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Abstract
Up-to techniques are a well-knownmethod for enhancing coinductive proofs of behavioural equivalences.
We introduce up-to techniques for behavioural metrics between systems modelled as coalgebras, and we
provide abstract results to prove their soundness in a compositional way.

In order to obtain a general framework, we need a systematic way to lift functors: we show that the
Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of base in a fibra-
tional sense. This observation enables us to reuse existing results about soundness of up-to techniques in a
fibrational setting. We focus on the fibrations of predicates and relations valued in a quantale. To illustrate
our approach, we provide an example on distances between regular languages.
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1. Introduction
Checking whether two systems have an equivalent (or similar) behaviour is a crucial problem in
computer science. In concurrency theory, one standard methodology for establishing behavioural
equivalence of two systems is constructing a bisimulation relation between them. When the sys-
tems display a quantitative behaviour, the notion of behavioural equivalence is replaced with the
more robust notion of behavioural metric (de Alfaro et al. 2004; Desharnais et al. 2004; van Breugel
and Worrell 2005).

Due to the sheer complexity of state-based systems, computing their behavioural equivalences
and metrics can be very costly; therefore, optimization techniques – the so-called up-to techniques
(Pous and Sangiorgi 2019) – have been developed to render these computations more efficient.
These techniques are related toGalois connections (Baldan et al. 2020; Bonchi et al. 2018a) and can
be found applications in various domains such as checking algorithms (Bonchi et al. 2017a; Bonchi
and Pous 2013), abstract interpretation (Bonchi et al. 2018a) and proof assistants (Blanchette et al.
2017; Danielsson 2017). In the qualitative setting and in particular in concurrency, the theory of
up-to techniques for bisimulations and various other coinductive predicates has been thoroughly
studied (Bacci et al. 2021; Hur et al. 2013; Milner and Sangiorgi 1992; Pous and Sangiorgi 2011).
On the other hand, in the quantitative setting, so far, there are only few papers that investigate
up-to techniques for behavioural metrics, in particular (Chatzikokolakis et al. 2016). There, the
notion of up-to techniques and the accompanying theory of soundness are specific for probabilis-
tic automata and are not derived as instances of the standard lattice-theoretic framework, which
we will briefly recall next.
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Suppose we want to verify whether two states in a system behave in the same way (e.g. whether
two states of an NFA accept the same language). The starting observation is that the relation of
interest (e.g. behavioural equivalence or language equivalence) can be expressed as the greatest
fixed point νb of a monotone function b : RelQ→ RelQ on the complete lattice RelQ of rela-
tions on the state space Q of the system. Hence, in order to prove that two states x and y are
behaviourally equivalent, that is, (x, y) ∈ νb, it suffices to find a witness relation r which on one
hand is a post-fixpoint of b, that is, r⊆ b(r) and on the other hand contains the pair (x, y). This
is simply the coinduction proof principle. However, exhibiting such a witness relation r can be
sometimes computationally expensive. In many situations, this computation can be significantly
optimized, if instead of computing a post-fixpoint of b one exhibits a relaxed invariant, that is a
relation r such that r⊆ b(f (r)) for a suitable function f . The function f is called a sound up-to
technique when the proof principle

(x, y) ∈ r r⊆ b(f (r))
(x, y) ∈ νb

is valid. Establishing the soundness of up-to techniques on a case-by-case basis can be a
tedious and sometimes delicate problem, see for example Milner (1989). For this reason, sev-
eral works (Hur et al. 2013; Parrow and Weber 2016; Pous 2007, 2016; Pous and Sangiorgi 2011;
Sangiorgi 1998) have established a lattice-theoretic framework for proving soundness results in a
modular fashion. The key notion is compatibility: for arbitrary monotone maps b and f on a com-
plete lattice (C,≤ ), the up-to technique f is b-compatible iff f ◦ b≤ b ◦ f . Compatible techniques
are sound and, most importantly, can be combined in several useful ways.

In this paper, we develop a generic theory of up-to techniques for behavioural metrics applica-
ble to different kinds of systems and metrics, which reuses established methodology. To achieve
this, we exploit the theory developed in Bonchi et al. (2014) by modelling systems as coalge-
bras (Jacobs 2016; Rutten 2000) and behavioural metrics as coinductive predicates in a fibration
(Hermida and Jacobs 1998). In order to provide general soundness results, we need a principled
way to lift functors from Set to metric spaces, a problem that has been studied in Hofmann (2007),
Hofmann and Nora (2020), Baldan et al. (2014) and Wild and Schröder (2022). Our key observa-
tion is that these liftings arise from a change-of-base situation betweenV -Rel andV -Pred, namely
the fibrations of relations, respectively predicates, valued over a quantale V (see Sections 4 and 5).

In Section 6, we provide sufficient conditions ensuring the compatibility of basic quantitative
up-to techniques, as well as proper ways to compose them. Interestingly enough, the conditions
ensuring compatibility of the quantitative analogue of up-to reflexivity and up-to transitivity are
subsumed by those used in Hofmann (2007) to extend monads to a bicategory of many-valued
relations and generalize those in Baldan et al. (2014) (see the discussion after Theorem 27).

When the state space of a system is equipped with an algebraic structure, for example in process
algebras, one can usually exploit this structure by reasoning up-to context. Assuming that the
system forms a bialgebra (Klin 2011; Turi and Plotkin 1997), that is, that the algebraic structure
distributes over the coalgebraic behaviour as in GSOS specifications, we give sufficient conditions
ensuring the compatibility of the quantitative version of contextual closure (Theorem 42).

In the qualitative setting, the sufficient conditions for compatibility are automatically met when
taking as lifting the canonical relational one, see Bonchi et al. (2014). We show that the situation
is similar in the quantitative setting for a certain notion of quantitative canonical lifting. In par-
ticular, up-to context is compatible for the canonical lifting under mild assumptions (Theorem
46). As an immediate corollary, we have that, in a bialgebra, syntactic contexts are non-expansive
with respect to the behavioural metric induced by the canonical lifting. This property and weaker
variants of it (such as non-extensiveness or uniform continuity), considered to be the quantita-
tive analogue of behavioural equivalence being a congruence, have recently received considerable
attention, see for example Desharnais et al. (2004), Bacci et al. (2013), Tini et al. (2017).
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Figure 1. Example automaton.

To fix the intuition, Section 2 provides a motivating example (formally treated in Section 7).
Section 3 contains the preliminaries, while quantale-valued predicates and relations are intro-
duced and studied in Section 4. In the following, Section 5 discusses the lifting of functors to such
generalized predicates and relations, which paves the way for quantitative up-to techniques, see
Section 6. As mentioned above, Section 7 formally works out the example and Section 8 provides a
detailed comparison with Chatzikokolakis et al. (2016).We conclude with a comparison to related
work and a discussion of open problems in Section 9.

Additional proofs are provided in the appendix.

2. Motivating Example: Distances Between Regular Languages
Computing various distances (such as the edit-distance or Cantor metric) between strings, and
more generally between regular languages or string distributions, has found various practical
applications in various areas such as speech and handwriting recognition or computational biol-
ogy. In this section, we focus on a simple distance between regular languages, which we will call
shortest-distinguishing-word-distance and is defined as dsdw(L,K)= c|w| – where w is the shortest
word which belongs to exactly one of the languages L,K and c is a constant such that 0< c< 1.

As a running example, which will be formally explained in Section 7, we consider the non-
deterministic finite automaton in Fig. 1 and the languages accepted by the states x0, respectively y0.
We can similarly define a distance on the states of an automaton as the aforementioned distance
between the languages accepted by the two states. The inequality

dsdw(x0, y0)≤ cn (even dsdw(x0, y0)= cn) (1)

holds in this example since no word of length smaller than n is accepted by either state. Note
that computing this distance is PSPACE-hard since the language equivalence problem for non-
deterministic automata can be reduced to it.

One way to show the bound is to determinize the automaton in Fig. 1 and to use the fact
that for deterministic automata the shortest-distinguishing-word-distance can be expressed as
the greatest fixpoint for a monotone function. Indeed, for a finite deterministic automaton
(Q, (δa : Q→Q)a∈A, F⊆Q) over a finite alphabet A, we have that dsdw : Q×Q→ [0, 1] is the
greatest fixpoint of a function b defined on the complete lattice [0, 1]Q×Q of functions ordered
with the reversed pointwise order � and given by

b(d)(q1, q2) =
⎧⎨⎩ 1, if only one of q1, q2 is in F
max
a∈A c · {d(δa(q1), δa(q2))}, otherwise (2)

Notice that we use the reversed order on [0, 1], for technical reasons (see Section 4).
In order to prove (1) we can define a witness distance d on the states of the determinized

automaton such that d({x0}, {y0})≤ cn and which is a post-fixpoint for b, that is, d� b(d). Notice
that this would entail d� dsdw and hence dsdw({x0}, {y0})≤ d({x0}, {y0})≤ cn.

This approach is problematic since the determinization of the automaton is of exponential size,
so we have to define d for exponentially many pairs of sets of states. In order to mitigate the state
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space explosion, we will use an up-to technique, which, just as up-to congruence in Bonchi and
Pous (2013), exploits the join-semilattice structure of the state setPQ of the determinization of an
NFA with state setQ. The crucial observation is the fact that given the statesQ1,Q2,Q′1,Q′2 ∈PQ
in the determinization of an NFA, the following inference rule holds

dsdw(Q1,Q2)≤ r dsdw(Q′1,Q′2)≤ r
dsdw(Q1 ∪Q′1,Q2 ∪Q′2)≤ r

Based on this, we can define a monotone function f on [0, 1]PQ×PQ that closes a function d
according to such proof rules (the formal definition of f is given in Section 7). The general theory
developed in this paper allows us to show in Section 7 that f is a sound up-to technique, that is,
it is sufficient to prove d� b(f (d)) (which is easier than d� b(d), since f is extensive) in order to
establish d� dsdw.

Using this technique, it suffices to consider a quadratic number of pairs of sets of states in the
example. In particular we define a function d : PQ×PQ→ [0, 1] as follows:

d({xi}, {yj})= cn−max{i,j}

and d(X1, X2)= 1 for all other values. Note that this function is not a metric but rather, what we
will call in Section 4, a relation valued in [0, 1].

It holds that d({x0}, {y0})= cn. It remains to show that d� b(f (d)). For this, it suffices to prove
that

b(f (d))({xi}, {yj})≤ d({xi}, {yj}) .

For instance, when i= j= 0 we compute the sets of a-successors, which are {x0, x1}, {y0}. We
have that d({x0}, {y0})= cn ≤ cn−1, d({x0}, {y1})= cn−1, and using the up-to proof rule introduced
above, we obtain that f (d)({x0, x1}, {y0})≤ cn−1. The same holds for the sets of b-successors, and
since x0 and y0 are both non-final, we infer b(f (d))({x0}, {y0})≤ c · cn−1 = cn = d({x0}, {y0}). The
remaining cases (when i 
= 0 or j 
= 0) are analogous.

Our aim is to introduce such proof techniques for behavioural metrics, tomake this kind of rea-
soning precise, not only for this specific example but also for coalgebras in general. Furthermore,
we will not limit ourselves to metrics and distances, but we will consider more general relations
valued in arbitrary quantales, of which the interval [0, 1] is an example.

3. Preliminaries
We recall here formal definitions for notions such as coalgebras, bialgebras or fibrations.

Definition 1. A coalgebra for a functor F : C →C or an F-coalgebra is a morphism γ : X→ FX
for some object X of C , referred to as the carrier of the coalgebra γ . A morphism between two
coalgebras γ : X→ FX and ξ : Y→ FY is a morphism f : X→ Y such that ξ ◦ f = Ff ◦ γ . Algebras
for the functor F, or F-algebras, are defined dually as morphisms of the form α : FX→ X.

Definition 2. Consider two functors F, T and a natural transformation ζ : TF⇒ FT. A bialgebra
for ζ is a tuple (X, α, γ ) such that α : TX→ X is a T-algebra, γ : X→ FX is an F-coalgebra so that
the diagram on the left commutes. We call ζ the distributive law of the bialgebra (X, α, γ ), even
when T is not a monad.

https://doi.org/10.1017/S0960129523000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000166


186 F. Bonchi et al.

TX α ��

Tγ��

X
γ �� FX

TFX
ζX �� FTX

Fα

��

Example 3. The determinization of an NFA can be seen as a bialgebra with X=PQ, the alge-
bra μQ : PPQ→PQ given by the multiplication of the powerset monad, a coalgebra for the
functor F(X)= 2× XA, and a distributive law ζ : PF→ FP defined for M⊆ 2× XA by ζX(M)=
(
∨

(b,f )∈M b, [a �→ {f (a) | (b, f ) ∈M}]). See Silva et al. (2013), Jacobs et al. (2015) for more details.

We now introduce the notions of fibration and bifibration.

Definition 4. A functor p : E →B is called a fibration when for every morphism f : X→ Y in B

and every R in E with p(R)= Y there exists a map f̃R : f ∗(R)→ R such that p(f̃R)= f , satisfying the
following universal property: For all maps g : Z→ X in B and u : Q→ R in E sitting above fg (i.e.
p(u)= fg), there is a unique map v : Q→ f ∗(R) such that u= f̃Rv and p(v)= g.

Q

f ∗(R) R

Z

X Y

∃!v
∀u

f̃R

g

fg

f

For X in B, we denote by EX the fibre above X, that is, the subcategory of E with objects mapped
by p to X and arrows sitting above the identity on X.

Amap f̃R as above is called aCartesian lifting of f and is unique up to isomorphism. If wemake a
choice of Cartesian liftings, the association R �→ f ∗(R) gives rise to the so-called reindexing functor
f ∗ : EY → EX . In what follows we will only consider split fibrations, that is, the Cartesian liftings
are chosen such that we have (fg)∗ = g∗f ∗ and id∗ = id.

A functor p : E →B is called a bifibration if both p : E →B and pop : E op→Bop are fibra-
tions. Interestingly, a fibration is a bifibration if and only if each reindexing functor f ∗ : EY → EX
has a left adjoint�f � f ∗, see Jacobs (1999, Lemma 9.1.2).Wewill call the functors�f direct images
along f .

Two important examples of bifibrations are those of relations over sets, p : Rel→ Set, and of
predicates over sets, p : Pred→ Set, which played a crucial role in Bonchi et al. (2014). We do
not recall their exact definitions here, as they arise as instances of the more general bifibrations of
quantale-valued relations and predicates described in detail in the next section.

