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Abstract

In this work we demonstrate that if fl c R" (n > 3) is either a half space or a unit ball, and if E <= fl then E
is an ordinary thin set at a boundary point of n (including the point at infinity if il is a half space) if and
only if it is a full-thin set at the corresponding Kuramochi boundary point of fi. The case for
n = 2 has already been considered in an earlier work.

1980 Mathematics subject classification (Amer. Math. Soc.): 31 B 05.

1. Introduction

In an earlier paper we noticed that ordinary thin sets are exactly the same as full (or
Kuramochi)-thin sets with relation to any boundary point of the unit disk or half
plane, but that these two kinds of thin sets are in general noncomparable for a
Jordan region (see Hwang and Jackson (1978), p. 444). Because of the theory of
double Riemann surfaces it is easy to describe the Kuramochi kernel (modulo a
deleted compact disk Ko) in terms of the Green kernel of the double surface (see
Constantinescu and Cornea (1963)) and comparable results can be obtained for full-
superharmonic functions (see Maeda, Ohtsuka et al. (1968), p. 4,5, and 28). In higher
dimensions, however, it appears to be necessary to employ slightly different
techniques in order to prove that ordinary thin sets coincide with full-thin sets at any
boundary point of a half space including the point at infinity, or of the unit ball. In
fact we found it essential to use somewhat different methods for the ball as opposed
to the half space, although we were able to define Green potentials in the doubled
region in both cases which extended the full-superharmonic functions in the original
region. The reader is referred to Brelot (1971), p. 54, for basic properties of ordinary
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[2] Relationship between ordinary thin sets and full-thin sets 349

thin sets, and to Hwang and Jackson (1978), p. 442, 443, for full-thin sets, and the
Kuramochi kernel function.

2. The half space Q in R" (n > 3)

For a half space Q = {x = (x1,...,xny. xx > 0} the technique of doubling the
region about its boundary dQ = {x: Xj = 0} will give positive results provided that
special attention is given to the point at infinity. As usual we delete a compact ball
Ko from Q to obtain Q — Ko = Q0 and let XJ (respectively Q£) be the reflection of Ko

(respectively Qo) about dQ. If a e Qo u dQ and a* is the reflection of a about dQ we
shall demonstrate that the Kuramochi function for Qo with pole at a is of the form Na

— Sa\stouda where Sa = 5 a + 6 a . + Xa Wgiven that 6 a (respectively 5a.) is the ordinary
Green function for the doubled region fi0 = Qo u dQ u Q$ = R"—(Ko u KJ) with
pole at a (respectively a*), Xa > 0 is a constant depending on a to be determined, and
W is the harmonic measure of {oo} with respect to the region &0. We recall (see
Hwang and Jackson) in the case where n = 2, Sa = Sa + 5 a . in both the half plane
and unit disk. When n ^ 3, however, we shall see that the term involving W cannot
be omitted for a half space. For any a e f i o u f f l w e shall choose Xa > 0 (uniquely) in
order to ensure that Sa extended to R" KJ {OO} will in fact be harmonic at oo in the
sense of Brelot (1944), p. 309.

Following Brelot (1944), p. 302, we shall let cpn be the flux of the fundamental
function over any sphere that contains the pole in its interior, and observe that <pn

equals (n — 2) times the surface measure of the unit sphere in R".

LEMMA 2.1. For any a e Q o u dQ, Sa = 5a + 5a» + Xa Wis harmonic at oo if and only

ifXa = 2<pn W(a)\\ W\\~2 where || W\\2 is the Dirichlet integral of Wover SO-

PROOF. Let B be any ball of centre 0 such that its radius r > \ a \ and Ko c int B.

The flux of So over dB is constant with respect to r and equals the sum of the fluxes

over dB of the component functions. It will be sufficient to prove that Sa is harmonic

at oo if and only if the flux of Sa always vanishes over dB (see Brelot (1944), p. 309).

