard oblique-type breakdown with its velocity-streak modes generated by
the fundamental unsteady oblique wave pair(s) in combination with subharmonic
three-dimensional modes using DNS at Mach 2. They found that the growth rates
of three-dimensional subharmonic modes were less significant than those of the
fundamental mode and, hence, the standard oblique-type breakdown was found to
be dominant. However, the study also concluded that the presence of subharmonic
modes did speed-up the transition process. Their findings contradicted the conclusions
of Kosinov et al. (1994) who did not document steady modes at that time. Later
on, Mayer, Wernz & Fasel (2011) replicated the DNS for the conditions of Kosinov
et al. (1994) and confirmed the importance of oblique-type breakdown mechanism in
the experiments. Nowadays it is very clear that the streak modes inherent in oblique
breakdown play an essential role as their amplitude grows strongly, fed by nonlinear
generation of the unsteady modes and some continuous add-up by a transient-growth
mechanism, see Laible & Fasel (2016). Streak instability finally causes the laminar
breakdown.

Regarding the control of transition in cases where two-dimensional Tollmien–
Schlichting waves dominate (incompressible flow), the forcing of control streaks
has been investigated, see, for example, Cossu & Brandt (2002), Bagheri & Hanifi
(2007) or Shahinfar et al. (2012). The streak amplitude must not be too high – for
otherwise localized shear-layer instabilities cause rapid transition (Andersson et al.
2001). For oblique breakdown with its inherent streak modes the additional forcing
of such modes does not look promising at first, and was only investigated recently
in a first study on the interaction of modes by Paredes, Choudhari & Li (2017).
On the other hand, Wassermann & Kloker (2002) and Saric, Reed & White (2003)
successfully investigated the control strategy using appropriate steady control vortex
modes for the generic base flow on a swept wing, where cross-flow instability leads
to exponential amplification of such steady modes. The findings report that closely
spaced vortices can suppress the wider spaced modes responsible for the natural
breakdown. Importantly, Wassermann & Kloker (2002) attributed the suppression
of the most-amplified steady modes to the mean-flow distortion (MFD) generated
nonlinearly by the control vortices within the upstream flow deformation (UFD)
technique. It was found that the two-dimensional (2-D) part of the UFD weakened
the growth while the three-dimensional (3-D) part weakened the receptivity of the
naturally most-growing modes; for Blasius-flow similar findings concerning the MFD
are reported, see, for example, Dörr & Kloker (2017). Stabilization of a supersonic
two-dimensional boundary layer using optimally growing streaks has been discussed in
the recent study by Paredes et al. (2017). They utilized the nonlinear plane-marching
parabolized stability equations (PSE) to predict the development of finite, stationary
disturbances and their interaction with oblique waves. The study concludes that the
spanwise wavelength of the control streaks must be smaller than the one of the
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naturally most-growing oblique travelling modes by a factor of two at least, in order
not to reinforce the streak mode inherent in the oblique-breakdown scenario. However,
neither DNS nor experiments have so far been reported for the successful control of
supersonic boundary-layer oblique breakdown.

Although the PSE study of Paredes et al. (2017) provides a conceptual model
for characterizing a stabilization provided by transiently growing optimal streaks,
still some important questions need to be addressed. As later transition stages are
completely nonlinear and unsteady, the situation needs a deeper analysis using full
DNS. The full effects of ‘control’ streaks, possibly not growing but decaying, are not
known for the oblique-type breakdown. How effective are they in the full transition
scenario up to turbulence, and which spanwise spacing is useful?

This paper is structured as follows. Section 2 provides the details about the DNS
solver used and the boundary conditions, followed by a validation case in § 3. Various
aspects about controlling the oblique-type breakdown are presented in § 4; which
include the description of the main scenario in § 4.1, the effects of the disturbance
spectrum in § 4.2, the effects of control mode amplitude in § 4.3, implications of
the spanwise wavenumber of the control mode in § 4.4, the role of the mean-flow
distortion and the 3-D part of the control in § 4.5, reinforcing the control mode
in § 4.6 and the effect of controlling transition in § 4.7. And finally, the study is
concluded in § 5.