E E ′

B B′
p

F̂

p′

F

Given fibrations p : E →B and p′ : E ′ →B′ and a functor on the base categories F : B→B′,
we call F̂ : E → E ′ a lifting of F when p′̂F= Fp. Notice that a lifting F̂ restricts to a functor between
the fibres F̂X : EX → E ′

FX . We omit the subscript X when it is clear from the context.
Consider an arbitrary lifting F̂ of F and a morphism f : X→ Y in B. For any R ∈ EY , the

maps F̃f F̂R : (Ff )∗(̂FR)→ F̂R and F̂(f̃R) : F̂(f ∗R)→ F̂R sit above Ff . Using the universal property
in Definition 4, we obtain a canonical morphism

F̂ ◦ f ∗(R)→ (Ff )∗ ◦ F̂(R) . (3)
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A lifting F̂ is called a fibred lifting when the natural transformation in (3) is an isomorphism.
We will use the Beck-Chevalley condition for fibrations p : E →B, which will be needed in

some of the proofs. Assume we have a commuting square:

A
f ��

u
��

B
v
��

C g
�� D

(4)

Since the fibration is split, we have a commuting diagram

EA EB
f ∗��

EC

u∗
��

ED

v∗
��

g∗
��

Using the adjunctions �f � f ∗ and �g � g∗, we obtain the so-called mate of the above square

EA
�f ��

��
��

��
��

�

��
��

��
�

EB

EC

u∗
��

�g
�� ED

v∗
�� (5)

obtained using the unit and the counit of the above adjunctions, as the composite

�f u∗ �f u∗g∗�g �f f ∗v∗�g v∗�g
�f u∗η εv∗�g

Definition 5. We say that the square (4) has the Beck-Chevalley condition if the mate (5) is an
isomorphism.

4. Moving Towards a Quantitative Setting
We start by introducing two fibrations which are the foundations for our quantitative reasoning:
predicates and relations valued in a quantale.

Definition 6. A quantale V is a complete lattice equipped with an associative operation ⊗ : V ×
V → V which is distributive on both sides over arbitrary joins

∨
.

This implies that for every y ∈ V , the functor −⊗ y has a right adjoint [y,−]. Similarly, for
every x ∈ V , the functor x⊗− has a right adjoint, denoted by �x,−�. Thus, for every x, y, z ∈ V ,
we have: x⊗ y≤ z ⇐⇒ x≤ [y, z] ⇐⇒ y≤ �x, z�.

If ⊗ has an identity element or unit 1 for ⊗, the quantale is called unital. If x⊗ y= y⊗ x for
every x, y ∈ V the quantale is called commutative and we have [x,−]= �x,−�. Hereafter, we only
work with unital, commutative quantales.

Example 7. The Boolean algebra 2 with ⊗=∧ is a unital and commutative quantale: the unit is
1 and [y, z]= y→ z. The complete lattice [0,∞] ordered by the reversed order of the reals, that is,
≤=≥R andwith⊗=+ is a unital commutative quantale: the unit is 0 and for every y, z ∈ [0,∞]we
have [y, z]= z

·− y (truncated subtraction). Also [0, 1] is a unital quantale where r⊗ s=min (r+
s, 1) (truncated addition). To avoid confusion, we use ∨,∧ in the quantale and inf, sup in the reals.
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Definition 8. Given a set X and a quantale V , a V -valued predicate on X is a map p : X→ V . A
V -valued relation on X is a map r : X× X→ V .

Given two V -valued predicates p, q : X→ V , we say that p≤ q ⇐⇒ ∀x ∈ X. p(x)≤ q(x).

Definition 9. A morphism between V -valued predicates p : X→ V and q : Y→ V is a map f :
X→ Y such that p≤ q ◦ f . We consider the category V -Pred whose objects are V -valued predicates
and arrows are as above.

Definition 10. A morphism between V -valued relations r : X× X→ V and q : Y × Y→ V is a
map f : X→ Y such that p≤ q ◦ (f × f ). We consider the category V -Rel whose objects are V -
valued relations and arrows are as above.

The bifibration of V -valued predicates. The forgetful functor V -Pred→ Set mapping a pred-
icate p : X→ V to X is a bifibration. The fibre V -PredX is the lattice of V -valued predicates on
X. For f : X→ Y in Set the reindexing and direct image functors on a predicate p ∈ V -PredY are
given by

f ∗(p)= p ◦ f and �f (p)(y)=
∨
{p(x) | x ∈ f−1(y)} .

The bifibration V -Pred→ Set has the Beck-Chevalley condition for weak pullback squares in
Set. Essentially, we have to show that if (4) is a weak pullback, then for every p ∈ V -PredC and
b ∈ B we have ∨

a∈f−1(b)
p(u(a))=

∨
c∈g−1(v(b))

p(c) (6)

Proving ≤ is easy (we just use that the square commutes), but for ≥ we need that (4) is a weak
pullback.
The bifibration of V -valued relations. Notice that we have the following pullback in Cat, where
�X= X× X. This is a change-of-base situation and thus the functor V -Rel→ Setmapping each
V -valued relation to its underlying set is also a bifibration.

We denote by V -RelX the fibre above a set X. For each set X, the functor ι restricts to an
isomorphism ιX : V -RelX → V -PredX×X .

V -Rel
�� ��

ι �� V -Pred
��

Set
�

�� Set

For f : X→ Y in Set the reindexing and direct image on p ∈ V -RelY are given by

f ∗(p)= p ◦ (f × f ) and �f (p)(y)=
∨
{p(x, x′) | (x, x′) ∈ (f × f )−1(y, y′)} .

For two relations p, q ∈ V -RelX , we define their composition p · q : X× X→ V by p · q(x, y)=∨{p(x, z)⊗ q(z, y) | z ∈ X}. We define the diagonal relation diagX ∈ V -RelX by diagX(x, y)= 1 if
x= y and⊥ otherwise.

Definition 11. We say that a V -valued relation r : X× X→ V is

• reflexive if for all x ∈ X we have r(x, x)≥ 1, (i.e. r≥ diagX);
• transitive if r · r≤ r;
• symmetric if r= r ◦ symX, where symX : X× X→ X× X is the symmetry isomorphism.

We denote by V -Cat the full subcategory of V -Rel consisting of reflexive, transitive relations and by
V -Catsym the full subcategory of V -Rel that are additionally symmetric.
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Note that V -Cat is the category of small categories enriched over the V in the sense of Kelly
(1982).

Example 12. For V = 2, V -valued relations are just relations. Reflexivity, transitivity and symme-
try coincide with the standard notions, so V -Cat is the category of preorders, while V -Catsym is the
category of equivalence relations.

For V = [0,∞], V -Cat is the category of generalized metric spaces à la Lawvere (Lawvere 2002)
(i.e. directed pseudo-metrics and non-expansive maps), while V -Catsym is the one of pseudo-metrics.

Similar categories of quantale-valued relations have been used in the context of lambda calculus
and thus higher-order languages (Pistone 2021).

5. Lifting Functors to V -Pred and V -Rel
In the previous section, we have introduced the fibrations of interest for quantitative reasoning. In
order to deal with coinductive predicates in this setting, it is convenient to have a structured way
to lift Set-functors to V -valued predicates and relations and eventually to V -enriched categories.
Our strategy is to first lift functors to V -Pred and then, by exploiting the change of base, move
these liftings to V -Rel. A comparison with the extensions of Set-monads to the bicategory of
V -matrices (Hofmann 2007) is provided in Section 9.

5.1 V -predicate liftings
Liftings of Set-functors to the category Pred (for V = 2) of predicates have been widely studied in
the context of coalgebraic modal logic, as they correspond to modal operators (see e.g. Schröder
2008). For V -Pred, we proceed in a similar way. Let us analyse what it means to have a fibred
lifting F̂ to V -Pred of an endofunctor F on Set. First, recall that the fibre V -PredX is just the poset
V X .So the restriction F̂X to such a fibre corresponds to amonotonemap V X → V FX . The fact that
F̂ is a fibred lifting essentially means that the maps (V X → V FX)X form a natural transformation
between the contravariant functors V − and V F−. Furthermore, by Yoneda lemma we know that
natural transformations V −⇒ V F− are in one-to-one correspondence with maps ev : FV → V ,
which we will call hereafter evaluation maps.

One can characterize the evaluation maps which correspond to themonotone natural transfor-
mations. In Proposition 14, we show that these are themonotone evaluation maps ev : (FV ,�)→
(V ,≤ ) with respect to the usual order≤ on V and an order� on FV defined below and obtained
by applying the standard canonical relation lifting of F – in the sense of Barr (1970) – to the rela-
tion ≤. Explicitly, we apply the functor F to the relation ≤ seen as the span below in order to
obtain a relation on FV . Note that [≤]= {(v1, v2) ∈ V × V | v1 ≤ v2)} and o is the embedding of
[≤ ] in V × V .

[≤]

V V × V V

o
π1 π2

Definition 13 (Relation � on FV ). We define a relation � on FV : let v1, v2 ∈ FV . We define
v1�v2 whenever

∃r ∈ F[≤ ] s.t. F(π1 ◦ o)(r)= v1 and F(π2 ◦ o)(r)= v2
The relation� will also be denoted by ≤F (i.e. the order ≤ lifted under F via the standard relation
lifting Barr 1970).
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According to Balan and Kurz (2011) relation lifting transforms preorders into preorders
whenever F preserves weak pullbacks (but not necessarily orders into orders).

Proposition 14. There is a bijective correspondence between

• fibred liftings F̂ of F to V -Pred,
• monotone natural transformations V −⇒ V F−,
• monotone evaluation maps ev : FV → V .

Proof. The equivalence of the first two bullets is well-known in coalgebraic modal logic for V = 2.
For the sake of completeness, we include here full details.

F̂ is a lifting of F to V -Pred if and only if the following two conditions are met for all sets X
and functions f : X→ Y :

(1) F̂X : V -PredX → V -PredFX is monotone, and,
(2) the inequality F̂X ◦ f ∗(R)≤ (Ff )∗ ◦ F̂Y holds.

These two conditions alone are equivalent to the laxness of the following square

V Y V X

V FY V FX

F̂Y

f

F̂X≥

Ff

However, F̂ is a fibred lifting of F if and only if item 1 holds and the inequality in item 2 above is in
fact an equality. Hence, F̂ is a fibred lifting if and only if the above square is actually commutative,
which amounts to the existence of a natural transformation γ : V −→ V F− with each component
γX beingmonotone.

We have thus proved the equivalence of the first two conditions. Now, let us turn to the equiv-
alence between the first and third one.By Yoneda lemma, we know that natural transformations
V −→ V F− are in one-to-one correspondence with evaluation maps ev : F(V )→ V . It remains
to characterize the monotonicity condition. We show that this is equivalent to requiring that
evF : FV → V is monotone for the order� on FV and ≤ on V .
‘⇐’ Assume that evF is monotone and take f1, f2 : X→ V such that f1 ≤ f2. This means that 〈f1, f2〉
factors through o as depicted below, where u : X→ [≤ ] is defined as u(x)= (f1(x), f2(x)).

X u
��

〈f1,f2〉
��

[≤ ] �
�

o
�� V × V

If we apply F to the diagram above and post-compose with Fπ1, Fπ2, evF , we obtain the following
diagram.

FX
Fu

��

F〈f1,f2〉
��

F[≤ ] �
�

Fo
�� F(V × V )

Fπ1 ��

Fπ2
�� FV

evF �� V

Let t ∈ FX. Our aim is to show F̂f1(t)≤ F̂f2(t), which implies F̂f1 ≤ F̂f2.
First, define r= Fu(t) ∈ F[≤ ]. Now observe that F(π1 ◦ o)(r)= F(π1 ◦ o ◦ u)(t)= F(π1 ◦

〈f1, f2〉)(t)= Ff1(t). Analogously, F(π2 ◦ o)(r)= Ff2(t). Hence Ff1(t)�Ff2(t).
Using the monotonicity of evF , we can conclude that

F̂f1(t)= evF(Ff1(t))≤ evF(Ff2(t))= F̂f2(t) .
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‘⇒’ Assume that F̂ is monotone. In order to show monotonicity of evF , take v1, v2 ∈ FV such that
v1�v2. This means that there exists r ∈ F[≤ ] such that F(π1 ◦ o)(r)= v1, F(π2 ◦ o)(r)= v2.

Now consider π1 ◦ o, π2 ◦ o : [≤ ]→ V . It holds that π1 ◦ o≤ π2 ◦ o and with monotonicity of
F̂ we can conclude F̂(π1 ◦ o)≤ F̂(π2 ◦ o). Hence,

evF(v1)= evF(F(π1 ◦ o)(r))= F̂(π1 ◦ o)(r)
≤ F̂(π2 ◦ o)(r)= evF(F(π2 ◦ o)(r))= evF(v1)

that is, we have shown that evF is monotone.

Notice that the correspondence between fibred liftings and monotone evaluation maps is given
in one direction by ev= F̂(idV ), and conversely, by F̂(p : X→ V )= ev ◦ F(p).
Evaluation maps as Eilenberg-Moore algebras. Evaluation maps have also been extensively con-
sidered in the coalgebraic approach to modal logics (Schröder 2008). A special kind of evaluation
map arises when the truth values V have an algebraic structure for a given monad (T,μ, η), that
is, we have V = T� for some object � and the evaluation map TV → V is an Eilenberg-Moore
algebra for T. This notion of monadic modality has been studied in Hasuo (2015) where the cat-
egory of free algebras for T was assumed to be order enriched. In Lemma 15 below we show that
under reasonable assumptions, the evaluation map obtained as the free Eilenberg-Moore algebra
on � (i.e. ev : TV → V is just μ� : T2�→ T�) is a monotone evaluation map, and hence gives
rise to a fibred lifting of T.

Lemma 15. Assume that T is a monad and V = T� a quantale as detailed above. Assume that
there is a partial order � on � such that the lattice order ≤ of the quantale is obtained by lifting �
under T, that is, ≤ = �T (as in Definition 13). Then ev=μ� : (TV ,≤T )→ (V ,≤ ) is monotone,
and consequently corresponds to a fibred lifting T̂ of T.

Proof. Let t′1, t′2 ∈ TV such that t′1�t′2, that is, t′1 ≤T t′2. We have to show that μ�(t′1)≤μ�(t′2).
Since≤ is obtained by lifting� under T we can infer that there exists a witness function w : ≤

→ T(� ) that assigns to every pair of elements t1, t2 ∈ V with t1 ≤ t2 a witness w(t1, t2) ∈ T(� )
with Tπi(w(t1, t2))= ti. Hence Tπi ◦w= π ′

i , where πi : � →� and π ′
i : ≤ → V are the usual

projections.
Since t′1 ≤T t′2, there exists a witness t′ ∈ T(≤ ) with Tπ ′

i (t′)= t′i .
We show that t=μ�(Tw(t′)) is a witness for μ�(t′1)≤μ�(t′2). It holds that Tπi ◦μ� ◦ Tw=

μ� ◦ TTπi ◦ Tw=μ� ◦ T(Tπi ◦w)=μ� ◦ Tπ ′
i , where the first equality holds sinceμ is a natural

transformation. This implies Tπi(t)= (Tπi ◦μ� ◦ Tw)(t′)= (μ� ◦ Tπ ′
i )(t′)=μ�(t′i).