Since Wis harmonic on ft0 an application of the Green formulae indicates that the

flux of Wover dB equals the flux of Wover dK0 u 5KJ. Let j??°uK<>* be the regularized

reduced function of 1 relative to Ko u KJ in R" (see Helms (1969), p. 135). If we

choose a suitable increasing sequence of balls whose union is all of R" an elementary

argument involving the use of Green identities can be applied to obtain the result

that the energy of the potential K?°uKo* equals the flux of Wover dB which in turn

equals the ordinary capacity of Ko u K$ in R". All of these quantities are also equal

to| | Wf = || Rfo"** ||2 where || W\\2 is the Dirichlet integral of Woverft0.IfBE(a) =

{x e R" : | x - a | < e} <=CionB then the flux of Ga over dB equals the flux of 5 a over

dBJ^a) + the flux of Co over dK0 u 3KJ. The flux of 5O over dBE(a) is - <pn and the flux
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of Ga over dK0 u 8K$ is <pn R^Ko'(a) so that - cpn W(a) is the flux of Ga over dB. A
similar result can be obtained for Ga. and since W(a*) = W(a) we obtain the resul
that the flux of Sa over dB is Xa || W\\2-2q>n W(a). The lemma follows. //

REMARK 2.1. Sa is superharmonic (respectively subharmonic) at oo if and only i:
ka > 2<pn W{a)\\ W\\-2 {respectively k. *£ 2q>n W(a)\\ W\\-2).

THEOREM 2.1. IfaeQ0 = Q — Ko the Kuramochi function for fi0 with pole at a is
Na(x) = Ga(x) + GJx) + 2cpnW(a) W(x) \\ W\\~2 for x 6 f i o u 5 Q .

PROOF. Let Sa(x) = 5a(x) + &AX) + K w(x) b e defined on Qo
 a s in Lemma 2.1. II

K <= Cl is compact such that Ko u {a} c interior^ such that the divergence theorem
is applicable to (Q — K) n B for sufficiently large balls B, and if u e HD(Q, — K) which
has a continuous extension onto dK which coincides with Sa^K then it is sufficient to
prove that | | S a | | n _ x < ||M||n_x. The fact that Sa^_KeHIXfi-K) follows from the
fact that We HD(Ci0) and that 5 ^ . ^ and Ga,ln_K are both restrictions to Q - K of 6-
potentials with finite energy. If w = Sa + F then || u ||n-K = || F||£_K + || Sa

||n_K + 2(Sa, F) n _ K where Ve MXQ-K) such that l i m ^ ^ ^ ^ n . ^ ^ x ) = 0 for every
x*edK. It is now sufficient to prove that (Sa, V)a-K ~® f°r K chosen to be
2cpn W(a) || W|| ~2. If B is a sufficiently large ball of radius r an application of Green's
first identity together with an exhaustion argument indicates that

JandB
(2-1) (Sa,F)nnB_

because V= 0 on dK and dSJdv s O o n dil. Therefore

(2-2) (S = lim f

Since Ve HD(il — K), V has a limit along almost every Green line issuing from a (see
Maeda (1964)). For those Green lines that approach infinity V has a common limit
L, necessarily finite, called the normal extension of Fa t oo by Brelot (1953), pp.
407-408. Furthermore,

(23,

which in turn implies that

<-"*> JcB r

&hv-L(-<
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(see also Brelot (1953), p. 394, Theoreme 5). Therefore

(2.4) (Sa, V)n_K = £ (flux of Sa over dB)

which vanishes by the proof of Lemma 2.1 if we choose la = 2q>nW(a)\\ W\\~2. Our
theorem follows. //

REMARK 2.2. If HD0(£l0) is the closed subspace of HD(fl0) consisting of those
harmonic functions that vanish continuously on dK0, then there exists Ua e HD0(£l0)
denning a bounded linear functional on HD0(Q0) such that (Ua, u) = <pn u(a) for every
ueHD0(Q0) (see Maeda (1968), p. 18). If Ga = 5a-Ga, is the ordinary Green
function for Qo with pole at a then Ua = 2Ga. + 2q>n W(a)\\ W\\'2 W and