2. DNS solver and simulation details
The study utilizes an in-house developed high-order DNS, and large-eddy simulation

(LES) code named CHOC-WAVES which solves the three-dimensional, compressible,
unsteady Navier–Stokes equations for perfect gases. This code uses a hybrid
conservative sixth-order split centred finite-difference scheme with a fifth-order
weighted essential non-oscillatory scheme to discretize convective fluxes. Numerical
stability is achieved by splitting the convective terms in skew-symmetric form to
minimize the aliasing error and to enforce the discrete conservation of the kinetic
energy. The diffusive terms are approximated with fourth- or sixth-order schemes
and are expressed in Laplacian form. The whole system is time-integrated using
a third-order Runge–Kutta scheme. The solver has previously been used for many
studies (Shadloo, Hadjadj & Hussain 2015; Sharma, Shadloo & Hadjadj 2018a,b).
The validation case for the current study is presented in § 3.

2.1. Simulation set-up
A supersonic boundary layer with free-stream Mach number M∞= 2.0 is investigated
using DNS. The fluid is supposed to be a perfect gas with constant specific heats. The
set-up is designed to keep the flow conditions of Fezer & Kloker (2000) or Mayer
et al. (2011). The free-stream temperature is T∗

∞
= 160 K, velocity u∗

∞
= 507.1 m s−1,

viscosity ν∗ = 2.1067 × 10−5 m2 s−1, pressure p∗
∞
= 23.786 kPa and Prandtl number

Pr= 0.72. The flow domain is free of any shocks generated from the leading edge of
the plate because the inlet of the domain is kept downstream of the leading edge at
x∗in = 0.004154 m with inlet Reynolds number Rexin = 105 and unit Reynolds number
Re∗u = 2.407 × 107 m−1. The boundary-layer thickness at the inlet is δ∗in = 7.958 ×
10−5 m. The length and height of the domain are L∗x = 0.055 m (Lx/δin= 691.13) and
L∗y = 0.0102 m (Ly/δin = 128.17), respectively. The width of the domain corresponds
to the fundamental wavelength L∗z = λ

∗

z = 0.002153 m (Lz/δin= 27.05) of the disturbed
mode. But for the validation case, a four times broader domain was chosen to include
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Cases Nmodes Control mode FCS AFCS (%) SCS ASCS (%) HSCS

Cref 1 × OFF × OFF × ×

C31Cw 5 (0,3) ON 1.69 OFF × ×

C41C 1 (0,4) ON 1.95 OFF × ×

C41Cw 5 (0,4) ON 1.95 OFF × ×

C51Cl 1 (0,5) ON 1.95 OFF × ×

C51C 1 (0,5) ON 2.43 OFF × ×

C51Ch 1 (0,5) ON 4.88 OFF × ×

C51Cw 5 (0,5) ON 2.43 OFF × ×

C52C 1 (0,5) ON 2.43 ON 2.43 1
C52Cn 1 (0,5) ON 2.43 ON 2.43 3
C52Ch 1 (0,5) ON 2.43 ON 4.88 3
C61Cw 5 (0,6) ON 2.53 OFF × ×

TABLE 1. Simulation parameters for various cases. Nmodes, FCS, SCS, AFCS,SCS and HSCS
stand for the number of modes excited, first control strip, second control strip, the
amplitudes at the first and the second control strip (AFCS,SCS = (ρv)w,max/ρ∞u∞), and the
number of harmonics used in the second control strip, respectively. Suffix h, l, n and w
represent cases with high, low intensity of the control mode, narrow crests of SCS and
wide disturbance spectrum, respectively.

the subharmonic modes considered by Fezer & Kloker (2000). Table 1 lists the various
cases investigated in this study. Equidistant grid spacing is utilized in streamwise (x)
and spanwise (z) directions with Nx = 800 and Nz = 140 points, respectively. Grid
stretching is used in wall-normal direction, defined as

y= L∗y

(
1+

tanh κy
tanh κ

)
, (2.1)

where, κ = 3 is the grid stretching parameter. The number of points in wall-normal
(y) direction are Ny = 180.

2.2. Boundary conditions
At the inlet of the domain, physical quantities like streamwise and wall-normal
velocity, and density profiles obtained from the similarity solution of a laminar
compressible adiabatic boundary layer are specified. Supersonic inflow and outflow
conditions are chosen at the inlet and outlet of the domain at x∗in and x∗out = x∗in + L∗x ,
respectively. Periodic boundary conditions are used for the side-walls of the domain.
The no-slip and no-penetration condition is used at the surface of the wall except for
the blowing–suction and control strips which are used to excite the test-modes and
introduce the stabilization streaks, respectively, in the domain. The temperature at the
wall is calculated by considering the adiabatic zero-gradient condition everywhere, and
for the top surface a slip condition with zero boundary-normal gradient is imposed.