We provide next several examples of monotone evaluation maps which arise in this fashion.

Example 16. When T is the powerset monad P and �= 1, we obtain V = 2 and μ1 : P2→ 2
corresponds to the ♦modality, that is, to an existential predicate transformer, see Hasuo (2015).

Example 17. When T is the probability distribution functor D on Set and �= 2= {0, 1} equipped
with the order 1� 0, we obtain V =D{0, 1} ∼= [0, 1] with the reversed order of the reals, that
is, ≤ = ≥R. In this case evD (f )=∑

r∈[0,1] r · f (r) for f : [0, 1]→ [0, 1] a probability distribution
(expectation of the identity random variable).

The canonical evaluation map. In the case V = 2, there exists a simple way of lifting a functor
F : Set→ Set: given a predicate p : U � X, one defines the canonical predicate lifting F̂can(U) of
F as the epi-mono factorization of Fp : FU→ FX. This lifting corresponds to a canonical evalua-
tion map true : 1→ 2 which maps the unique element of 1 into the element 1 of the quantale 2.
For V -relations, a generalized notion of canonical evaluation map was introduced in Hofmann
(2007). For r ∈ V , consider the subset ↑ r= {v ∈ V | v≥ r} and write truer : ↑ r ↪→ V for the
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inclusion. Given u ∈ FV , we write u ∈ F(↑ r) when u is in the image of the injective function
F(truer). Following Hofmann (2007), we define evcan : FV → V as follows:

evcan(u)=
∨
{r | u ∈ F(↑ r)}.

Example 18. Assume F is the powerset functor P and let u ∈P(V ). We obtain that

evcan(u)=
∨
{r | u⊆ ↑ r}, or equivalently, evcan(u)=

∧
u .

When V = 2,we obtain evcan : P2→ 2 given by evcan(u)= 1 iff u=∅ or u= {1}. This corresponds
to the� operator from modal logic. If V = [0,∞] we have evcan(u)= sup u.

Example 19. The canonical evaluation map for the distribution monad D and V = [0, 1] is
evcan(f )= supr∈[0,1] f (r), which is not the monad multiplication.

The canonical evaluation map evcan is monotone whenever the functor F preserves weak pull-
backs (see Lemma 52 in Appendix A). For such functors, by Proposition 14, the map evcan induces
a fibred lifting F̂can of F, called the canonical V -Pred-lifting of F and defined by

F̂can(p)(u)=
∨
{r | F(p)(u) ∈ F(↑ r)} for p ∈ V -PredX and u ∈ FX .

Example 20. Consider a signature � and the usual notion of �-term. We write Var(t) for the set
of variables occurring in a �-term t and T�X for the set of �-terms t such that Var(t)⊆ X. The
assignment X �→ T�X extends to a functor T� : Set→ Set, which is also known as term monad.

The canonical V -Pred-lifting of T� is defined for all p ∈ V -Pred and t ∈ T�X by

T̂�can(p)(t)=
∧

x∈Var(t)
p(x) .

5.2 From predicates to relations via Wasserstein
We describe next how functor liftings to V -Rel can be systematically obtained using the change-
of-base situation described above. In particular, we will show how theWasserstein metric between
probability distributions (defined in terms of couplings of distributions) can be naturally modelled
in the fibrational setting.

Consider a V -predicate lifting F̂ of a Set-functor F. A natural way to lift F to V -relations using
F̂ is to regard a V -relation r : X× X→ V as a V -predicate on the product X× X. Formally, we
will use the isomorphism ιX described in Section 4. We can apply the functor F̂ to the predicate
ιX(r) in order to obtain the predicate F̂ ◦ ιX(r) on the set F(X× X). Ideally, we would want to
transform this predicate into a relation on FX. So first, we have to transform it into a predicate on
FX× FX. To this end, we use the natural transformation

λF : F ◦�⇒� ◦ F defined by λFX = 〈Fπ1, Fπ2〉 : F(X× X)→ FX× FX . (7)

We drop the superscript and simply write λ when the functor F is clear from the context.
Additionally, the bifibrational structure of V -Rel plays a crucial role, as we can use the direct
image functor �λX to transform F̂ ◦ ιX(r) into a predicate on FX× FX. Putting all the pieces
together, we define a lifting of F on the fibre V -RelX as the compositeW (̂F)X given by:

W (̂F)X : V -RelX V -Pred�X V -PredF�X V -Pred�FX V -RelFX
ιX F̂�X �λX ιFX−1

(8)
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Remark 21. The notation W (̂F) emphasizes the dependence on the given V -predicate lifting F̂.
However, for ease of notation and if no confusion can arise, we will in the following often abbrevi-
ate W (̂F) by F, leaving the underlying predicate lifting implicit. In particular, Fcan is based on the
canonical evaluation map, that is Fcan =W (̂Fcan).

We still have to verify thatW (̂F), as explained in Remark 21 hereafter denoted by F, is indeed
a lifting of F to V -Rel. The above construction provides the definition of F on the fibres and,
in particular, on the objects of V -Rel. For a morphism between V -relations p ∈ V -RelX and q ∈
V -RelY , that is, a map f : X→ Y such that p≤ f ∗(q), we define F(f ) as the map Ff : FX→ FY . To
see that this is well defined, it remains to show that Fp≤ (Ff )∗(Fq). This is the first part of the next
proposition.

Proposition 22. The functor F=W (̂F) defined above is a well-defined lifting of F to V -Rel.
Furthermore, when F preserves weak pullbacks and F̂ is a fibred lifting of F to V -Pred, then F is
a fibred lifting of F to V -Rel.

Proof. To prove that F is a well-defined functor on V -Rel, it remains to show that Fp≤ (Ff )∗(Fq)
whenever p≤ f ∗q (for f : X→ Y). From the definition of F as given in (8), we know that on each
fibre F is monotone; hence, Fp≤ F(f ∗(q)). Hence, it suffices to show that F(f ∗(q))≤ (Ff )∗ ◦ F(q).

This follows from the sequence of (in)equalities (9)–(14), where on each line we underlined the
sub-expression that was rewritten and which we will explain in turn.

F ◦ f ∗(q)= ιFX
−1 ◦�λX ◦ F̂�X ◦ ιX ◦ f ∗(q) (9)

= ιFX
−1 ◦�λX ◦ F̂�X ◦ (�f )∗ ◦ ιY (q) (10)

≤ ιFX
−1 ◦�λX ◦ (F�f )∗ ◦ F̂�Y ◦ ιY (q) (11)

≤ ιFX
−1 ◦ (�Ff )∗ ◦�λY ◦ F̂�Y ◦ ιY (q) (12)

= (Ff )∗ ◦ ιFY
−1 ◦�λY ◦ F̂�Y ◦ ιY (q) (13)

= (Ff )∗ ◦ F(q) (14)

We obtained (9) and (14) using the definition of F. To derive the equalities in (10) and (13),
we used the fact that ι is a fibred lifting of �. The inequality (11) follows from the fact that F̂ is a
lifting of F, and hence, we have the inequality

F̂�X ◦ (�f )∗ ≤ (F�f )∗ ◦ F̂�Y . (15)
Finally, the inequality (12) follows from the commutativity of the naturality squares of λ as an
instance of (5).

�λX ◦ (F�f )∗ ≤ (�Ff )∗ ◦�λY . (16)
Now let us focus on the second part of the proof. Since F̂ is a fibred lifting by assumption, then

the inequality (15) becomes an equality. When the functor F preserves weak pullbacks, then by
Lemma 51 in Appendix A we know that the naturality squares of λ are weak pullbacks. Hence,
since the fibration V -Rel has the Beck-Chevalley property for weak pullback squares, it follows
that (16) is also an equality. We obtain that all the inequalities (9)–(14) are in fact equalities. This
amounts to the fact that F is a fibred lifting.

Spelling out the concrete description of the direct image functor and of λX , we obtain for a
relation p ∈ V -RelX and t1, t2 ∈ FX, that

F(p)(t1, t2)=
∨
{̂F(p)(t) | t ∈ F(X× X), Fπi(t)= ti} (17)

Unravelling the definition of F̂(p)(t)= ev ◦ F(p), we obtain for F(p) the same formula as for
the extension of F on V -matrices, as given in Hofmann (2007, Definition 3.4). This definition
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in Hofmann (2007) is obtained by a direct generalization of the Barr extensions of Set-functors to
the bicategory of relations. In contrast, we obtained (17) by exploiting the fibrational change-of-
base situation and by first considering a V -Pred-lifting.

We call a lifting of the form F theWasserstein lifting of F corresponding to F̂. This terminology
is motivated by the next example.

Example 23. When F=D (the distribution functor), V = [0, 1] and evF is as in Example 17,
then F is the original Wasserstein metric from transportation theory (Villani 2009), which – by
the Kantorovich-Rubinstein duality – is the same as the Kantorovich metric. Here we compare two
probability distributions t1, t2 ∈DX and obtain as a result the coupling t ∈D(X× X)with marginal
distributions t1, t2, giving us the optimal plan to transport the ‘supply’ t1 to the ‘demand’ t2. More
concretely, given a metric d : X× X→ V , the (discrete) Wasserstein metric is defined as

dW(t1, t2)= inf{
∑
x,y∈X

d(x, y) · t(x, y) |
∑
y

t(x, y)= t1(x),
∑
x

t(x, y)= t2(y)}.

On the other hand, when evF is the canonical evaluation map of Example 19 the corresponding
V -Rel-lifting Fcan minimizes the longest distance (and hence the required time) rather than the
total cost of transport.

Example 24. Let us spell out the definition when F=P (powerset functor), V = [0, 1] and
evF : P[0, 1]→ [0, 1] corresponds to sup, which is clearly monotone and is the canonical evaluation
map as in Example 18.

Then, given a metric d : X× X→ [0, 1] and X1, X2 ⊆ X, the lifted metric is defined as follows
(remember that the order is reversed on [0, 1]):

F(d)(X1, X2)= inf{sup d[Y] | Y ⊆ X× X, πi[Y]= Xi}
As explained in Baldan et al. (2018), Mémoli (2011), this is the same as the Hausdorff metric dH
defined by:

dH(X1, X2)= sup{ sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x1, x2)}

Example 25. Recall the T̂�can, the canonical V -Pred-lifting of the term monad T� , from Example
20. We now illustrate T�can, the Wasserstein lifting corresponding to T̂�can. By (17) we have that
for all d ∈ V -Rel and t1, t2 ∈ T�X, it holds that

T�can(d)(t1, t2)=
∨
{T̂�can(d)(t) | t ∈ T�(X× X), T�πi(t)= ti}

Assume that for t1, t2 ∈ T�X, there exists a �-context C(−1, . . . ,−n) such that t1 = C(x1, . . . , xn)
and t2 = C(y1, . . . , yj) for j ∈ {1, . . . , n} and variables xj, yj ∈ X.1 Then, such a context C is
unique and the above set contains exactly one t ∈ T�(X× X) that is t= C((x1, y1), . . . , (xn, yn)).
Thus, T�can(d)(t1, t2)= T̂�can(d)(C((x1, y1), . . . , (xn, yn))) that, by definition of T̂�can, is∧

j∈{1,...,n} d(xj, yj). Instead, if such a context C does not exist, then the above set is empty and
T�can(d)(t1, t2)=⊥. In a nutshell,

T�can(d)(t1, t2)=

⎧⎪⎨⎪⎩
∧

j∈{1,...,n} d(xj, yj) ∃C(−1, . . . ,−n) such that
t1 = C(x1, . . . , xn) and t2 = C(y1, . . . , yn)

⊥ otherwise
(18)

As an example take as terms t1 = f (g(x), h(y)) and t2 = f (g(z), h(x)), then the context is
C(−1,−2)= f (g(−1 ), h(−2 )) and the term t ∈ T�(X× X) is t= f (g((x, z)), h((y, x))). Thus,
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T�can(d)(t1, t2)= d(x, z)∧ d(y, x). Instead, if one takes t1 = f (g(x), h(y)) and t2 = f (g(z), y), then
T�can(d)(t1, t2)=⊥.

The next lemma establishes that this construction is functorial: liftings of natural trans-
formations to V -Pred can be converted into liftings of natural transformations between the
corresponding Wasserstein liftings on V -Rel.

We now prove the following lemma:

Lemma 26. If there exists a lifting ζ̂ : F̂⇒ Ĝ of a natural transformation ζ : F⇒G, then there exists
a lifting ζ : F⇒G between the corresponding Wasserstein liftings (where F=W (̂F), G=W(Ĝ)).
Furthermore, when F̂ and Ĝ correspond to monotone evaluation maps evF and evG, then the lifting
ζ̂ exists and is unique if and only if evF ≤ evG ◦ ζV .

Proof. The existence (and in this case uniqueness) of the lifting ζ̂ is equivalent to the fact that
F̂X ≤ (ζX)∗ ◦ ĜX for all X. This is fairly standard, but we include here an explanation for the sake
of completeness. If ζ̂ exists, then for all p ∈ V -PredX we have the next diagram, where the dashed
arrow exists and is unique by the universal property in Definition 4.

F̂(p) Ĝ(p)

(ζX)∗(Ĝ(p))

X Y

ζ̂p

∃!
ζ̃XĜ(p)

ζX

Since the fibres in V -Pred are posets, this means that F̂(p)≤ (ζX)∗ ◦ Ĝ(p), since there is a unique
morphism in the fibre from F̂(p) to Ĝ(p). For the same reason, any two liftings of ζ must coincide.
Conversely, if the inequality F̂(p)≤ (ζX)∗ ◦ Ĝ(p) holds, we compose with ζ̃XĜ(p) in order to obtain
ζ̂p.

We have to show that FX ≤ (ζX)∗ ◦GX . We obtain:

(ζX)∗ ◦G = (ζX)∗ ◦ ιGX
−1 ◦�λGX

◦ Ĝ ◦ ιX

= ιFX
−1 ◦ (ζX × ζX)∗ ◦�λGX

◦ Ĝ ◦ ιX

≥ ιFX
−1 ◦�λFX

◦ (ζX×X)∗ ◦ Ĝ ◦ ιX

≥ ιFX
−1 ◦�λFX

◦ F̂ ◦ ιX

= F

To show the inequality on the third line, we notice that �λFX
◦ (ζX×X)∗ ≤ (ζX × ζX)∗ ◦�λGX

is the
mate, as in (5), of the following commutative square, which in turn commutes by the naturality of
ζ and the uniqueness of mediating morphisms into the product.

F(X× X)
λFX ��

ζX×X
��

FX× FX

ζX×ζX
��

G(X× X)
λGX

�� GX×GX
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To summarize, the proof of the first part of the lemma follows from the next lax diagram, by
composing with the isomorphisms ιX and ιFX−1.