COROLLARY TO THEOREM 2.1. / / dedQ then the Kuramochi function on
Q o udQu{oo} corresponding to a is N d = 2Gd+2(pnW(a)\\W\\-2 W and if a = oo

N 2\\W\\2W

PROOF. A sequence (an) in Q which eventually leaves compact subsets of fi is
fundamental (or Cauchy) in the Kuramochi sense if and only if the sequence (Nan

converges locally uniformly to a unique harmonic function on Qo. According to our
construction of Na for each a e Q 0 it is clear that (an) is (Kuramochi) fundamental if
and only if (an) converges to a point of <9Q u {oo}. Hence the Kuramochi boundary of
Q(mod Ko), denoted by A,v, may be identified with d£l u {oo}. //

REMARK 2.3. All Kuramochi boundary elements of fi are extremal (or minimal)
and any full-superharmonic function on Qo of potential type (see Maeda (1968), p.
17) can be uniquely represented as Nfi{x) = $N(x, y) d^y) where N is the Kuramochi
kernel on (£20 u AN) x (S20 u A,v) and n is a Radon measure charging Qo u AN.

LEMMA 2.2. If aeAN (identified with dCl u {oo}) and E a Qo u AN then Eu E*
is ordinary thin at a if E is full-thin at a where E* is the reflection of E about dil.

PROOF. If E is full-thin at a and a is not an isolated point of E u {a} then there
exists a Radon measure fi charging Qo u A,y such that Nfi e 9 and

Nfi(d) < liminf iV/i(x).
x-*a,xeE

But Nfi is the restriction to Qo u AN of a positive superharmonic function S on
J50 u {oo} of the form

(2.5)
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where v = n \aoUda + (n In^an)* given that the star means a reflection about dil and
k = /i{oo}+<pn|| W|| ~2(|fio W(y)dv(y)). Hence £ as well as £ u £ * is ordinary thin at
a e A,y because S is symmetric about 3Q (see Brelot (1944), p. 313,whena = oo).The
lemma follows. //

LEMMA 2.3. IfaeAN and E a Qo u AN such that E, and hence E u £*, is ordinary
thin at a then E is full-thin at a.

PROOF. Case 1. a e dil. There is a Green potential &n of a mass distribution n on
Qo u dil such that the total mass of n is finite and

a)< liminfS/z(x).
x-*a,xeE

If/i* is the reflection of n about 5Q and v = n+p* then

Uminf Gt̂ x)

and since Su is symmetric about SO it is clear that £ u £* is ordinary thin at a if £ is.
Now

(2.6) N^x) = Gv(x) + 2(pn\\ W\\-2(\ W(y)dn(y)\W(x) (xeQouAN)

which implies that AT/xe^ since //(fi0 u 5Q) < oo. Furthermore

A()-N^(a) = liminf Gv(x)-Gv{a) > 0
x-*a,xeE x-*atxeE

which indicates that £ is full-thin at a.

PROOF. Case 2. a = oo. There exists a positive superharmonic function St on
3 0 u {oo} of the form S^x) = Gfi(x) + ki W(x) such that

St(a)< liminf S2(x).
x-*a,xeE

Without loss of generality we may assume that fi is supported by il0 u AN. The
reasoning in the proof of Lemma 2.1 indicates that Ga + XaW is superharmonic at oo
if and only if ka > q>n || W|| ~2 W(a) and hence St is superharmonic at oo if and only if

Hence N/ieZ? and if t? = n+n* we again have

liminf Nf4x)-Nfj(d) = liminf Gi;(x)-5f(a) > 0

which proves our lemma. //
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We can now combine Lemmas 2.2 and 2.3 to obtain

THEOREM 2.2. If fie AN {identified with dCl u {oo}) then £ c Q o u A , is full-thin (or
Kuramochi thin) at a if and only ifE u E* is ordinary thin at a where E is the reflection
of E about dCl.