2.2.1. Blowing and suction
The laminar boundary layer is perturbed using blowing and suction which

introduces an excitation in (ρv)wall/ρ∞u∞. This strip extends from x∗1 = (x∗in +
0.004154) m to x∗2 = (x

∗

in + 0.009654) m, and can be expressed as

ρv(x, y= 0, z, t)= Aρ∞u∞ f (x)g(z)h1(t), (2.2)
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f (x)= 4 sin θ(1− cos θ)/
√

27, (2.3)
θ = 2π(x− (x∗1 − x∗in))/(x

∗

2 − x∗1), (2.4)

g(z)= (−1)k cos
(

2πkz
L∗z

)
, (2.5)

h1(t)= sin(hωt), (2.6)

where A is the disturbance amplitude given as (ρv)wall/(ρ∞u∞), ω is the angular
frequency of the excitation mode, h is the multiple of the fundamental frequency
and k is the multiple of the fundamental spanwise wavenumber. The expressions for
f (x), θ and h1(t) are taken from Pirozzoli, Grasso & Gatski (2004). For all the cases
listed in table 1, A = 6.5 × 10−4. The fundamental frequency f ∗0 = 73.83 kHz and
wavenumber β∗0 = 2π/λ∗z = 2.9176× 103 m−1, which correspond to their dimensionless
counterparts used by Fezer & Kloker (2000), are excited in this study, i.e. modes (1,1)
and (1,−1), designating the frequency/spanwise wavenumber tuple. Here, (h,k) denotes
the mode with frequency hf ∗0 and spanwise wavenumber kβ∗0 . In the following,
(h,k) stands for the sum of (h,+k) and (h,−k). Various (h,k) modes are excited for
Cx1Cw cases (details in § 4.2).

2.2.2. Control streak strips
Control streaks are introduced using additional strips to control the transition

process. Their formulation is quite similar to that of the unsteady blowing–suction
but these perturbations are steady and the function in x is altered. Note that no net
mass flux is introduced because there is no 2-D part in the wall-function. For all the
cases mentioning FCS ‘ON’ in table 1, this strip runs from x∗c1.1

= (x∗in + 0.002) m to
x∗c1.2
= (x∗in + 0.004) m,

ρv(x, y= 0, z)= AFCSρ∞u∞ f (x)g(z), (2.7)
f (x)= 2.5983(1− cos θ)/

√
27 (2.8)

here, θ and g(z) have same formulations as defined earlier in § 2.2.1, see figure 13(a).
Additionally, for cases with SCS ‘ON’, another more downstream control strip is used
which extends from x∗c2.1

= (x∗in + 0.01664) m to x∗c2.2
= (x∗in + 0.01864) m. For cases

C52Cn and C52Ch a different formulation of g(z) has been used (details will be
described in § 4.6), which is given as

g(z)=
1
3
×

[
−cos

(
2π× 5z

L∗z

)
+ cos

(
2π× 10z

L∗z

)
− cos

(
2π× 15z

L∗z

)]
. (2.9)

3. Validation
In order to validate the solver for growth rates of various modes in the boundary

layer, ‘Case 1’ computed by Fezer & Kloker (2000), see also Mayer et al. (2011),
is taken as the reference benchmark. See the latter paper also for an overview of
the stability characteristics of the flow as obtained by linear stability theory. Modes
(1,4) and (1/2,3) are excited using blowing–suction. It should be noted here that the
details of blowing and suction used by Fezer & Kloker (2000) are not provided in
their study, therefore the amplitudes of the fundamental and subharmonic modes are
adjusted to match with the respective initial amplitudes. Figure 1 compares various
modes of the current DNS with their counterparts by Fezer & Kloker (2000), marked
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FIGURE 1. Comparison of the streamwise evolution of the maximum disturbance
amplitudes of various modes with Fezer & Kloker (2000) (marked by symbols).