V -Pred�X V -PredF�X V -Pred�FX

≥ ≥

V -PredG�X V -Pred�GX

F̂

Ĝ

�
λFX

�
λGX

(ζ�X)∗ (�ζX)∗

It remains to prove that F̂ ≤ ζ ∗X ◦ Ĝ is equivalent to evF ≤ evG ◦ ζV . The implication from left to
right is obtained by settingX= V and applying the functors on both sides to idV . We get the other
direction by taking p : X→ V and computing ((ζX)∗ ◦ Ĝ)(p)= evG ◦Gp ◦ ζX = evG ◦ ζV ◦ Fp≥
evF ◦ Fp= F̂(p). Note that this uses the naturality of ζ .

5.3 Preservation of reflexivity, symmetry and transitivity
For V = [0,∞], one is also interested in lifting functors to the category of (generalized) pseudo-
metric spaces, not just of [0,∞]-valued relations. This motivates the next question: when does
the lifting F restrict to a functor on V -Cat and V -Catsym? We have the following characteriza-
tion theorem, where κX : X→ V is the constant function x �→ 1 and u⊗ v : X→ V denotes the
pointwise tensor of two predicates u, v : X→ V , that is, (u⊗ v)(x)= u(x)⊗ v(x).

Furthermore, let δX : X→ X× X be the diagonal function on a set X. A relation r : X× X→ V
is reflexive if and only if

δX
∗ ◦ ιX(r)≥ κX . (19)

Theorem 27. Assume F̂ is a lifting of F to V -Pred and F is the corresponding V -RelWasserstein
lifting, that is, F=W (̂F). Then

• If F̂(κX)≥ κFX, then F(diagX)≥ diagFX; hence,F preserves reflexive relations;
• If F̂ is a fibred lifting, F preserves weak pullbacks and F̂(p⊗ q)≥ F̂(p)⊗ F̂(q); then, F(p · q)≥
F(p) · F(q); hence, F preserves transitive relations;

• F preserves symmetric relations.

Consequently, when all the above hypotheses are satisfied, then the corresponding V -RelWasserstein
lifting F restricts to a lifting of F to both V -Cat and V -Catsym.

For V = [0,∞], the first condition of Theorem 27 is a relaxed version of a condition in Baldan
et al. (2018, Definition 5.14) used to guarantee reflexivity. The second condition (for transitivity)
is equivalent to a non-symmetric variant of a condition in Baldan et al. (2018) (see Lemma 54 in
Appendix A).

The proof is immediate from Lemmas 28, 30 and 31 which we prove next.

Lemma 28. Assume F̂ is a lifting of F such that
F̂(κX)≥ κFX .

Then, F(diagX)≥ diagFX; hence,F preserves reflexive relations.

Proof. Notice that

diagX = ιX
−1�δX (κX) .
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Using this observation, we obtain that

F(diagX)= ιFX
−1 ◦�λX ◦ F̂ ◦�δX (κX) (20)

≥ ιFX
−1 ◦�λX ◦�FδX ◦ F̂(κX) (21)

≥ ιFX
−1 ◦�λX ◦�FδX (κFX) (22)

= ιFX
−1 ◦�δFX (κFX) (23)

= diagFX (24)

In (20), we used the definition of F. For the inequality (21), we used that F̂ is a lifting of F and
the mate of (3), that is, F̂ ◦�δX ≥�FδX ◦ F̂. The inequality (22) is the hypothesis, while in (23) we
used that λX ◦ FδX = δFX .

Preservation of reflexive relations is now immediate. For r ∈ V -RelX is reflexive when r≥
diagX . Hence , F(r)≥ F(diagX)≥ diagFX , which entails that F is reflexive.

We now turn our attention to the preservation of composition of relations and of the
transitivity property.

We will use the notations πi : X× X× X→ X to denote the ith projection on X3 and τi : FX×
FX× FX→ FX to denote the ith projection on (FX)3.

We will use the fact that the composition p · q of two relations p, q : X× X→ V can be written
as the composite

p · q= ιX
−1�〈π1,π3〉(〈π2, π3〉∗(ιXq)⊗ 〈π1, π2〉∗(ιXp)) (25)

Lemma 29. Assume F preserves weak pullbacks and u,w : F(X× X)→ V are in V -PredF(X×X).
We denote by νX : F(X3)→ (FX)3 the map defined as νX = 〈Fπ1, Fπ2, Fπ3〉. Then we have:
�νX ((F〈π2, π3〉)∗(u)⊗ (F〈π1, π2〉)∗(w))= 〈τ2, τ3〉∗�λX (u)⊗ 〈τ1, τ2〉∗�λX (w).

Proof. It is easy to verify that the square below is a pullback.

X3

〈π2,π3〉
		��
��
��
�� 〈π1,π2〉



�
��

��
��

�

X2

π1 

�
��

��
��

� X2

π2		��
��
��
��

X
By applying F to the diagram, we obtain the diagram below where the square is a weak pullback
(since F preserves weak pullbacks).

F(X3)
F〈π2,π3〉

�����
��
��
�� F〈π1,π2〉

��	
		

		
		

		

F(X2)
Fπ2
















Fπ1 ���
��

��
��

��
F(X2)

Fπ2����
��
��
��
� Fπ1

��















FX FX FX
Using this diagram, we can show that the square below is a weak pullback as well. Assume that
t1, t2 ∈ F(X2), (s1, s2, s3) ∈ (FX)3 are given such that λX(t1)= (s2, s3) (which means Fπ1(t1)= s2,
Fπ2(t1)= s3) and λX(t2)= (s1, s2) (which means Fπ1(t2)= s1, Fπ2(t2)= s2). That is, t1, t2 live on
the middle level and s3, s2, s1 on the lower level (in that order) in the diagram above. Since the
square is a weak pullback, there exists t ∈ F(X3) such that F〈π2, π3〉(t)= t1 and F〈π1, π2〉(t)= t2.
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It remains to verify that νX(t)= (s1, s2, s3): for instance Fπ1(t)= (Fπ1 ◦ F〈π1, π2〉)(t)= Fπ1(t2)=
s1. (Analogously for s2, s3.)

F(X3) νX ��

〈F〈π2,π3〉,F〈π1,π2〉〉
��

(FX)3

〈〈τ2,τ3〉,〈τ1,τ2〉〉
��

F(X2)× F(X2)
λX×λX

�� (FX)2 × (FX)2

Since the Beck-Chevalley condition holds, we obtain
�νX 〈F〈π2, π3〉, 〉F〈π1, π2〉∗ = 〈〈τ2, τ3〉, 〈τ1, τ2〉〉∗�λX×λX .

Then, we will apply this to a predicate of the form⊗◦ (u×w) and using the facts

• 〈h1, h2〉∗(⊗◦(u×w))= h1∗(u)⊗ h2∗(w).
• �f×f (⊗◦(u×w))=⊗ ◦ (�f (u)×�f (w)).

we derive the desired equality.
While the first item above is straightforward, the second has to be further explained. Whenever

f : X→ Y , p, p′ : X→ V , y, y′ ∈ Y , we have (using distributivity):
�f×f (⊗◦(p× p′))(y, y′)

=
∨
{p(x)⊗ p′(x′) | f (x)= y, f (x′)= y′}

=
⎛⎝ ∨

f (x)=y
p(x)

⎞⎠⊗
⎛⎝ ∨

f (x′)=y′
p′(x′)

⎞⎠
=�f (p)(y)⊗�f (p′)(y′)
=⊗ ◦ (�f (p)×�f (p′))(y, y′)

Lemma 30. Assume F preserves weak pullbacks and F̂ is a fibred lifting of F such that
F̂(u⊗ v)≥ F̂(u)⊗ F̂(v) (26)

Then, F(p · q)≥ F(p) · F(q); hence,F preserves transitive relations.

Proof. We denote by νX : F(X3)→ (FX)3 the map defined as νX = 〈Fπ1, Fπ2, Fπ3〉.
F(p · q)= ιX

−1�λX F̂�〈π1,π3〉(〈π2, π3〉∗(ιXq)⊗ 〈π1, π2〉∗(ιXp)) (27)
≥ ιX

−1�λX�F〈π1,π3〉F̂(〈π2, π3〉∗(ιXq)⊗ 〈π1, π2〉∗(ιXp)) (28)
≥ ιX

−1�λX�F〈π1,π3〉F̂(〈π2, π3〉∗(ιXq))⊗ F̂(〈π1, π2〉∗(ιXp)) (29)
= ιX

−1�λX�F〈π1,π3〉(F〈π2, π3〉∗F̂(ιXq)⊗ F〈π1, π2〉∗F̂(ιXp)) (30)
= ιX

−1�〈τ1,τ3〉�νX (F〈π2, π3〉∗F̂(ιXq)⊗ F〈π1, π2〉∗F̂(ιXp)) (31)
= ιX

−1�〈τ1,τ3〉(〈τ2, τ3〉∗�λX (̂F(ιXq))⊗ 〈τ1, τ2〉∗�λX (̂F(ιXp))) (32)
= ιX

−1�〈τ1,τ3〉(〈τ2, τ3〉∗(ιXFq)⊗ 〈τ1, τ2〉∗(ιXFp)) (33)
= Fp · Fq (34)

The equalities (27), (33) and (34) follow by unravelling the definition of F and from (25). The
inequality (28) follows using by the mate of (3). The inequality (29) follows from the hypothesis
on F̂. The equality (30) is obtained using the F is a fibred lifting. To prove the equality in (31), we
use that λX ◦ F〈π1, π3〉 = 〈τ1, τ3〉 ◦ νX . Finally, (32) follows from Lemma 29.
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Assume r ∈ V -RelX is transitive, that is, r · r≤ r. Then, we have Fr · Fr≤ F(r · r)≤ Fr, hence
Fr is transitive.

Lemma 31. The Wasserstein lifting preserves symmetric V -valued relations.

Proof. We first observe that the square below commutes.

F(X× X) FX× FX

F(X× X) FX× FX

λX

FsymX symFX

λX

Knowing that λX = 〈FπX
1 , FπX

2 〉 and that symX = 〈π2, πX
1 〉, where πX

i : X× X→ X, we can easily
show that the square commutes:

symFX ◦ λX

= 〈πFX
2 , πFX

1 〉 ◦ 〈FπX
1 , FπX

2 〉
= 〈πFX

2 ◦ 〈FπX
1 , FπX

2 〉, πFX
1 ◦ 〈FπX

1 , FπX
2 〉〉

= 〈FπX
2 , FπX

1 〉
= 〈F(πX

1 ◦ 〈πX
2 , π

X
1 〉), F(πX

2 ◦ 〈πX
2 , π

X
1 〉)〉

= 〈F(πX
1 ◦ symX), F(πX

2 ◦ symX)〉
= 〈FπX

1 , FπX
2 〉 ◦ FsymX

= λX ◦ FsymX

Recall that p ∈ V -RelY is symmetric when p= p ◦ symY . We cannot perform a reindexing along
symY in the fibration V -Rel, since symY is not a morphism on Y , but on Y × Y . Instead, we have
that p is symmetric if and only if

ιYp= (symY )∗(ιYp)
in V -Pred. Hence, we want to show that for any r ∈ V -RelX the implication holds

ιXr= (symX)∗(ιXr)⇒ ιFXFr= (symFX)∗(ιFXFr)
We have the following inequalities:

ιFXFr=�λX ◦ F̂�X ◦ ιX(r)
=�λX ◦ F̂�X ◦ (symX)∗(ιXr)
≤�λX ◦ (FsymX)∗ ◦ F̂�X(ιXr)
≤ (symFX)∗ ◦�λX ◦ F̂�X(ιXr)
= (symFX)∗(ιFXFr)

However, using the idempotency of symFX and the monotonicity of (symFX)∗ from the inequality
ιFXFr≤ (symFX)∗(ιFXFr)

that we have just proved above we can infer that the equality also holds.

We can establish generic sufficient conditions on a monotone evaluation map ev so that the
corresponding V -Pred-lifting F̂ satisfies the conditions of Theorem 27. In Proposition 53 in
Appendix A, we show that F̂(p⊗ q)≥ F̂(p)⊗ F̂(q) holds whenever the map ⊗: V × V → V is
the carrier of a lax morphism in the category of F-algebras between (V , ev)2→ (V , ev), that is,
⊗◦ (ev× ev) ◦ λV ≤ ev ◦ F(⊗ ). Furthermore, F̂(κX)≥ κX holds whenever the map κ1 : 1→ V
is the carrier of a lax morphism from the one-element F-algebra ! : F1→ 1 to (V , ev), that is,

https://doi.org/10.1017/S0960129523000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000166


200 F. Bonchi et al.

κ1◦! ≤ ev ◦ Fκ1. These two requirements correspond to the conditions (Q⊗), respectively (Qk)
satisfied by a topological theory in the sense of Hofmann (2007, Definition 3.1). Since these two
are satisfied by the canonical evaluation map evcan,2 we immediately obtain

Proposition 32. Whenever F preserves weak pullbacks the canonical lifting F̂can satisfies the
conditions in Theorem 27:

(1) F̂can(p⊗ q)≥ F̂can(p)⊗ F̂can(q), for all p, q ∈ V -PredX,
(2) F̂can(κX)≥ κX.

Proof. (1) Given t ∈ FX, we have on one hand that
F̂can(p⊗ q)(t)= evcan(F(p⊗ q)(t))

=
∨
{r | F(p⊗ q)(t) ∈ F(↑ r)} ,

and on the other, that
(̂Fcan(p)⊗ F̂can(q))(t)

= evcan(Fp(t))⊗ evcan(Fq(t))
=

∨
{r | Fp(t) ∈ F(↑ r)} ⊗

∨
{s | Fq(t) ∈ F(↑ s)}

=
∨
{r⊗ s | Fp(t) ∈ F(↑ r), Fq(t) ∈ F(↑ s)} .

Hence, in order to show the desired inequality it is sufficient to show that
Fp(t) ∈ F(↑ r), Fq(t) ∈ F(↑ s) imply F(p⊗ q)(t) ∈ F(↑ (r⊗ s)) .

Let r, s ∈ V so that Fp(t) ∈ F(↑ r) and Fq(t) ∈ F(↑ s). Note that p⊗ q : X→ V is the composite:

X δX ��

p⊗q

��X× X
p×q �� V × V

⊗ �� V

Hence, F(p⊗ q) is the composite of the arrows on the top line of the diagram below:

FX FδX ��

δFX ��

F(X× X)

λX
��

F(p×q)�� F(V × V ) F(⊗) ��

λV

��

FV

FX× FX
Fp×Fq �� FV × FV

Note that the triangle and the square above are commutative. Using the abbreviation θ = F((p×
q) ◦ δX)(t), we have that:

F(p⊗ q)(t) = F(⊗ )(θ) (35)
((Fp)(t), (Fq)(t)) = λV (θ) (36)

From Lemma 51 in Appendix A, we know that the square in the diagram below is a weak pullback.