REMARK 2.4. Since ordinary thin sets are not preserved by inversion maps about
spheres the same is true for full-thin sets. This contrasts with the theory of minimally
thin sets in the sense of Lelong-Ferrand and Nairn which are so preserved (see Brelot
(1944), pp. 313-314, and Brelot (1971), chap. XVII). £ <= &0 is ordinary thin at oo if
and only if l?f is a 5-potential of finite energy and hence E has finite capacity in
either the 6 sense or the Newtonian sense.

3. The case of the unit ball Q c R " ( o 3 )

If x e R" — {0} we let x* = T(X) = | x |"~2 x denote its inverse with respect to the unit
sphere dil where we also understand that T interchanges 0 and the point at infinity.
For convenience we choose Ko — {xefl : | x | ^ ^} , £20 = Q — Ko, Q£ = T(Q0) and
Cl0 = £20 u dSl u £2 J is the annulus {x e R": \ < \x\ < 2}. If a e fl0 the Kuramochi
function Na for Qo with pole at the point a is a mixed Green function for Qo with pole
at a of order |x — a\2~" which vanishes continuously on dK0 and whose (inner)
normal derivative vanishes on dil. We shall construct a positive superharmonic
function Sa on £50 whose restriction to Qo u dQ is Na even in the case where
a = a e dCl. Such an extended function shall be obtained by applying to Na the
Kelvin transformation (see Helms (1969), p. 36) about 50. If a e Q 0 the extended
function Sa is a positive superharmonic function on Qo u fij with poles at a and a*
and if a = a e dil then Sa is harmonic on Qo u QJ. Furthermore, Sa is continuous on
CIQ except at the poles (respectively pole) a and a* (respectively a = a) if a e Q 0

(respectively a = a e dQ). More precisely we define the Kelvin transformation of Na

to be

(3.1) Va(x) = | x |2 "" NJdx)) if 1 < | x | < 2.

It is clear that Na and Va coincide on dQ so that we may define Sa on il0 such that
SainoUan = Na, and S ^ ^ = Va. We know that Sa is superharmonic on Qo u QJ but it
remains to demonstrate that Sa is also superharmonic on 5Q as well. If x e dil, a # Jc,
we shall denote the outer (respectively inner) normal derivative of Sa at x by the
symbol dSJdve(x) (respectively dSJdv^x)).

LEMMA 3.1. IfxedCl, a # x, then dSJdve(x) = (2-«)Nfl(x).

https://doi.org/10.1017/S1446788700021352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021352


354 J. S. Hwang and H. L. Jackson [7]

PROOF. Let

xeQ0, r = \x\, x = - , x* = - = x + hx (h > 0,1 < r «: 1).

Then Sa(x + hx) - Sa{x) = Va(x*)-Na(x) = |x|""2 Na(x)-Na(x). Since r = |x|,

therefore

(3.2) ^ ^

Now h -* 0+ if and only if r -> 1"" so that

Since

the lemma follows. //

REMARK 3.1. In the higher dimensional case (that is n ^ 3) we have

whenever a ^ x. This introduces a complication that was not present in the two-
dimensional case where this quantity always vanished.

LEMMA 3.2. J/x0 e <3Q, a # x0 and B£ = {x e R" : | x — x01 < e} then the outer flux of
Sa over dBt is always negative if e > 0 is sufficiently small and therefore Sa is
superharmonic at x0 and hence on dQ.

PROOF. Since Sa is harmonic on the region Qo n Bc to which the divergence
theorem is applicable we can employ Green's first identity to obtain

(3.3) (^-)dffn_1= l^Adff^i (which vanishes in this case).