by symbols. The curves show a good collapse assuring that the DNS correctly
predicts the growth of various modes. Each mode is computed by time-sampling
over two fundamental periods, then performing a Fourier transform in the spanwise
direction followed by one with respect to time, and then obtaining the maximum
value in wall-normal direction at a given streamwise station. In order to cut the
computational cost, a quarter of the domain used for validation is considered in
the reference case Cref for the remainder of the study. No subharmonic excitation
is employed, only the fundamental mode (1,1), which peaks in growth rate in the
frequency-spanwise wavenumber spectrum, is excited. Moreover, Cref is seven times
more refined in the spanwise direction than the original case used for validation. The
instantaneous flow-field for Cref is shown in figure 4(a) which prominently displays
the oblique-type breakdown close to Rex = 9× 105.

4. Controlling transition
4.1. Main scenario

In an attempt to control the transition to turbulence, control mode (0,5) – as a result
of various trials, see below – is utilized, which is forced using a control strip running
from Rex=1.48×105 to Rex=1.96×105 (case C51C). The longitudinal cut for C51C,
coloured by the contours of temperature shown in figure 2, clarifies that no local
temperature jump is introduced due to the induction of the steady control streak mode.
The induced control mode indeed successfully suppresses the transition. It can be seen
in figure 3(a) that, as a result of introduction of the control streak mode (location
marked by vertical dashed lines) (0,5), a large MFD (0,0) is generated (≈12 % of
ρ∞u∞), and the control modes lead to the reduction of the growth rates of the main
3-D modes (1,1) and (0,2) in comparison to Cref. The MFD is a part of the
stabilization of the flow, as will be shown below in § 4.5. The evolution of high-
frequency modes initiated by the numerical background noise shown in figure 3(b)
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FIGURE 2. (Colour online) Longitudinal cut for C51C: contours of T/Tw at z/δin = 13.5.
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FIGURE 3. (Colour online) Comparison of the streamwise evolution of the maximum
(a) disturbance amplitudes of various modes, and (b) amplitudes of high-frequency modes:
C51C versus Cref.

depicts significant suppression for C51C. This difference is as large as three orders
of magnitude towards the end of the domain because of the missing breakdown with
control. The initial noise level generated from the solver is ≈10−5 of ρ∞u∞ (see
figure 3b). Figure 4(b) shows the instantaneous flow-field for C51C demonstrating
complete suppression of the turbulent region. Towards the end of the domain, (0,2)
high-speed streaks can be prominently seen as a result of their higher amplitude from
Rex = 106 onwards (see figure 3a). It is to be noted that no streak instability sets in
despite the large (0,2) amplitude that however is enriched by the (0,5) control mode
and (0,0). Flow cross-cuts in figure 5 show the early stage of transition of Cref in
figure 5(a) while C51C remains stable at this location (see figure 5b) due to less
pronounced low-speed regions. A comparison of figures 5(c) and 5(d) reveals a more
stable nature of the streaky boundary layer of C51C compared to Cref due to the
existence of the two high-speed streaks intruding into the low-speed near-wall region
and preventing the build-up of strong, unstable low-speed regions, cf. figures 5(a)
and 5(c).
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FIGURE 4. (Colour online) Instantaneous flow-fields for (a) Cref, and (b) C51C: contours
of u/u∞, shown at y/δin = 0.48.
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FIGURE 5. (Colour online) Contours of u/u∞ for (a,b) at Rex = 8.6× 105, (c) (snapshot)
and (d) at Rex = 13× 105, (a,c) case Cref, (b,d) C51C.

4.2. Larger disturbance spectrum
The results presented so far prove the effectiveness of the considered control mode
(0,5) in controlling the oblique-type breakdown induced by the fundamental symmetric
mode (1,1). To investigate the effect of a broader disturbance input we consider the
case C51Cw comprising of a total of five disturbance modes which are forced
simultaneously in the same blowing–suction strip, each having the same amplitude
as the fundamental mode before. The additional modes are (1,2), (1,3), (2,1),
(2,3), to include higher spanwise wavenumbers being closer to the control-mode
wavenumber and to provide modes that fill the gaps directly or by the nonlinear
interaction that exists in the pure, fundamental case with (1,1) only. Likewise C51C,
the transition is successfully suppressed in C51Cw despite the larger total forcing
amplitude, see figure 6. It can be seen that (2,1) and (2,3) do not alter the scenario
palpably. Modes (1,2) and (1,3) nonlinearly generate the streak modes (0,4) and
(0,6), respectively, which are much closer to the spanwise wavenumber of the control
mode (0,5), than the (0,2) of the fundamental mode. This may compromise the control
strategy according to intuition and the findings of Paredes et al. (2017). However, it
can be seen from figure 6 that the control mode (0,5), with the applied amplitude