F((↑ r)× (↑ s)) F(V × V )

F(↑ r)× F(↑ s) FV × FV

F(truer×trues)

〈Fπ1,Fπ2〉 λV

Ftruer×Ftrues

(37)

By hypothesis, we know that there exists u ∈ F(↑ r) and v ∈ F(↑ s) such that Fp(t)= Ftruer(u) and
Fq(t)= Ftrues(v). Hence,

(Ftruer × Ftrues)(u, v)= λV (θ) .
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Using the fact that the square (37) is a weak pullback, there exists w ∈ F((↑ r)× (↑ s)) such that
F(truer × trues)(w)= θ , Fπ1(w)= u and Fπ2(w)= v.

Thus far, we have shown that
F(p⊗ q)(t)= F(⊗ )(θ)= F(⊗ ) ◦ F(truer × trues)(w)

for some w ∈ F((↑ r)× (↑ s)). To finish the proof of the first item, we will prove that F(⊗ ) ◦
F(truer × trues) factors through Ftruer⊗s : F(↑ (r⊗ s))→ FV .

To this end, notice that due tomonotonicity of the tensor product, we know that (↑ r)⊗ (↑ s)⊆
↑ (r⊗ s). Hence, ⊗: V × V → V restricts to a function ⊗|↑r,↑s on ↑ r×↑ s so that the square
below commutes.

↑ r×↑ s V × V

↑ (r⊗ s) V

truer×trues

⊗|↑r,↑s ⊗
truer⊗s

Now we put z := F(⊗|↑r,↑s )(w) and observe that

F(p⊗ q)(t)= F(⊗ ) ◦ F(truer × trues)(w)
= F(truer⊗s) ◦ F(⊗|↑r,↑s )(w)
= F(truer⊗s)(z) .

We conclude that F(p⊗ q)(t) ∈ F(↑ (r⊗ s)).

(2) Now let us prove the second item. Given t ∈ FX, we know that

F̂canκX(t)= evcan(FκX(t))

=
∨
{r | FκX(t) ∈ F(↑ r)} .

In order to show that F̂canκX(t)≥ 1 it is sufficient to prove that FκX(t) ∈ F(↑ 1).
Let e : X→↑ 1 a constant mapping with e(x)= 1. Then, the diagram to the left below

commutes and by applying the functor F we obtain the diagram below.

X
e

		��
��
��
��

κX
��

↑ 1
true1

�� V

FX
Fe

�����
��
��
��

FκX
��

F(↑ 1)
Ftrue1

�� FV

Now F κX(t)= Ftrue1(Fe(t)), hence F κX(t) ∈ F(↑ 1).

An immediate consequence of Proposition 32 and of Theorem 27 is that theWasserstein lifting
Fcan that corresponds to F̂can restricts to a lifting of F to both V -Cat and V -Catsym.

6. Quantitative up-to Techniques
The fibrational constructions of the previous section provide a convenient setting to develop an
abstract theory of quantitative up-to techniques. We rely on Bonchi et al. (2014) and use the
generic results for showing compatibility of the various up-to functions.

The coinductive object of interest is the greatest fixpoint of a monotone map b on V -Rel, here-
after denoted by νb. Recall that an up-to technique, namely a monotone map f on V -Rel, is sound
whenever d≤ b(f (d)) implies d≤ νb, for all d ∈ V -RelX ; it is compatible if f ◦ b≤ b ◦ f in the
pointwise order. It is well-known that compatibility entails soundness. Another useful property is:

if f is compatible, then f (νb)≤ νb . (38)
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Following Bonchi et al. (2014), we assume hereafter that b can be seen as the composite

b : V -RelX V -RelFX V -RelX .F̃ ξ∗ (39)

where ξ : X→ FX is some coalgebra for F : Set→ Set and F̃ : V -Rel→ V -Rel is an arbitrary
lifting of F.

We now consider several up-to functions f that can be combined with such a monotone map b.
When F admits a final coalgebra ω : �→ F�, the unique morphism ! : X→� induces the

behavioural closure up-to technique

bhv : V -RelX V -Rel� V -RelX
�! !∗ (40)

where bhv(p)(x, y)=∨{p(x′, y′) | !(x)= !(x′) and !(y)= !(y′)}. For V = 2, behavioural closure
corresponds to the usual up-to behavioural equivalence (bisimilarity).

Other immediate generalizations are the up-to reflexivity (ref ), up-to transitivity (trn) and up-
to symmetry (sym) techniques. Inductively, take (− )0 = id : V -RelX → V -RelX and (− )n+1 =
id · (−)n. Call diag : V -RelX → V -RelX the constant function to diagX and inv : V -RelX →
V -RelX be the inversion function mapping d into d ◦ symX . Then ref , trn and sym are defined
as follows.

ref = id∨ diag trn=
∨
i
(−)i sym= id∨ inv (41)

The last up-to techniques we consider in this paper are quantitative generalizations of the up-to
contextual closure. For this, one needs to assume that the coalgebra ξ : X→ FX carries a [bialge-
bra]bialgebras (X, α : TX→ X, ξ : X→ FX) for some natural transformation ζ : T ◦ F⇒ F ◦ T.
For an arbitrary lifting T̃ : V -Rel→ V -Rel of T : Set→ Set, up-to contextual closure is seen as
the composite:

f : V -RelX V -RelTX V -RelX .T̃ �α (42)

Example 33. The functor T� : Set→ Set from Example 20 carries a monad where the multipli-
cation μX : T�T�X→ T�X is just term composition. Given a context C, hereafter we will write
C[t1, . . . , tn] for an arbitrary element of T�T�X (a term of terms) and C(t1, . . . tn) for the term
μX(C[t1, . . . , tn]) ∈ T�X (term substitution, as before). We will use T1 and T2 for elements of
T�T�X and t1, t2, s1j and s2j for elements of T�X.

In this example, we consider the following up-to technique

ctx : V -RelT�X V -RelT�T�X V -RelT�X .T�can �μX

where T�can is defined as in (18) and �μX is the direct image of the multiplication μX. In order to
understand why this is a proper generalization of the usual notion of contextual closure of a relation
is convenient to spell out the definition. For d ∈ V -RelT�X and t1, t2 ∈ T�X, we have that

ctx(d)(t1, t2)=�μX (T�can(d))(t1, t2)

=
∨
{T�can(d)(T1, T2) |μX(Ti)= ti}

=
∨
{T�can(d)(T1, T2) |μX(Ti)= ti and ∃C[−0, . . . ,−n] s.t. Ti = C[si1, . . . , s

i
n]}

=
∨
C
{
∧
j
d(s1j , s

2
j ) | ti = C(si0, . . . , s

i
n)}

Notice that for V = 2, this boils down to the usual notion of contextual closure of a relation.
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Example 34. Let V = [0, 1]. In Chatzikokolakis et al. (2016), the convex closure of d ∈ V -RelD(X)
is defined for �,� ∈D(X) as

cvx(d)(�,�)= inf{
∑
i

pi · d(�i,�i) |�=
∑
i

pi ·�i,�=
∑
i

pi ·�i}

where �i,�i ∈D(X), pi ∈ [0, 1]. This can be obtained as in (42) by taking the Wasserstein lifting
D of D from Example 23 corresponding to the evaluation map of Example 17, and the free algebra
structure on DX given by the monad multiplication μX : DDX→DX. This results in:

f : V -RelDX V -RelDDX V -RelDX .D �μX

Let �,� ∈DX and d : DX×DX→ [0, 1]. Then, by expanding the definitions of the direct image
and of the Wasserstein lifting we obtain:

f (d)(�,�) = �μX (D(d))(�, θ)
= inf{D(d)(�̃, �̃) | �̃, �̃ ∈DDX,μX(�̃)=�,μX(�̃)=�}
= inf{inf{D̂(d)(�) | � ∈D(DX×DX),Dπ1(�)= �̃,Dπ2(�)= �̃} |

�̃, �̃ ∈DDX,μX(�̃)=�,μX(�̃)=�}
= inf{D̂(d)(�) | � ∈D(DX×DX),μX(Dπ1(�))=�,μX(Dπ2(�))=�}

Now observe that � ∈D(DX×DX) can be written as a formal sum � =∑
i pi · (�i,�i) where

�i,�i ∈DX and pi = �(�i,�i). Then,

D̂(d)(�) = ev(D(d)(�))=
∑

r∈[0,1]
r ·

∑
�(�′,�′)=r

d(�′,�′)

=
∑
�′,�′

d(�′,�′) · �(�′,�′)=
∑
i

pi · d(�i,�i)

In addition μX(Dπ1(�))=� means
∑

i pi ·�i =� and similarly μX(Dπ2(�))=� means∑
i pi ·�i =�. Therefore, f (d)(�,�)= cvx(d)(�,�).

Remark 35. In the following, we will use the convention that b is obtained as in equation (39) and
f is as in (42). In addition F̃, T̃ are arbitrary liftings of F, T to V -Rel. Later, we will restrict to
Wasserstein liftings.

6.1 Compatibility for arbitrary liftings
We now study compatibility of the up-to techniques illustrated so far with respect to b as in (39).

With the definitions of bhv, ref , trn, sym and two results in Bonchi et al. (2017b), it is immediate
to prove the following.

Proposition 36. Let F̃ : V -Rel→ V -Rel be an arbitrary lifting of F : Set→ Set.

• If F̃(diagX)≥ diagFX, then ref is b-compatible.
• If F̃(p · q)≥ F̃(p) · F̃(q) for all p, q ∈ V -RelX, then trn is b-compatible.
• If F̃(d) ◦ symX ≤ F̃(d ◦ symX), then sym is b-compatible.
• If F̃ is a fibred lifting, then bhv is b-compatible.

Proof. Observe that

• diag is compatible by the hypothesis and Bonchi et al. (2017b, Proposition 6.3). Then, ref
is compatible since id is compatible and the join of compatible functions is compatible.
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• For all i, (−)i is compatible (the proof goes by induction: for the base case, id is compatible;
for the inductive case, we use Proposition 38). Then, trn is compatible (following the same
argument as above).

• inv is compatible by the hypothesis and Bonchi et al. (2017b, Proposition 6.3). Then sym is
compatible.

• Theorem 6.1 in Bonchi et al. (2017b) entails that bhv is compatible.

For up-to context, it is enough to use (Bonchi et al. 2014, Theorem 2) stating the following.

Proposition 37. If there exists a lifting ζ : T̃ ◦ F̃⇒ F̃ ◦ T̃ of ζ , then f is b-compatible.

Proof. Follows immediately from Theorem 2 in Bonchi et al. (2014).

As usual, compatible techniques can be combined either by function composition (◦) or by
arbitrary joins (

∨
). For instance, compatibility of up-to metric closure, defined as the composite

mtr= trn ◦ sym ◦ ref , follows immediately from compatibility of trn, sym and ref . In V -Rel there
is yet another useful way to combine up-to techniques – called chaining in Chatzikokolakis et al.
(2016) – and defined as the composition (·) of relations (for a definition see Section 4)

Proposition 38. Let g1, g2 : V -RelX → V -RelX be arbitrary up-to functions which are compatible
with respect to b : V -RelX → V -RelX. If F̃(p · q)≥ F̃(p) · F̃(q) for all p, q ∈ V -RelX, then g1 · g2 is
b-compatible.

Proof. Follows immediately from Proposition 6.3 in Bonchi et al. (2017b).

6.2 Compatibility for Wasserstein lifting
By moving from arbitrary liftings to Wasserstein liftings, it is possible to state more interest-
ing results. First, observe that whenever F is the Wasserstein lifting corresponding to some
V -Pred-lifting F̂ (i.e. F=W (̂F)) which satisfies the conditions of Theorem 27, then the hypothe-
ses of Proposition 36 immediately hold when replacing F̃ by F, so bhv, ref , trn, sym are
compatible.

For up-to context, more work is needed. By Proposition 37, to prove compatibility it is enough
to find a lifting

ζ : T ◦ F⇒ F ◦ T
of ζ . In order to prove a theorem that establishes sufficient conditions for the existence of such
lifting, we first need the following two lemmas.

Remark 39. In the statement of the next results, we use the following notation: let F, T be functors
and evF , evT their evaluation maps, leading to V -predicate liftings F̂, T̂. Notice that ̂T ◦ F := T̂ ◦
F̂ and ̂F ◦ T := F̂ ◦ T̂ are liftings of the composite functors T ◦ F, respectively F ◦ T. As before we
are using the convention F=W (̂F), T =W(T̂). Additionally, we will denote by T ◦ F and F ◦ T
the Wasserstein liftings obtained from ̂T ◦ F, respectively, ̂F ◦ T as in Section 5. That is, T ◦ F :=
W(̂T ◦ F), F ◦ T :=W(̂F ◦ T).
Lemma 40. Whenever T̂ ◦�λFX

≤�TλFX
◦ T̂, the identity natural transformation TF⇒ TF lifts to

T ◦ F⇒ T ◦ F.
Proof. We have to show that the (identity) maps underlying the natural transformation are
non-expansive, in particular T ◦ F(r)≤ T ◦ F(r) for every r in V -RelX .

Let λFX : F(X× X)→ FX× FX, λTFX : T(FX× FX)→ TFX× TFX, λTFX : TF(X× X)→ TFX×
TFX be the natural transformations on which the three liftings are based. From the uniqueness
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of the mediating morphism of the product, we obtain λTFX = λTFX ◦ TλFX . This yields that �λTFFX
=

�λTFX
◦�TλFX

and allows us to prove:

T ◦ F = ιTFX
−1 ◦�λTFX

◦ T̂ ◦ ιFX ◦ ιFX
−1 ◦�λFX

◦ F̂ ◦ ιX

= ιTFX
−1 ◦�λTFX

◦ T̂ ◦�λFX
◦ F̂ ◦ ιX

≤ ιTFX
−1 ◦�λTFX

◦�TλFX
◦ T̂ ◦ F̂ ◦ ιX

= ιTFX
−1 ◦�λTFFX

◦ T̂F ◦ ιX = T ◦ F .

Lemma 41. The identity natural transformation F ◦ T⇒ F ◦ T lifts to F ◦ T⇒ F ◦ T.
Proof. It always holds that �Ff ◦ F̂ ≤ F̂ ◦�f for all f : X→ Y . Indeed, by (3), F̂ ◦ f ∗ ≤ (Ff )∗ ◦ F̂
holds in V -Rel. Then, using the fact that�f , f ∗ (respectively�Ff , (Ff )∗) are adjoint, we obtain the
desired inequality.

The rest of the proof is analogous to Lemma 40. In particular, the inequality in the computation
turns into an equality.

In fact, if we combine Lemmas 40 and 41 (with the roles of T, F switched), we obtain composi-
tionality of theWasserstein lifting under the additional requirement of Lemma 40. In other words,
W(T̂) ◦W (̂F)= T ◦ F= T ◦ F=W(̂T ◦ F).
Theorem42. Assume the natural transformation ζ : T ◦ F⇒ F ◦ T lifts to a natural transformation
ζ̂ : T̂ ◦ F̂⇒ F̂ ◦ T̂ and that we have T̂ ◦�λFX

≤�TλFX
◦ T̂. Then, ζ lifts to a distributive law ζ : T ◦

F⇒ F ◦ T.
Proof. We split the proof obligation into three parts:

T ◦ F⇒
(1)

T ◦ F ζ̃⇒
(2)

F ◦ T⇒
(3)

F ◦ T .