Similar reasoning can be applied to Sj n . n B to obtain

(3.3T f (f 'V.-f (f-
Since a^^dBJ = <rll_1(non5JB1!)-l-<TB_1(fig

lnaB1!) we can add (3.3) and (3.3)' to
obtain
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(3.4)

In order to see that Sa is superharmonic at x0 we let JCs(x0) be the mean value of Sa

over the sphere BBr of centre x0 where 0 < r ^ e with the understanding that
SJfo) = JTs(x0).
Then

(3.5)

n_1(5B1)^rr
s(x0)) = r1-" I Sa(x0+ru)don_l=\ Sa(x0 + ru)<ton-i(«X

JBB, JOB,

where u is designated as any point on dBx. Furthermore, we can take the first
derivative with respect to r to obtain

(3.6)

It follows that J(r
s(x) is a decreasing function of r on [0,e] so that Sa(x0) > J(e

s(x0).
Since x0 e 5ft is arbitrary it follows that Sa is superharmonic on 5ft as well as on
ftoufto*. / /

REMARK 3.2. If ae 5ft we have only shown that Sa is superharmonic on &0-{a}.
Since Sa has a pole at a, however, it is clear that Sa is superharmonic at a as well. It is
also clear that Sa is a Green potential on &0 of a mass distribution which charges
only 5ft ifae 5ft and charges 5ft u {a} u {a*} if a eft0. This results from the fact that
Sa is harmonic elsewhere on &0 and vanishes continuously on dCl0.

LEMMA 3.3. / / ae f t 0 u 5ft then

(3.7) Sa(x) = Ga(x) +\a\2-Ga,(x) + Kn \ &(x,z)Na(z)dan_.(z),
Jan

where Kn is a nonnegative constant that depends only on the dimension n.

PROOF. We first suppose that a e ft0. We assume that Na and Ga both have poles at
a of the form | x — a |2 "" so that the canonical measure for Sa that is concentrated on
{a} is the unit measure. In order to find the canonical measure for Sa that is
concentrated on {a*} we find the Kelvin transformation of Ga to be denoted by (Ga)*.
Now (Ga)*(x) = |x|2~"Sa(x*) is a harmonic function of x on ft0 — {a*} and is
therefore of the form ya Ga^x) where ya is a constant to be determined. If we let x = a
and take advantage of the symmetry of the Green kernel 6 we obtain ya = \ a \2 ~"
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which is the total mass of the canonical measure for Sa that is concentrated on {a*}.
By reasoning as in Kellogg (1929), p. 164, who treats the case n = 3 we obtain the fact
that the density function with respect to <xn_ l of the canonical measure for Sa that is
concentrated on <3Q is a constant multiple of (dSJdve + dSJdvt) where the constant
only depends on the dimension n. In light of Lemma 3.1 this density function can be
written as KnNa(z) for any zedQ where Kn ^ 0. Therefore

Jea
G(x,z)Na(z)dan_l{z) if ae£l0

e

and by a continuity argument we obtain

Sa(x) = 2Gs(x) + Km\ 5{x, z) NJ[z) dan _ t(z) if a e « 1 / /
Jan

REMARK 3.3. By using Green's third identity one can compute the value of the
constant Kn to be (n — 2)/cpn which vanishes when n = 2 and equals (<rn_i(5B1))~

1

when n ^ 3. The surface measure of the unit sphere, written ias <rn_ i(diJi), is given in
Landkof (1972), p. 18, to be 27r"/2(r(n/2))-1. For example K3 = (471)"J. We also
remark that the ordinary Green function Ga for £20 with pole at a is
Ga = Sa — | a \2~"Ga, restricted to Qo. Again we can say that Na = Ga + Ua where
UaeHD0(QQ) such that the Dirichlet inner product (Ua,u) = (pnti(a) for every
u e HD0(Q0). In this instance we can explicitly find

Je
G{x,z)Na(z)dan^(z)

en

restricted to Qo u dQ. We again identify the Kuramochi boundary AN of Q with dfi.

THEOREM 3.1. / / £ c f i o u f f l is full-thin at xoeAN then E and hence £ u E* is
ordinary thin at x0.

PROOF. The Kuramochi kernel N(x, y) is the restriction to (Qo u 3Q) x (£20 u dil)
of the kernel S(x, y) on ft0 x (Qo u 5Q) where

f
Jen

G(x,z)N{z,y)dan_l(z).