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.435


1080 S. Sharma, M. S. Shadloo, A. Hadjadj and M. J. Kloker

(1, 1)
(0, 2)
(1, 3)
(1, 5)
(0, 0)
(0, 5)
(1, 2)
(2, 1)
(2, 3)
(0, 4)
(0, 6)

(÷ 105)Rex

(®
u)

� m
ax

/(
® ∞

u ∞
)

2 4 6 8 10 12 14

100

10-1

10-2

10-3

10-4

FIGURE 6. (Colour online) Streamwise evolution of the maximum disturbance amplitudes
of various modes for C51Cw.

and the generated MFD (0,0), still successfully suppresses the significant growth of
the relevant 3-D modes.

4.3. Effects of control-mode amplitude
The two cases C51Cl and C51Ch with lower and higher forcing amplitudes of the
control mode, respectively, are compared to C51C. Figure 7(a) shows the evolution
of various modes for C51Cl; the sudden shoot-up of (0,0) close to Rex = 8 × 105

signifies transition to turbulence. It can be implied from this figure that because of
both the lower forcing amplitude of the control mode (0,5) and the MFD (≈9 % of
ρ∞u∞) transition cannot be suppressed. On the other hand, the high forcing amplitude
of the control mode (0,5) in case C51Ch (figure 7b) causes rapid transition close
to Rex = 5 × 105, see figure 8, as a result of strong streak-mode instability. The
control-effective amplitude window is thus expectedly limited. Streaks with a modal
ρu amplitude larger than about 25 % cause localized high-frequency instability even
if they are closely spaced, as here.

4.4. Implications of spanwise wavenumber of control mode
The effect of the spanwise wavenumber is investigated using four cases: C31Cw,
C41Cw, C51Cw and C61Cw, employing control modes (0,3), (0,4), (0,5) and (0,6),
respectively, with the wide disturbance spectrum. These control modes are induced
with different forcing amplitudes (see table 1) in order to have the same effective
Fourier amplitude at the end of the control strip (see figure 9). This comparison plot
reveals that the streaks and generated MFD (0,0) decay is stronger the higher the
spanwise wavenumber of the control mode is, except for C41Cw and C51Cw that
behave similarly. On comparing the (0,0) modes further downstream it becomes clear
that C31Cw and C61Cw do not show working control because their (0,0) modes
shoot-up suddenly at Rex = 10 × 105 and Rex = 9 × 105, respectively, signifying
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FIGURE 7. (Colour online) Streamwise evolution of the maximum disturbance amplitudes
of various modes for cases (a) C51Cl, and (b) C51Ch.
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FIGURE 8. (Colour online) Instantaneous flow-field for C51Ch: contours of u/u∞, shown
at y/δin = 0.48.

transition. C61Cw generates the lowest of all control MFDs, and as soon as it
falls below about 2 % of ρ∞u∞, the flow shows early signs of transition at about
Rex = 8 × 105. Hence, the growth rate of (1,1) is strongest for C61Cw. As a result
of the high forcing amplitude of the control modes, relevant modes with double
spanwise wavenumber are generated nonlinearly. The interaction of the generated
(0,6) by control mode (0,3), which is as strong as the (0,3) itself (see figure 9), is
responsible for destabilization of the flow towards the end of the domain, therefore,
the control fails here. Figure 9 also shows that for C41Cw the amplitude of generated
mode (0,8) remains about half as low as the control mode (0,4) while for C51Cw,
(0,10) shows exponential decay right from its generation. An instantaneous flow-field
of C41Cw is shown in figure 10; four high-speed streaks can be seen towards the
end of the domain with more pronounced low-speed streaks, see the edges of the
spanwise domain in figure 11, compared to C51C(w), see figures 4(b) and 5(d).
Therefore, (0,5) stands out slightly as the best choice for the control mode. Finally,
further simulations (not shown) indicated no relevant influence of a spanwise shift of
the control modes in relation to the fundamental oblique mode (1,1).