(1) lifts the identity natural transformation on T ◦ F. Its existence is proved using the hypothesis
T̂ ◦�λFX

≤�TλFX
◦ T̂, see Lemma 40.

(2) is obtained by applying Lemma 26 to ζ̂ . Such liftings have already been studied in Baldan et al.
(2015).

(3) lifts the identity natural transformation on F ◦ T. It exists by Lemma 41.

The first requirement of the previous theorem holds for the canonical V -Pred-liftings under
mild assumptions on F and T.

Proposition 43. Assume that ζ : T ◦ F⇒ F ◦ T is a natural transformation and that, furthermore,
T preserves weak pullbacks and F preserves intersections. Then, ζ lifts to a natural transformation
ζ̂ : T̂can ◦ F̂can⇒ F̂can ◦ T̂can.
Proof. We use the following notations:

evTF := evTcan ◦ T(evFcan)
and

evFT := evFcan ◦ F(evTcan) .
Notice that evTF and evFT are exactly the evaluationmaps corresponding to the liftings T̂can ◦ F̂can,
respectively F̂can ◦ T̂can. Using the second part of Lemma 26, it suffices to show evTF ≤ evFT ◦ ζV .

We will consider the inclusion maps truer : ↑ r→ V and write t ∈ F(↑ r) for t ∈ truer(↑ r).
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We first consider the diagram below. We will show that the dotted arrow exists and that the
resulting square is a weak pullback.

F(↑ r) ��Ftruer ��

evFcan|↑r
��

FV

evFcan
��

↑ r �� truer �� V

Let t ∈ F(↑ r). This means that evFcan(t)=
∨{s | t ∈ F(↑ s)} ≥ r, since the set contains r itself.

Hence, evFcan restricts to evFcan|↑r .
In order to show that the square is a weak pullback take t ∈ FV such that evFcan(t)=

∨{s | t ∈
F(↑ s)} = s̄ ∈ ↑ r, hence s̄≥ r. We have to show that t ∈ F(↑ r), that is, that r is contained in the set,
which we will do by showing that {s | t ∈ F(↑ s)} is downward-closed and contains its supremum.
The set {s | t ∈ F(↑ s)} is downward-closed since F as a Set-functor preserves injections with non-
empty domains, and hence, s′ ≤ s implies ↑ s⊆ ↑ s′, and thus, F(↑ s)⊆ F(↑ s′). It follows that
t ∈ F(↑ s) implies t ∈ F(↑ s′). If F preserves intersections, the set contains its supremum: ↑s̄=⋂{↑ s | t ∈ F(↑ s)}, and hence, F(↑s̄)=⋂{F(↑ s) | t ∈ F(↑ s)}  t. This implies t ∈ F( ↑s̄)⊆ F(↑ r),
as desired.

Similarly one obtains such a commuting square (not necessarily a weak pullback) for T and
evTcan. This results in the following diagram where the right-hand square and the upper ‘square’
commute and the left-hand square is a weak pullback (using pullback preservation of T).

TF(↑ r) ��TFtruer ��

T(evFcan|↑r)
��

ζ↑r

��
TFV

ζV ��

TevFcan
��

FTV

FevTcan
��

FT(↑ r)��FTtruer��

F(evTcan|↑r)
��

T(↑ r) ��Ttruer �� TV FV F( ↑ r)��Ftruer��

In order to prove that

evTF = evTcan ◦ TevFcan ≤ evFcan ◦ FevTcan ◦ ζV = evFT ◦ ζV ,

let t ∈ TFV . Since

evTcan(Tev
F
can(t))=

∨
{r | TevFcan(t) ∈ T(↑ r)}

and

evFcan(Fev
T
can(ζV (t)))=

∨
{r | FevTcan(ζV (t)) ∈ F(↑ r)}

it suffices to show that

TevFcan(t) ∈ T(↑ r) implies FevTcan(ζV (t)) ∈ F(↑ r) .

So let TevFcan(t) ∈ T(↑ r) and the fact that the left-hand square is a weak pullback implies that
there exists t′ ∈ TF(↑ r) with TFtruer(t′)= t.

Then, using naturality of ζ , we obtain

FevTcan(ζV (t))= FevTcan(ζV (TFtruer(t′)))
= FevTcan(FTtruer(ζ↑r(t′)))
= Ftruer(F(evTcan|↑r)(ζ↑r(t′)))
∈ F(↑ r)
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The next proposition establishes sufficient conditions for the second hypothesis of Theorem 42.
We require a property on V that holds for the quantales in Example 7 and was also assumed
in Hofmann (2007). Given u, v ∈ V we write u≪ v (u is totally below v) if for every W ⊆ V ,
v≤∨

W implies that there exists w ∈W with u≤w. The quantale V is constructively completely
distributive iff for all v ∈ V it holds that v=∨{u ∈ V | u≪ v}.
Example 44. In the real interval [0, 1], the order ≪ coincides with >R, whereas in a powerset
lattice PM we have that M1 ≪M2 for M1,M2 ⊆M whenever M1 ⊆M2 and M1 contains at most
one element. Both lattices are constructively completely distributive.

We now show a result for the canonical predicate lifting. In Appendix B.2, we prove a more
general statement (Proposition 56) for arbitrary predicate liftings of T that is useful to guarantee
the result for interesting liftings, such as the one in Example 23.

Proposition 45. Assume that T preserves weak pullbacks and that V is constructively completely
distributive. Then T̂can ◦�f ≤�Tf ◦ T̂can.
Proof. In Appendix B.2, we prove a more general result (Proposition 56). Proposition 45 follows
thus from Proposition 56, whose conditions are shown to be satisfied by the canonical lifting in
Lemmas 57 and 58.

Combining Theorem 42 and Propositions 37, 43 and 45, we conclude:

Theorem 46. Let (X, α : TX→ X, ξ : X→ FX) be a bialgebra for a natural transformation ζ : T ◦
F⇒ F ◦ T. If V is constructively completely distributive, T preserves weak pullbacks and F preserves
intersections, then f = Tcan ◦�α is compatible with respect to b= Fcan ◦ ξ∗.

When α is the free algebra for a signature μX : T�T�X→ T�X (as in Example 33) and F is a
suitable functor, the above theorem guarantees that up-to contextual closure is compatible with
respect to b. Then, by (38), it holds that for all terms t1, t2 and unary contexts C that

νb(t1, t2)≤ ctx(νb)(C(t1), C(t2))≤ νb(C(t1), C(t2)) ,
where the first inequality follows from the definition of ctx (Example 33) and the second from
(38), since ctx is b-compatible.

For V = 2, since the canonical quantitative lifting coincides with the relational lifting of the
canonical predicate lifting, then νb is exactly the standard coalgebraic notion of behavioural equiv-
alence (Hermida and Jacobs 1998). Therefore, the above inequality just means that behavioural
equivalence is a congruence.

For V = [0,∞] instead, this property boils down to non-expansiveness of contexts with respect
to the behavioural metric. It is worth to mention that this property often fails in probabilistic
process algebras (see e.g. Gebler et al. 2015) when taking the standard Wasserstein lifting which,
as shown in Example 23, is not based on the canonical one. We leave as future work to explore the
implications of this insight.

7. Example: Distance Between Regular Languages
We will now work out the quantitative version of the up-to congruence technique for non-
deterministic automata. We consider the shortest-distinguishing-word-distance dsdw, proposed
in Section 2. As explained, we will assume an on-the-fly determinization of the non-deterministic
automaton, that is, formally we will work with a coalgebra that corresponds to a deterministic
automaton on which we have a join-semilattice structure.

We explain next the various ingredients of the example:
Coalgebra and algebra. As outlined in Section 2 and Example 3, the determinization of an NFA
with state space Q is a bialgebra (X, α, ξ ) for the distributive law ζX : P(2× XA)→ 2× (PX)A,
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where X=PQ, α : PX→ X is given by union and ξ : X→ 2× XA specifies the DFA structure
of the determinization. Hence, we instantiate the generic results in the previous section with TX=
PX, FX= 2× XA and ζ as defined in Example 3.
Lifting the functors. We take the quantale V = [0, 1] (Example 7) and consider the Wasserstein
liftings of the endofunctors F and T to V -Rel corresponding to the following evaluation maps:

• evF(b, f ) := c ·maxa∈A f (a), where b ∈ {0, 1}, f : A→ [0, 1] and c is the constant used in
dsdw, and,

• evT := evP
can = sup, the canonical evaluation map as in Example 18.

These are monotone evaluation maps that satisfy the hypothesis of Theorem 27:

Lemma 47. The evaluation maps evF and evT defined in Section 7 induce liftings which satisfy the
requirements of Theorem 27.

Proof. These evaluation maps satisfy the required properties: evT is the canonical evaluation map
(see Section 5), thus the statement follows from Proposition 32. For evF , notice that this is of
the form g ◦ ev, where ev satisfies the requirements of Proposition 53 in Appendix A (since it
is canonical) and g : V → V with g(r)= c · r is monotone, g(a⊗ b)≥ g(a)⊗ g(b) and g(1)≥ 1.
It is thus straightforward to see that evF fulfils the conditions of Proposition 53 and thus the
corresponding lifting, those of Theorem 27.

Hence, the correspondingWasserstein liftings restrict to V -Cat. We computed theWasserstein
lifting of T =P in Example 24: applying the lifted functor T to a map d : X× X→ [0, 1] gives us
the Hausdorff distance, that is, T(d)(X1, X2)= dH(X1, X2), where X1, X2 ⊆ X and dH denotes the
Hausdorff metric based on d. On the other hand, theWasserstein lifting of F corresponding to evF
associates to a metric d : X× X→ [0, 1] the metric F(d) : FX× FX→ [0, 1] given by

((b1, f1), (b2, f2)) �→
⎧⎨⎩ 1 if b1 
= b2
max
a∈A c · {d(f1(a), f2(a))} otherwise

Fixpoint equation. The map b for the fixpoint equation was defined in Section 6 as the com-
posite ξ∗ ◦ F. Using the above lifting F, this computation yields exactly the map b defined
in (2), whose largest fixpoint (smallest with respect to the natural order on the reals) is the
shortest-distinguishing-word-distance introduced in Section 2.
Up-to technique. The next step is to determine the map f introduced in Section 6 for the up-to
technique and defined as the composite �α ◦ T on V -Rel. Combining the definition of the direct
image functors on V -Rel with the lifting T, we obtain that

f (d)(x1, x2)= inf{dH(X1, X2) | X1, X2 ⊆ X, α(Xi)= xi}
for all maps d : X× X→ [0, 1]. To show that f (d)(Q1,Q2)≤Rr for two sets Q1,Q2 ⊆Q (i.e.
Q1,Q2 ∈ X) and a constant r, we use the following rules:

f (d)(∅, ∅)≤Rr
d(Q1,Q2)≤Rr

f (d)(Q1,Q2)≤Rr
f (d)(Q1,Q2)≤Rr f (d)(Q′1,Q′2)≤Rr

f (d)(Q1 ∪Q′1,Q2 ∪Q′2)≤Rr

Lifting of distributive law. In order to prove that the distributive law lifts to V -Rel and hence that
the up-to technique is sound by virtue of Proposition 37, we can prove that the two conditions of
Theorem 42 are met by the V -Pred liftings of F and T corresponding to the evaluation maps evF
and evT :
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Lemma 48. Assume F̂ and T̂ are the [0, 1]-Pred liftings of FX= 2× XA and TX=PX which
correspond to the evaluation maps evF and evT defined in the example in Section 7. Then, we have:

(1) T̂ ◦�λFX
≤�TλFX

◦ T̂, and,
(2) ζ : T ◦ F⇒ F ◦ T lifts to a natural transformation ζ̂ : T̂ ◦ F̂⇒ F̂ ◦ T̂

Proof. Recall that on the quantale [0, 1] the quantale order is the reversed order on the reals, so in
order to avoid confusion we use ≤,∨,∧ in the quantale and ≥R, inf, sup in the reals.
(1) To prove the first item, we can rely on Proposition 45, since T̂can is the canonical lifting and
we are working in the quantale V = [0, 1], which is constructively completely distributive.
(2) Recall that T̂ ◦ F̂ is a lifting of T ◦ F which corresponds to the evaluation map evTF = evT ◦
T(evF). Similarly, F̂ ◦ T̂ corresponds to the evaluation map evFT = evF ◦ F(evT). The existence of
ζ̂ is then equivalent to the inequality

evTF ≥R evFT ◦ ζV . (43)

Here we are almost in the setting of canonical liftings treated in Proposition 43, apart from the fact
that evF = g ◦ evFcan, where the function g is given by g(r)= c · r. Recall evT = evTcan. Furthermore,
T preserves weak pullbacks and F preserves intersections, hence by (the proof of) Proposition 43,
we know that

evTcan ◦ T(evFcan)≥R evFcan ◦ F(evTcan) ◦ ζV .

In order to obtain the desired lifting of natural transformations, we first notice that evTcan ◦ Tg =
g ◦ evTcan. Indeed, for all R⊆ [0, 1] we have

evTcan(Tg(R))= sup c · R= c · sup R= g(evTcan(R)) .

To conclude, we use the above equalities and the monotonicity of g:

evTF = evT ◦ T(evF)
= evTcan ◦ T(g) ◦ T(evF)
≥R g ◦ evTcan ◦ T(evF)
≥R g ◦ evFcan ◦ F(evTcan) ◦ ζV

= evF ◦ F(evTcan) ◦ ζV

= evFT ◦ ζV .

Everything combined, we obtain a sound up-to technique, which implies that the reasoning
in Section 2 is valid. Furthermore, as the example shows, the up-to technique can significantly
simplify behavioural distance arguments and speed up computations.

8. A Detailed Comparison with Chatzikokolakis et al. (2016)
In this appendix, we discuss in details the relationship between our work and Chatzikokolakis
et al. (2016) where a general framework of up-to techniques for behavioural metric is introduced.

The systems of interest in Chatzikokolakis et al. (2016) are probabilistic automata which are
known (Bartels et al. 2004) to be coalgebras for the functor P(A×D(−)). The behavioural
metrics under consideration are defined as the greatest fixed points of

b : V -RelX V -RelD(X) V -RelP(D(X))A V -RelXK P(A×−) ξ∗ (44)
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where ξ : X→P(A×D(X)) is a probabilistic automaton, P(A×−) is the canonical lifting of
P(A×−) (based on the Hausdorff distance, Example 24) and K is some lifting of D . Please note
that the quantale V in Chatzikokolakis et al. (2016) is [0,∞] (Example 7) so the ordering used in
this paper and the one in Chatzikokolakis et al. (2016) are always inverted.