If /z is a mass distribution on Qo u 5i2 so that Nn^ + oo then N/z is the restriction of
the potential Sfi to Qo u 2Q. Now

(3.8) Sfi(x) = I 6(x,
J«i

which is the S-potential of a mass distribution on ft0. Furthermore, Sp is invariant
under the Kelvin transformation so that if E c fi0 u dCl then
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[10] Relationship between ordinary thin sets and full-thin sets 357

liminf Sfi(x) = liminf S/i(x),
x->2 ,xeE x->Xo,xeE*

o

where E* = T(£). If E c fi0 u dQ, is full-thin at x e AN then there exists a Kuramochi
potential Nfi of a mass distribution \i on Qo u dQ such that

JV/z(xo)< liminf N/<x).

Hence

S/u(xo)< liminf Sjz(x)

and since S/z is a 5-potential of a mass distribution on ft0 the theorem follows. / /

REMARK 3.4. In order to prove the converse of Theorem 3.1 we shall require some
estimates for the order of the pole at dedil for Na~. The next three lemmas will
demonstrate that the order of the pole for Nd at a is a constant multiple of | x — a |2 ~"
and therefore coincides with the order of the pole for Sa-at a. If/^ 0 and g > 0 on a
set X we shall say t h a t / ~ g (on X) or / is comparable to g on X provided that there
exist constants Cl> 0, C2 > 0 (depending on X in general) such that
Cif^ g ^ C2f on X. We also let fa{x) = \x\~* where a > 0 and notice that
fa ^ kn_x where kn_a is the M. Riesz kernel defined in R" (see Landkof (1972), p. 43).
We shall only include a proof for Lemma 3.4. Similar arguments can be used for the
proofs of Lemmas 3.5 and 3.6 respectively.

LEMMA 3.4. / /

(x,v)eftnxfL and /l«(x,v) =

where a > 0, /? > 0 and a + P + 1 < n thenfxfi is bounded on &0 x Cl0. The same result
holds true if\x — z\~" is replaced by max{log l/ |x —z|,0} = log+ l/ |x — z\ provided
thatO< P<n-l.

PROOF. Let

Al = {zedii:\x-z\^\z-y\}, A2 = {zedQ : \x-z\ > \z-y\}.

Then

JA,\X~Z\ jAz\y~'

In relation to Rn,/a is comparable to the M. Riesz kernel fcn_a (see Landkof (1972), p.
43) and therefore

(3-9) fajx, y) < (k*_( . + w (Tn_ 1)(x) + (fc*_(«+m an_
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Since the surface measure an_1 is locally absolutely continuous with respect to
(n — l)-dimensional Lebesgue measure on the tangent space at any point xoed£l
such that the density function is bounded, therefore

(3.10)

which converges because a+j8 + 2 — « < 1 . Hence the potential /c*_(a+^)(jn_1 is
bounded on <3Q and by the weak maximum principle (see Landkof (1972), p. 66,
Theorem 1.5) it is bounded on all of R" and in particular on £l0. This implies that/, ^
is bounded on fi0 x fjo. For the second part we notice that for any a > 0 there exists
6 (depending on a) such that log+(1 jr) < r ~ " on (0, <5]. Since /? +1 < n we can define
2a > 0 such that 2a+/? + 1 = n and therefore a + /? + 1 < n. If x e Cl0 is given and Bs

is the ball of centre x and radius S then

(3.11) f ( l o g +
r - U - ) | z - y | - " d t 7 n _ 1 ( Z )

< I | x - z | - « | z - y | - ' r ^ n _ 1 ( z ) + ̂ -' I \ z -

The lemma follows because both terms on the right of the inequality are
bounded. / /

LEMMA 3.5. If a > 0, /? > 0, a + /? + l = n and yedQ. then

C

Jda

provided that xe&0 such that \x — y\ ^ \.

LEMMA 3.6. / / a > 0, /? > 0, max {a,/?} < n — 1 and oc + fi + 1 > n then

f . , 1
\x~y\

if ye d£l and x e &0.