4.5. Role of the mean-flow distortion generated by the control
Here we investigate the contribution of the MFD quantitatively towards its share
in the flow stabilization, cf. § 5.3 in Wassermann & Kloker (2002). The analysis is
performed as follows: the converged working cases are restarted, then the laminar
baseflow is subtracted from the spanwise mean of the instantaneous flow which
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FIGURE 9. (Colour online) Comparison of the streamwise evolution of the maximum
disturbance amplitudes of various modes of cases C31Cw, C41Cw, C51Cw and C61Cw.
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FIGURE 10. (Colour online) Instantaneous flow-field for C41Cw: contours of u/u∞, shown
at y/δin = 0.48.
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FIGURE 11. (Colour online) Cross-cut of the domain: contours of u/u∞ for C41Cw at
Rex = 13× 105.

gives the 2-D disturbance part (2DP) of the flow including the MFD. Note that for
regions where steady modes prevail, the 2DP is equal to the MFD. This 2DP is
then subtracted from the instantaneous field, hence only the 3-D part remains in the
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FIGURE 12. (Colour online) Comparison of the streamwise evolution of the maximum
disturbance amplitudes of various modes for cases (a) C41C-2D with C41C and Cref, and
(b) C51C-2D with C51C and Cref.

flow. The same procedure is repeated at each time-step. The flow is thus deprived
of any 2-D part that is nonlinearly generated. This gives interpretable results in the
early stages of the scenario where the 2-D modes (2,0) and (0,0) inherent in oblique
breakdown without control are not too large. Figures 12(a) and 12(b) compare the
modal growth for cases with and without the 2DP with Cref for C41C and C51C,
respectively. It can be seen from these figures that the initial control-mode amplitude
for both (0,4) and (0,5) gets larger if the respective MFD is suppressed at equal 3-D
wall forcing, i.e. the nonlinearly generated MFD reduces the generated streak mode
amplitude as qualitatively expected. The initial amplitude of (1,1) is reduced by the
3-D part of the control mode, independent of the existence of the MFD. Directly
downstream of the first control strip, the MFD of the control is between 8 % and 3 %,
and weakens the growth rate of the fundamental oblique mode (1,1) considerably.
Without MFD its growth is initially even larger than without any control part (Cref
case). However, if the amplitude of MFD falls below about 3 %, its effect on the
growth rate of the fundamental oblique mode (1,1) vanishes. Then, the (growth)
development of the fundamental mode is the same with or without the MFD of
the control, i.e. the amplitude curves run parallel with a difference caused by the
initial suppressing effect of the MFD. The control streaks decay but never fall below
10 % in the cases considered, and are eventually responsible for the suppression of
the fundamental mode further downstream. Therefore, it may be concluded from
figure 12 that the 3-D part of the streaks causes a suppression of the fundamental
mode (1,1) when their (fixed) spanwise wavelength gets lower than about 2.3 times
the local boundary-layer thickness; this holds for Rex > 5.5 × 105 for C51C and for
Rex > 6 × 105 for C41C; for Rex < 5 × 105, the 3-D part may even cause a growth
increase of (1,1). That is why a (0,3) control is here not effective for the fundamental
(1,1) oblique mode, the latter being the most amplified mode as for primary instability.
We note here that the ratio of spanwise wavelength to boundary-layer thickness that
is found effective in control for the 3-D control part is about the same as that for
optimally growing streaks, see Paredes et al. (2017). The streaks, however, decay
here.
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FIGURE 13. 3-D representation of control strip functions at (a) FSC, and (b) SCS for
C52Cn and C52Ch.
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FIGURE 14. (Colour online) Instantaneous flow-field for C52C: contours of u/u∞, shown
at y/δin = 0.48.