Observe that the definition of b as in (44) is an instance of (39) by taking F̃=K ◦P(A×−).
It is worth to mention that K in Chatzikokolakis et al. (2016) is not arbitrary, but it is supposed
to be an instance of a parametric construction called generalized Kantorovic metric. For a certain
value of the parameter, this coincides (via the well-known duality) with the Wasserstein metric
from transportation theory (Example 23).

The authors of Chatzikokolakis et al. (2016) introduced several basic techniques – which
can be easily defined in our framework, for example, metric closure (Section 6), convex clo-
sure (Example 34) or contextual closure (Example 33) – and combine them via composition
(◦), supremum (

∨
) and chaining (·). In Proposition 38, we have provided sufficient condi-

tions ensuring that · preserves compatibility. The same result for ◦ and ∨
follows immediately

from the standard theory of compatible up-to techniques (Pous and Sangiorgi 2011). This is not
the case for Chatzikokolakis et al. (2016), where these results need novel proofs since the basic
notions of up-to techniques and compatibility (or respectfulness) do not fit within the standard
lattice-theoretic framework.

Indeed in Chatzikokolakis et al. (2016), an up-to technique is defined to be some map f
of type V -RelD(X)→ V -RelD(X) and a bisimulation up-to f to be some d ∈ V -RelX such that
d≤ (ξ∗ ◦P) ◦ f ◦K(d).3 Soundness is defined in the expected way. The notion to prove sound-
ness (Definition 5 in Chatzikokolakis et al. 2016) amounts to the following, modulo the usual
difference between compatibility and respectfulness (that is well-known and discussed in several
papers Bonchi et al. 2017b; Pous 2016)

Definition 49. Amonotone map f : V -RelD(X)→ V -RelD(X) is awell-behaved up-to technique iff
there exists an f ′ : V -RelX → V -RelX such that

(1) f ◦K ≤K ◦ f ′ and
(2) f ′ ◦ b≤ b ◦ f ′.
Observe that whenever f is well-behaved, a bisimulation up-to f in the sense of Chatzikokolakis

et al. (2016) can be transformed into a bisimulation up-to f ′ in our sense bymeans of the first item:

d≤ (ξ∗ ◦P(A×−)) ◦ f ◦K(d)≤ (ξ∗ ◦P(A×−)) ◦K ◦ f ′(d)= b(f ′(d)) . (45)
Moreover, thanks to the second item, f ′ is compatible w.r.t. b.

This observation shows that the techniques in Chatzikokolakis et al. (2016) can be reformulated
within the standard theory of Pous and Sangiorgi (2011) and thus proved compatible by means of
our framework.

Lemma 50. Consider a probabilistic automaton and let K denote a convex (in the sense
of Chatzikokolakis et al. 2016) lifting of the probability distribution functor. Then, a bisimulation
metric up-to convex closure in the sense of Chatzikokolakis et al. (2016) is exactly a bisimulation
metric, that is, a post-fixpoint of b in (44).

Proof. As above, let ξ : X→P(A×D(X)) denote the coalgebra structure corresponding to the
probabilistic automaton. The up-to convex closure is defined as in Example 34. Recall that a bisim-
ulation metric up-to convex closure in the sense of Chatzikokolakis et al. (2016) is a bisimulation
metric d such that d progresses to cvx ◦K(d), written using the notation in Chatzikokolakis et al.
(2016, Definition 2) as d� cvx ◦K(d). Spelling out that definition, we obtain that, in the quantale
order (i.e. the reversed of the order on the reals used Chatzikokolakis et al. 2016), we have

d≤ ξ∗ ◦P(A×−) ◦ cvx ◦K(d) . (46)
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On the other hand, the respectfulness of cvx – established via Chatzikokolakis et al. (2016,
Theorem 11) – uses the fact that for all d ∈ V -RelX we have that K(d) is convex; hence, the f ′
used above is simply the identity function on V -RelDX . In other words, we have

cvx ◦K(d)≤K(d) (47)
Combining (46) and (47), we obtain that

d≤ ξ∗ ◦P(A×−) ◦K(d) ,
or equivalently, that d is simply a bisimulation metric.

9. Related and Future Work
Up-to techniques for behavioural metrics in a probabilistic setting have been considered
in Chatzikokolakis et al. (2016) using a generalization of the Kantorovich lifting (Chatzikokolakis
et al. 2014). In Section 6, we have shown that the basic techniques introduced in Chatzikokolakis
et al. (2016) (e.g. metric closure, convex closure and contextual closure) as well as the ways to
combine them (composition, join and chaining) naturally fit within our framework. The main
difference with our approach – beyond the fact that we consider arbitrary coalgebras while the
results in Chatzikokolakis et al. (2016) just cover coalgebras for a fixed functor – is that the defi-
nition of up-to techniques and the criteria to prove their soundness do not fit within the standard
framework of Pous and Sangiorgi (2011). Nevertheless, as illustrated by a detailed comparison in
Section 8, the techniques of Chatzikokolakis et al. (2016) can be reformulated within the standard
theory and thus proved sound by means of our framework. An important observation brought to
light by compositional methodology inherent to the fibrational approach is that for probabilistic
automata,0 a bisimulation metric up-to convexity in the sense of Chatzikokolakis et al. (2016) is
exactly a bisimulationmetric, see Lemma 50. Nevertheless, the up-to convex closure technique can
find meaningful applications in linear, trace-based behavioural metrics (see Baldan et al. 2015).

The Wasserstein (respectively Kantorovich) lifting of the distribution functor involving cou-
plings was first used for defining behavioural pseudo-metrics using final coalgebras in van Breugel
and Worrell (2001). Our work is based instead on liftings for arbitrary functors, a problem that
has been considered in several works (see e.g. Balan et al. 2015; Baldan et al. 2018; Hofmann 2007;
Katsumata and Sato 2015), despite with different shades. The closest to our approach are Sprunger
et al. (2018, 2021), Hofmann (2007) and Baldan et al. (2018) that we discuss next.

In Sprunger et al. (2018, 2021), the authors introduce a generalization of theWasserstein lifting
for CLat∧-fibrations, inspired by our original conference publication (Bonchi et al. 2018b). This
construction uses the fact that the functor� has a left adjoint 2× _, resulting in an adjunction that
can be lifted to an adjunction between V -Pred and V -Rel. Then, F can be obtained as a pushfor-
ward (direct image) along the natural transformation θ : LF�⇒ F and correctness is ensured by
Hermida’s adjunction lifting theorem.

In Hofmann (2007), Hofmann introduces a generalization of the Barr extension (of Set-
functors to Rel), namely he defines extensions of Set-monads to the bicategory of V -matrices,
in which 0-cells are sets and the V -relations are 1-cells. Some of the definitions and techniques do
overlap between the developments in Hofmann (2007), and the results we presented in Section 5.
However, there are also some (subtle) differences which would not allow us to use off the shelf his
results.

First, in order to reuse the results in Bonchi et al. (2014), we need to recast the theory in
a fibrational setting, rather than the bicategorical setting of Hofmann (2007). The definition of
topological theory (Hofmann 2007, Definition 3.1) comprises what we call an evaluation map, but
which additionally has to satisfy various conditions. An important difference with what we do
is that the condition (Q∨) in the aforementioned definition entails that the predicate lifting one
would obtain from such an evaluation map would be an opfibred lifting, rather than a fibred lifting
as in our setting. Indeed, the condition (Q∨) can be equivalently expressed in terms of a natural
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transformation involving the covariant functor PV , as opposed to the contravariant one V − that
we used in Section 5.1. Lastly, in our framework we need to work with arbitrary functors, not
necessarily carrying a monad structure.

In Baldan et al. (2018), we provided a generic construction for theWasserstein lifting of a func-
tor to the category of pseudo-metric spaces, rather than on arbitrary quantale-valued relations.
The realization that this construction is an instance as a change-of-base situation between V -Rel
and V -Pred allows us to exploit the theory in Bonchi et al. (2014) for up-to techniques and, as a
side result, provides simpler (and cleaner) conditions for the restriction to V -Cat (Theorem 27).

We leave for future work several open problems. What is a universal property for the canon-
ical Wasserstein lifting? Secondly, can the Wasserstein liftings presented here be captured in the
framework of Balan et al. (2015) or Katsumata and Sato (2015)? In particular, the relation to
codensity liftings (Katsumata and Sato 2015; Komorida et al. 2021, 2019), a generalized notion
of Kantorovich lifting, has to be studied in more detail. A result which shows under which
conditions our notion of Wasserstein lifting coincides with the codensity lifting, that is a gen-
eralized Kantorovich-Rubinstein result (Villani 2009), is non-trivial to obtain and would be of
great interest.

We also leave for future work the concrete development of up-to techniques for other quantales
than 2 and [0, 1]. We are particularly interested in weighted automata (Droste et al. 2009) over
quantales and in conditional transition systems, a variant of featured transition systems.

Another interesting question is whether the rule-based reasoning that we employed in Section 8
can be formally seen as an instance of quantitative algebraic reasoning (Mardare et al. 2016; Mio
and Vignudelli 2020, Mio et al. 2021).

Finally, we plan to study the setting of Bonchi et al. (2019), which provides an algebraic theory
for specifying systems with nondeterminism, probability and termination. We believe that up-
to techniques based on such algebraic theories can be defined in a way similar to the contextual
closure studied in Example 33. This would enable us to exhibit proof rules to simplify checking
behavioural trace distance in such a context.
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Notes
1 For a context C(−1, . . . ,−n) we denote by C(t1, . . . , tn) the term obtained by substituting the term ti in the hole−i.
2 The same observation is present in Hofmann (2007, Theorem 3.3(b)) but in a slightly different setting.
3 Note that d≤ ξ∗ ◦P(A×−)(d′) means, in the language of Chatzikokolakis et al. (2016), that d progresses to d′.
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Appendix A. Proofs and additional material for Section 5
We now provide several lemmas that are used to prove the results in Section 5. These proofs have
been moved to the appendix in order to obtain a more compact structure of the main body of the
paper.

Lemma51 (Corollary 2.7 inHofmann 2007). If F : Set→ Set is weak pullback-preserving, then the
naturality squares of the binatural transformation 〈Fπ1d, , Fπ2〉 : F(X× Y)→ FX× FY are weak
pullbacks, where π1 : X× Y→ X and π2 : X× Y→ X denote the projections. In particular, the
naturality squares of the natural transformation λ are weak pullbacks.

Proof. Consider morphisms f : X→ X′ and g : Y→ Y ′. We want to prove that the square

F(X× Y) F(X)× F(Y)

F(X′ × Y ′) F(X′)× F(Y ′)

F(f×g)

〈Fπ1,Fπ2〉

Ff×Fg

〈Fπ1,Fπ2〉

(A1)
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is a weak pullback. To this end, we will consider the following diagram:

F(X× Y)

F(X× Y ′) F(X′ × Y)

F(X) F(X′ × Y ′) F(Y)

F(X′) F(Y ′)

F(X×g) F(f×Y)

Fπ1 F(f×Y ′) F(X′×g)
Fπ2

Ff Fπ1 Fπ2 Fg

(A2)

The three squares above are obtained by applying the functor F to weak pullbacks; hence, by
the assumption on F, they are also weak pullbacks.

Assume s′ ∈ F(X′) and t′ ∈ F(Y ′) are such that there exist s ∈ F(X), t ∈ F(Y) and u ∈ F(X′ × Y ′)
satisfying Ff (s)= s′, Fg(t)= t′ and 〈Fπ1, Fπ2〉(u)= (s′, t′). Proving that (A1) is a weak pull-
back amounts to showing the existence of v ∈ F(X× Y) so that Fπ1(v)= s, Fπ2(v)= t and
F(f × g)(v)= u.

From the fact that the lower left square in (A2) is a weak pullback, we infer the existence of
u1 ∈ F(X× Y ′) such that Fπ1(u1)= s and F(f × Y ′)(u1)= u.

Analoguosly, using that the lower right square in (A2) is a weak pullback we obtain the
existence of u2 ∈ F(X′ × Y) such that Fπ2(u2)= t and F(X′ × g)(u2)= u.

Since the upper square is also a weak pullback, we deduce the existence of v ∈ F(X× Y)
satisfying F(X× g)(v)= u1 and F(f × Y)(v)= u2. Upon noticing that Fπ1 ◦ F(X× g)= F(π1),
Fπ2 ◦ F(f × Y)= F(π2), and F(f × Y ′) ◦ F(X× g)= F(f × g), we conclude that v is the element
we were looking for in F(X× Y).

Lemma 52. Assume the functor F preserves weak pullbacks. The map evcan : FV → V is a mono-
tone evaluation map, that is, it is monotone with respect to the order� on FV defined in 13 and
the order ≤ on V .

Proof. It is sufficient to show that evcan : (FV ,�)→ (V ,≤ ) is monotone.
Hence, let u′1, u′2 ∈ FV such that u′1�u′2, which implies that there exists u′ ∈ F(V × V ) with

Fπi(u′)= u′i, where πi : ≤→ V are the projections.
We have to show that evcan(u′1)≤ evcan(u′2). It is sufficient to show that u′1 ∈ F(↑ r) implies

u′2 ∈ F(↑ r). Assume r ∈ V is such that u′1 ∈ F(↑ r). Then, there exists u1 ∈ ↑ r such that
Ftruer(u1)= u′1.

Now consider the diagram on the left in (A3), where

er : ≤↑r →≤
embeds≤ restricted to ↑ r into the full relation. Furthermore, the functions π i are the projections
for ≤↑r . This diagram commutes for i= 1, 2 and is a weak pullback for i= 1. Hence, the diagram
on the right in (A3) is also a weak pullback.

≤↑r er ��

π i
��

≤
πi
��

↑ r truer �� V

F(≤↑r) Fer ��

Fπ1
��

F(≤)
Fπ1
��

F(↑ r) Ftruer �� FV

(A3)

We have u1 ∈ F(↑ r) and u′ ∈ F(≤) with Ftruer(u1)= u′1 = Fπ1(u′). Hence, there must be an
element u ∈ F(≤↑r ) with Fπ1(u)= u1 and Fer(u)= u′.
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We set u2 = Fπ2(u) ∈ F(↑ r) and observe that Ftruer(u2)= F(truer ◦ π2)(u)= F(π2 ◦ er)(u)=
Fπ2(u′)= u′2. This means that u′2 ∈ F(↑ r) as required.

Proposition 53. Assume ev : FV → V is monotone evaluation map and let F̂ be the corresponding
fibred lifting of F. Then we have:

(1) F̂(p⊗ q)≥ F̂(p)⊗ F̂(q) holds whenever the map ⊗: V × V → V is a lax F-algebra mor-
phism, in the sense that we have a lax diagram:

F(V × V ) FV × FV V × V

≥
FV V

F(⊗)

λV ev×ev

⊗

ev

(2) F̂(κX)≥ κX holds whenever the map κ1 : 1→ V is a lax algebra morphism, that is, we have
the lax diagram

F1 1

≥
FV V

!