REMARK 3.5. In the last three lemmas we have demonstrated that, in general, the
growth order of/, ^ is strictly less than that of/, orf0. In order to find the growth
order of iVa at its pole a e 3fi we initially let a = /? = n - 2 and then apply Lemma 3.5
if n = 3, because a + / ? + l = n , or Lemma 3.6 if n ^ 4, because

LEMMA 3.7. lfasdQ, then N(x, a) =± | x — a |2 ~" in a suitable neighbourhood of a in

fi0 u
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PROOF. Since G(x,a) ~ |x — a\2~" in a neighbourhood of a and since
JV(x, a) ^ 2S(x, a) (see Lemma 3.3) we have the inequality going one way. In order to
obtain the inequality in the other direction we employ an iterated kernel theory (see
Kellogg (1929), p. 288). Let S = Go on Cl0 x ft0 and then define

Q. + t(x, y) = G(x, z) Gj(z, y) dan _ x{z) for all;" > 0.
Jda

From Lemma 3.3 we have

JV(x, a) = 2G(x, a) + Kn\ G\x, z) N{z, a) dan _ t(z)
Jan

G\x,z)

, f G{x,z')N(z',a)don.1(AdcTn_l(z)
Jan J

Jan

|
Jea

(3.12) ^G0(x,a) + Gl(x,a)+ \ G1(x
Jda

By an inductive argument we obtain

(3.13) N(x,a) ^ S 5/x,a) +\ Gn. ,(x, z)N(z,a)dan_ ,(z).
J = 0 JdCi

If 0 < j ^ n — 3 then Gj(x, a) a* | x — a |J + 2 ~" by an inductive application of Lemma
3.6. If; = n - 2 so that a = 1, jS = n - 2 then a + /J + l = n so that we can apply
Lemma 3.5 in order to obtain Gn_2(x, a) s log(l/| x — a |). If; = n — 1 then we apply
the second part of Lemma 3.4 to obtain the fact that Gn _ j is bounded on Qo u dQ by
a constant M > 0. Therefore

N{z,a)
Jda

(3.14) N(x,a) ^ cons t . \ x -a \ 2 ' " + M N{z,a)dan_%(z\
Jda

Since the mass distribution on 3Q whose density function is N(z, a) with respect to
(Tn_! has compact support therefore its total mass must be finite and therefore
N(x,a) < const. |x — a\2~" in some neighbourhood of a in Qo u dQ. The lemma
follows. //

THEOREM 3.2. / / £ c Qo u dQ is ordinary thin at x0 e d£l then E is full-thin at
xoeAN.

PROOF. If E is ordinary thin at x0 then there exists a G-potential of a mass
distribution fi whose compact support is contained in fi0 u dCl such that

https://doi.org/10.1017/S1446788700021352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021352


360 J. S. Hwang and H. L. Jackson [13]

5/i(x0) < + oo and lim S/4*) = + °°-
x-*x ,xeE

o

Since G ^ N on (Qo u dQ) x (Qo u dQ) therefore Gfj(x) ^ Nf4.x) everywhere on
Qo u dQ. Therefore

lim N(*(x) = + oo
x-*x ,xeEo

and it remains to show that Nfj(x0) < + oo. If Bd is a suitable ^-neighbourhood of x0

in Qo u 5Q then

(3.15) Nftxo)^] N(xo,y)d(i(y)+\ N(x0,
JB, Jil-B,

In Bb we have N(x0, y) c- | x0 - y \2 " n ~ 6(x0, >>) by Lemma 3.7 and in Q - Bd, N(x0, y)
is bounded by a constant Ms > 0. Therefore

Nn(x0) ^ Gfi(x0) + Mifi(Q0 v dQ) < + oo

which proves our theorem.

We now combine Theorems 3.1 and 3.2 to obtain our main result for the unit balL

THEOREM 3.3. IfE c Qo u dQ and x0 e dQ then E u E* is ordinary thin at x0 if and
only ifE is full-thin at xoeAN.
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