4.6. Bolstering the control
In order to check for an improvement of the effectiveness of transition control,
another control strip is used further downstream extending from Rex = 5.00 × 105

to Rex = 5.49 × 105 for the cases C52C and C52Cn. For case C52C, the same
control strip function as the first one is used. Its mathematical function is shown in
figure 13(a) in a perspective view. Figure 14 shows the instantaneous flow field for
C52C and it can be seen that the repetition of the strip turns out to be detrimental,
resulting in earlier transition to turbulence. The cross-cut of C52C at Rex = 8 × 105

in figure 15(b) shows pronounced destabilizing low-velocity streaks in comparison to
C51C in figure 5(b). Figure 14 also reveals that after the induction of the streaks from
the first control strip they tend to become thinner. At the second control strip the
blowing, which is of the same spanwise size of the blowing at the first strip, results
in local thickening and destabilization of the streaks and hence causes transition.
Note that the blowing (part of the control) induces the low-speed streaks and the
wall shear is smaller at the second strip, causing the blowing to effectively penetrate
deeper into the boundary-layer. This issue can be addressed by altering the second
control strip in such a manner that the blowing parts of the control become narrower
and remain contained inside the oncoming streaks from the first control strip. To
achieve this, the disturbance function is chosen as the sum of the control mode
(0,5) and its first two super-harmonics (0,10) and (0,5), each component having a
third of the original amplitude to yield the same peak amplitude of the function,
see figure 13(b). In case C52Cn, the flow does, indeed, not show transition, and
figure 16(a) shows the effectiveness of having a second control strip, by comparing
the growth of various modes for cases C51C and C52Cn. The figure documents that
the increase in amplitude of (0,5) at the second control strip reinforces the beneficial
MFD (0,0) at the second control strip (≈5 % of ρ∞u∞) which results in stronger
suppression of the modes such as (1,1) and (0,2) for C52Cn in comparison to C51C.
The instantaneous field is shown in figure 17. On comparing the streaks generated
by (0,2) in C52Cn and C51C in figure 4 it can be seen that the ones for C52Cn are
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FIGURE 15. (Colour online) Cross-cuts of the C52C: contours of u/u∞ at
(a) Rex = 3× 105, and (b) Rex = 8× 105.

weaker than for C51C, which is a direct consequence of the stronger suppression of
(1,1) due to the second control strip as shown in figure 16(a). If the peaky-blowing
function is used for the first and second control strip, the result is the same as with
the standard function for strips 1 and 2, C52C: the low-speed streaks are widened by
the second strip, and the second strip is detrimental. A higher control amplitude at the
second control strip leads to transition even for the peaky-blowing strip (case C52Ch).
Figure 16(b) shows the modal evolution for C52Ch, and mode (1,1) is compared with
case C52Cn. It is clear that just after the second control strip (1,1) grows strongly
for C52Ch while it shows suppression for C52Cn indicating that most probably the
mean-flow distortion generated in case C52Ch seems to be no more beneficial.

The assumption of the generation of a detrimental mean-flow distortion could be
confirmed by inspecting the existence of a generalized inflection point (GIP) at the
first and second control strip for all C5xCx cases. The GIP is defined as (Mack 1984)

GIP(y) :
∂ρ

∂y
∂u
∂y
+ ρ

∂2u
∂y2
= 0, (4.1)

and signifies the existence of an (additional) inviscid instability in the mean flow.
Figure 18(a) depicts the GIP function in the middle of the first control strip (Rex =

1.722 × 105) and in the middle of the second control strip (Rex = 5.311 × 105) for
various cases. This figure clarifies that no GIP is generated at the location of the first
control strip, however, inflection points do exist at the location of the second control
strip for cases C52C and C52Ch. The existence of the GIP is caused by the weaker
wall shear at the second strip location due to the thicker boundary layer together with
the large blowing amplitude. To assess the stabilizing role of the mean-flow distortion,
the velocity and temperature profiles for mode (0,0) are plotted in figure 18(b). Here,
1T = 〈T∗C51C,C52C〉 − T∗base flow and 1u = 〈u∗C51C,C52C〉 − u∗base flow where 〈 〉 signifies the
spanwise and time mean. The 1u-curve signifies that the flow is accelerated close
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FIGURE 16. (Colour online) Comparison of the streamwise evolution of the maximum
disturbance amplitudes of various modes of cases (a) C51C and C52Cn, and (b) C52Ch
and C52Cn.
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FIGURE 17. (Colour online) Instantaneous flow-field for C52Cn: contours of u/u∞, shown
at y/δin = 0.48.
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FIGURE 18. (Colour online) (a) Generalised inflection point curves at the middle of the
first control strip (Rex=1.722×105, red) and the middle of the second control strip (Rex=

5.311× 105, black) and (b) temperature and velocity profiles for case C51C downstream
of FCS at Rex = 3× 105 (red) and for C52C at SCS (black).

to the wall, and decelerated in the upper two-thirds of the boundary layer, both in
line to a fuller, more stable profile (cf. figure 4 of Dörr & Kloker (2017)). From the
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FIGURE 19. Streamwise evolution of (a) Cf and (b) time and spanwise averaged
temperature for corresponding controlled cases with respect to Cref.