Fκ1 κ1

ev

Proof. (1)We start with the observation that the predicate p⊗ q is computed as the composite

X X× X V × V V
δX p×q ⊗

Upon recalling that F̂(p)= ev ◦ F(p), we notice that the leftmost path from FX to V in the next
diagram evaluates to F̂(p⊗ q). Similarly, the rightmost path from FX to V evaluates to F̂(p)⊗
F̂(q). Now, the desired inequality F̂(p⊗ q)≥ F̂(p)⊗ F̂(q) follows using the fact that the upper
triangle commutes, the naturality of λ and the lax diagram from the hypothesis.

FX

F(X× X) FX× FX

F(V × V ) FV × FV

FV ≥ V × V

V

FδX δFX

F(p×q)

λX

Fp×Fq
λV

F(⊗) ev×ev

ev ⊗

(2)We consider the following diagram

F1 1

≥
FX FV V

!

Fκ1 κ1

FκX

F!

ev
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Since κX = κ1◦! the left triangle commutes. Hence, we obtain

ev ◦ FκX ≥ κ1◦! ◦ F! ,
or, equivalently,

F̂(κX)≥ κX .

We show how one of the conditions for well-behavedness that we required for the Wasserstein
lifting in Baldan et al. (2018, Definition 5.14) for the quantale V = [0,∞] is related to the con-
ditions in Proposition 27. Our original condition was de ◦ (evF × evF) ◦ 〈Fπ1, Fπ2〉 ≤ F̂(de) where
de(−1,−2)= [−1,−2]∧ [−2,−1] (which evaluates to de(r, s)= |r− s| on the reals). This clearly
implies the non-symmetric variant stated in the lemma below.

Lemma 54. F̂(p⊗ q)≥ F̂(p)⊗ F̂(q) holds for all p, q : X→ V if and only if [π1, π2](evF ×
evF)〈Fπ1, Fπ2〉 ≥ F̂[π1, π2].

Proof.

[π1, π2](evF × evF)〈Fπ1, Fπ2〉 ≥ F̂[π1, π2] (A4)

⇐⇒ [π1, π2]〈̂Fπ1, F̂π2〉 ≥ F̂[π1, π2] (A5)

⇐⇒ [̂Fπ1, F̂π2]≥ F̂[π1, π2] (A6)

⇐⇒ F̂π2 ≥ F̂[π1, π2]⊗ F̂π1 (A7)

using

• For the equivalences (A4) ⇐⇒ (A5) ⇐⇒ (A6) just simple rewriting along with F̂=
evF ◦ F.

• For the equivalence (A6) ⇐⇒ (A7) the tensor property x⊗ y≤ z ⇐⇒ x≤ [y, z].

Using this, we now aim to show that (A7) ⇐⇒ (26).

• Showing (26) =⇒ (A7) is straightforward: from [π1, π2]≤ [π1, π2], we can infer [π1, π2]⊗
π1 ≤ π2. Using this, the monotonicity of F̂ and (26) (by taking u= [π1, π2] : X→ V and
v= π1 : X→ V ) we obtain inequality (A7) as follows:

F̂π2 ≥ F̂ ([π1, π2]⊗ π1)≥ F̂[π1, π2]⊗ F̂π1

• The implication (A7) =⇒ (26) can be shown by rewriting u⊗ v= π2 ◦ 〈v, u⊗ v〉 and then
using (A7) as follows

F̂(u⊗ v)

= F̂ (π2 ◦ 〈v, u⊗ v〉)= F̂π2 ◦ F〈v, u⊗ v〉
≥ (̂

F[π1, π2]⊗ F̂π1
) ◦ F〈v, u⊗ v〉

= F̂ ([π1, π2] ◦ 〈v, u⊗ v〉)⊗ F̂ (π1 ◦ 〈v, u⊗ v〉)
= F̂[v, u⊗ v]⊗ F̂v≥ F̂u⊗ F̂v

where the last inequality follows again from monotonicity of F̂ and the definitions of⊗ and
[−,−]. In particular, u⊗ v≤ u⊗ v, and hence, u≤ [v, u⊗ v].
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Appendix B. Proofs and additional material for Section 6
B.1 Lifting of the distributive law
We include an alternative proof of Theorem 42 which brings the pieces of proof in one large
diagram.

Alternative proof of Theorem 42. The existence of the lifting ζ̂ is equivalent to

T̂ ◦ F̂ ≤ (ζX)∗ ◦ F̂ ◦ T̂ ,

while the existence of the lifting ζ is equivalent to

T ◦ F ≤ (ζX)∗ ◦ F ◦ T .

The latter inequality, which we have to prove, is in turn equivalent to the inequality obtained by
using the isomorphism ι.

ιTFX ◦ T ◦ F ◦ ιX
−1 ≤ ιTFX ◦ (ζX)∗ ◦ F ◦ T ◦ ιX

−1

= (�ζX)∗ ◦ ιFTX ◦ F ◦ T ◦ ιX
−1

The left-hand side of the above inequality rewrites using the definitions of the Wasserstein lift-
ings as the composite of the outermost right-then-down path V -Pred�X to V -Pred�TFX in the
next diagram. The right-hand side similarly evaluates to the outermost down-then-right path in
the diagram. So it suffices to establish the inequality between these two paths. We do this by
decomposing the diagram into smaller pieces (see Fig. B1) and explaining each inequality in turn.

The two inequalities in the top pentagon and top-right square follow from the hypothesis. The
two triangles at the bottom are equalities that follow from the fact that

λFTX = λFTX ◦ FλTX and λTFX = λTFX ◦ TλFX

The inequality in the left-down square holds since F̂ is a lifting and is obtained via adjoint
transposes from (3).

Using the naturality of ζ , one can show that the next square commutes

TF�X �TFX

FT�X �FTX .

ζ�X

λTFX

�ζX
λFTX

and hence, the inequality in the bottom rhombus can be derived as an instance of a generic result
for bifibrations, see (5).

Figure B1. Existence of the lifting ζ̂ .
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B.2 Details on constructively completely distributive quantales
In this appendix, we provide a result (Proposition 56 below) for proving T̂ ◦�f ≤�Tf ◦ T̂ that is
more general than Proposition 45. This is useful, for instance to prove such property for liftings
different than the canonical one.

For thismore general result, we need some additional properties, in particular the lifting T̂must
preserve a special type of supremum of predicates (even stronger than uniform convergence).

Definition 55. Let (pi : X→ V )i∈I be a family of predicates. We call its sup constructively con-
vergent if for every predicate q : X→ V with q≪

∨
i∈I pi (pointwise), there exists i ∈ I with

q≤ pi.

Proposition 56. Assume V is a constructively completely distributive quantale and assume T̂ is a
lifting of a Set-functor T. Then, we have that T̂ ◦�f ≤�Tf ◦ T̂ whenever either of the conditions
below is met

• f is surjective and T̂ preserves constructively convergent sups.
• f is injective, T preserves weak pullbacks, T̂ is a fibred lifting corresponding to an evalua-
tion map ev such that for every t ∈ TV , ev(t) 
= ⊥ implies t ∈ T(V \{⊥}). (In other words:
ev−1(V \{⊥})⊆ T(V \{⊥}).)

• f is an arbitrary function and all the above properties are satisfied.

Proof. Let f =m ◦ e be the epi-mono factorization of f , that is, e : X→ Z is surjective andm : Z→
Y is injective.We will show the inequality separately form, e, fromwhich we can straightforwardly
derive the inequality for f .

• T̂ ◦�e ≤�Te ◦ T̂:
Let p : X→ V , z ∈ Z. Observe that

�e(p)(z)=
∨
{p(x) | e(x)= z} =

∨
{(p ◦ g)(z) | g ∈G}

whereG= {g : Z→ X | e ◦ g = idZ} is the set of all choice functions. Note that the last equal-
ity in the displayed equation above requires surjectivity of e, because otherwise no choice
functions exist.
So �e(p)=∨

g∈G p ◦ g =∨
g∈G g∗(p) and we show that this sup is constructively conver-

gent. Let q : Z→ V with q≪�e(p). Now for a z ∈ Z, we observe that q(z)≪
∨

e(x)=z p(x),
and hence, since we are working in a cccd-lattice, there exists an xz ∈ X with e(xz)= z and
p(xz)≥ q(z). On z, we define the choice function g as g(z)= xz. We have e ◦ g = idZ , and
furthermore for all, z ∈ Z we have q(z)≤ p(xz)= (p ◦ g)(z), hence q≤ p ◦ g as desired.
According to our assumption T̂ preserves such suprema and we get:

T̂(�e(p))= T̂(
∨
g∈G

g∗(p))=
∨
g∈G

T̂(g∗(p))≤
∨
g∈G

(Tg)∗(T̂p)

We will now show (Tg)∗ ≤�Te as an intermediate result: Let p : TX→ V and t ∈ TZ. Then,

(Tg)∗(p)(t)= (p ◦ Tg)(t)= p(Tg(t))≤
∨

Te(s)=t
p(s)=�Te(p)(t)

since s= Tg(t) satisfies Te(s)= Te(Tg(t))= TidZ(t)= t. This implies∨
g∈G

(Tg)∗(T̂p)≤
∨
g∈G

�Te(T̂p)= (�Te ◦ T̂)(p)
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By combining everything, we obtain the desired result.
• T̂ ◦�m ≤�Tm ◦ T̂ :
Let p : Z→ V , t ∈ FY , we have to show that T̂(�m(p))(t)≤�Tm(T̂p)(t).
We consider the following two cases:

– t is in the image of Tm: in this case, there exists s ∈ TX with Tm(s)= t.
Since m is injective, we have that for any y ∈ Y in the image of m �m(p)(y)= p(z),
where z ∈ Z is the unique preimage of y. Hence, �m(p) ◦m= p.
Using the fact that we have a fibred lifting (Proposition 14), this means that

T̂(�m(p))(t)= T̂(�m(p))(Tm(s))= T̂(�m(p) ◦m)(s)= T̂p(s)
≤

∨
Tm(s)=t

T̂p(s)=�Tm(T̂p))(t)

– t is not in the image ofTm: we show that in this case T̂(�m(p))(t)=⊥. (The right-hand
side of the inequality is also⊥, due to the empty supremum.) Note that �m(p)(y)=⊥
for all y ∈ Y which are not in the image ofm.
Now assume that T̂(�m(p))(t) 
= ⊥. Take the pullback on the left below and observe
that Y ′ = {y ∈ Y |�m(p)(y) 
= ⊥} ⊆m[X].

V \{⊥} �� �� V

Y ′

��

��
m

�� Y

�m(p)

�� T(V \{⊥}) �� �� TV
ev �� V

T(Y ′)

��

��
Tm

�� TY

T(�m(p))

��

T̂(�m(p))

����������

Since T is weak pullback-preserving, the square on the right above is a weak pullback.
By assumption, we have ev(T(�m(p))(t))= T̂(�m(p))(t) 
= ⊥. This implies that
T(�m(p))(t) ∈ T(V \{⊥}).
Since the square to the right above is a weak pullback, this means that t ∈ T(Y ′), hence
t ∈ T(m[X]), which is a contradiction, since t is not in the image of Tm.

Lemma 57. Assume that T preserves weak pullbacks and V is a constructively completely distribu-
tive quantale. Then, the canonical predicate lifting T̂can preserve2s constructively convergent sups,
that is, T̂can(

∨
i∈I pi)=

∨
i∈I T̂can(pi).

Proof. First, we obviously have T̂can(
∨

i∈I pi)≥
∨

i∈I T̂can(pi) due to monotonicity.
We now show T̂can(

∨
i∈I pi)≤

∨
i∈I T̂can(pi): first denote

∨
i∈I pi by p. Let t ∈ TX, hence the

inequality spells out to ∨
{r | Tp(t) ∈ T(↑ r)} ≤

∨
i∈I

∨
{s | Tpi(t) ∈ T(↑ s)}

Now let r be such that Tp(t) ∈ T(↑ r) and take the pullback on the left below. Note that Xr = {x ∈
X | p(x)≥ r}.

↑ r V T(↑ r) TV

Xr X T(Xr) TX

p Tp

Due to weak pullback preservation, the square above on the right is a weak pullback. This means
that t ∈ TX, which satisfies t ∈ T(↑ r), is also contained in T(Xr).
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Now let u≪ r. We define a predicate p′ : X→ V with

p′(x)=
{
u if x ∈ Xr

⊥ otherwise

Note that p′ satisfies p′≪ p. This is also true whenever p′(x)=⊥, since ⊥ is totally below
everything. Then, due to constructively convergence of the sup there exists an index i ∈ I with
p′ ≤ pi.

Now obtain the set Xi
u with the following pullback on the left, where Xi

u = {x ∈ X | pi(x)≥ u}.
↑ u V T(↑ u) TV

Xi
u X T(Xi

u) TX

pi Tpi

We can observe that Xr ⊆ Xi
u: let x ∈ Xr , then u= p′(x)≤ pi(x), hence x ∈ Xi

u.
This means that t ∈ T(Xi

u) and since the square on the right above commutes, this gives us
Tpi(t) ∈ T(↑ u). From this, we infer∨

i∈I

∨
{s | Tpi(t) ∈ T(↑ s)} ≥ u

Since this holds for all u≪r, we have

r=
∨
u≪r

u≤
∨
i∈I

∨
{s | Tpi(t) ∈ T(↑ s)}

which entails the required inequality.

Lemma 58. For a constructively completely distributive quantale, it holds for the canonical predicate
lifting T̂can that evcan(t) 
= ⊥ implies t ∈ T(V \{⊥}) for t ∈ TV .

Proof. Assume that

evcan(t)=
∨
{r | t ∈ T(↑ r)} 
= ⊥

Hence, there is at least one r 
= ⊥ with t ∈ T(↑ r)⊆ T(V \{⊥}); otherwise, the supremum would
equal⊥.

Whenever T =D (the probability distribution functor), we have that D preserves construc-
tively convergent sups (since it preserves uniform convergence). We now consider the evaluation
map as in Example 17, namely the expectation ev(t)=∑

r∈[0,1] r · t(r) with t ∈D[0, 1]. Note that
in the quantale [0, 1] we have⊥= 1.

However, the property ev(t) 
= 1 ⇒ t ∈D[0, 1) for all t ∈D[0, 1] does not hold in this case. If
t(0)= 1, t(r)= 0 for all r 
= 0, we have ev(t)= 0 
= 1, but t 
∈D[0, 1).

Nevertheless, the corresponding V -Pred-lifting of D still satisfies the property D̂ ◦�λ ≤
�Dλ ◦ D̂ , required in Theorem 42. Here we can rely on the fact that for D the components
λX : D(X× X)→DX×DX are surjective, so we can apply the second item of Proposition 56.
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