1T-profile it can be seen that the flow is slightly heated at the wall and cooled above.
Both 1u and 1T point into the direction of a ‘disturbance-saturated’ mean-flow. Note
that the existence of a GIP cannot be seen directly from the u(y) and T(y) profiles.

4.7. Effects of controlling transition
The skin-friction coefficient Cf (spanwise and time mean) for cases C51C and C52Cn
is compared with Cref in figure 19(a), showing the reduction of the Cf values for
the two controlled cases due to the absence of a turbulent region; the localized peaky
increase of Cf in the control strips is of minor importance. Figure 19(b) represents the
temperature difference at the wall for the controlled cases, 1Tw=〈TwC51C,C52Cn〉− 〈TwCref 〉.
It can be seen that due to the existence of streaks there is a slight penalty as for
temperature for both cases C51C and C52Cn. Remarkably, for the turbulent portion
of Cref, both cases C51C and C52Cn show a significant decrease in wall temperature,
being augmented for C52Cn.

5. Conclusions
The successful control of full oblique-type breakdown of a supersonic adiabatic

boundary layer at M∞ = 2.0 using control streaks has been demonstrated using
DNS. The investigated streaks with, in various cases, three to six times the spanwise
wavenumber of the fundamental, obliquely running modes and maximal ρu-amplitudes
of 20 %–10 % have been introduced by steady spanwise periodic suction/blowing
at the wall within one or two control strips. Generally, higher wavenumbers of
the decaying streaks are found to be more effective in suppressing the unsteady
most-amplified fundamental mode (1,1) but need higher initial amplitudes due to a
stronger streamwise decay, and can cause a significant shock-like, detrimental steady
pressure wave. The oblique-breakdown streak mode (0,2) is not much influenced
directly, rather by lowering the oblique travelling modes (1,1) that feed it.

It was found that the spanwise wavelength of effective control streaks lies between
20 %–25 % of the fundamental oblique mode. Modified DNS with suppressed 2-D
disturbance parts and thus MFD could show that, for the 3-D part to be effective in
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growth attenuation, the spanwise wavelength must be smaller than about 2.5 times
the local boundary-layer thickness (λcontrol/δ < 2.5); this value is about that of modes
with optimal transient growth in theory. At the considered Reynolds number Rex =

2× 105 of the first spanwise blowing–suction control strip, all steady control modes
monotonically decay directly downstream of the strip, the stronger the shorter the
wavelength is. Starting with the ideal λcontrol/δ would lead to a fast decay of the
streaks and no significant control can be achieved. For the streaks found effective on
the whole, the ideal λcontrol/δ is reached downstream near Rex=5.5–6×105 when their
control ρu-amplitudes have decayed from initially about 20 % to 10 %, but at the same
time the beneficial MFD induced falls eventually below 3 % and gets inactive. In the
first streamwise part downstream of the control strip, the MFD amplitude ranges from
10 % to 3 %, and the observed oblique-mode suppression is thus solely provided by
the MFD. Globally, the MFD and the 3-D part of the control contribute each with a
comparable share in the reduction of the fundamental-mode amplitude.

The MFD may become maleficial (locally) if the blowing part is too strong and not
pointed enough; generalized inflection points occur in the spanwise-averaged velocity
profiles, invoking inviscid instability. In refreshing the control strip downstream, the
oncoming low-velocity streaks must not be widened locally which would otherwise
trigger transition. The initial penalties in the wall shear and wall temperature increase
are marginal by the control, shifting their increase by turbulence significantly
downstream. Simulations with a broader disturbance spectrum comprising higher
spanwise wavenumbers k and frequencies h, modes (h=1–2, k=1–3) and significantly
increased total amplitude, show that the basic suppressing mechanisms also work in
this case. The additional streak modes generated (0,k = 4,6) are much closer to the
control mode and were considered critical a priori, but they do not degrade the
control. Whether control streaks can cope robustly with more complex disturbance
situations must be subject of next-step investigations.
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