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Abstract

If R is a 2-group of symplectic type with exponent 4, then R is isomorphic to the extraspecial group 2\+2n,
or to the central product 4 o 21+2" of a cyclic group of order 4 and an extraspecial group, with central
subgroups of order 2 amalgamated. This paper gives an explicit description of a projective representation
of the group A of automorphisms of R centralizing Z(R), obtained from a faithful representation of R of
degree 2". The 2-cocycle associated with this projective representation takes values which are powers of
— 1 if R is isomorphic to 2\+2n and powers of -J—\ otherwise. This explicit description of a projective
representation is useful for computing character values or computing with central extensions of A. Such
central extensions arise naturally in Aschbacher's classification of the subgroups of classical groups.

1991 Mathematics subject classification (Amer. Math. Soc): 20C15, 20G05.

1. Introduction

In [4] a constructive theory is outlined for certain split extensions of extraspecial
p-groups by classical groups. The starting point is an absolutely irreducible repres-
entation of the extraspecial group, which is extended to the Weil representation of an
associated classical group [3]. This theory is generalized here to include representa-
tions of the (generally non-split) extensions 2]+2n • Oe

2n(2) and (4 o 21+2n) • Sp2n(2).
(This notation is explained in Section 2 below and in [8].) Information about the
faithful representations of these groups of degree 2" can be obtained from a different
approach. For example, if f is a classical group and R is a subgroup isomorphic to
2\+ln or 4o2l+2n, then the groups 2\+2n • O(

2n(2) and (4o21+2n) • Spln{2) may be viewed
as subgroups of the normalizer Nr(R) (see [1, 8] for details). The representations of
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[2] Representations of extensions of 2-groups 233

2\+2n • 0^(2) and (4 o 21+2") • Sp2n{2) are then obtained by considering the restriction
of the action of r on its natural module. This approach was motivated by the desire to
classify the maximal subgroups of the classical groups, and is useful for determining
the quadratic and semilinear forms preserved by such representations. However, the
approach taken in this paper is helpful for direct computation in these groups. Theorem
4' (respectively Theorem 4) gives an explicit description of a projective representation
of the group of the automorphisms of 2\+2n (respectively 4 o 21+2") fixing the centre,
whose associated 2-cocycle takes values which are square (respectively fourth) roots
of one. Moreover, Theorems 4' and 4 are also useful for calculating the value of
characters in 2\+2n • Oe

2n{2) and (4 o 21+2n) • Sp2n(2).

2. Notation and terminology

A /7-group E is called extraspecial if E' = Z(E) has order p and E/Z(E) is
elementary abelian. Therefore V = E/Z(E) may be viewed as a vector space over
the field Fp of p elements. We are interested in the case when p = 2. Then the
maps Q : xZ(E) (-• x2 and B : (xZ(E), yZ(E)) i->- x~ly~xxy may be interpreted as
quadratic and alternating forms on V (see [7,13.7,13.8; 10, p. 97]). Each extraspecial
2-group has order 22n+1 for some integer n, and is isomorphic to the central product
of n extraspecial 2-groups of order 23 where the central subgroups are amalgamated.
Let Dg and <28 denote the dihedral and quaternion groups of order 8 respectively.
There are two isomorphism classes of extraspecial 2-groups of order 22n+1, namely
2l+2n = Ds o D8 o • • • o D8 and 2l+2n — Q% o D% o • • • o D8, where the quadratic form
associated with 2]+2n, e = ±, has 2""1(2" + el) zeroes. If 4 denotes the cyclic group
of order 4, then the central products 4 o 2^2n and 4 o 2|_+2" are isomorphic [7, p. 361],
so it is unambiguous to denote this group by 4 o 21+2n.

It is convenient to use the ordered pair notation in [4, Section 2], for the elements
of 2\+ln and 4 o 21+2", and their automorphism groups. Let V be a 2n -dimensional
vector space over the field F2, and let / be a bilinear form on V such that

(1) B:(x,y)^ f(x,y)-f(y,x)

is a non-degenerate alternating form. The set E = V x F2 endowed with the multi-
plication

is an extraspecial group of order 22"+1 denoted by £ ( / ) . As noted in [4] it is possible to
find a bilinear form f( such that E(ff) = 2\+2n. Denote the quadratic and alternating
forms x h> f(x, x) and (x, y) i-> f(x, y) — f(y, x) by Q and B respectively.

The elements of 4 o 21+2" are defined similarly. Let k + 22 be an element of the
quotient ring 2/2Z. It is notationally convenient, and well-defined, to interpret the
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234 S. P. Glasby [3]

elements 2(k + 21) and (k + 2lf of 1/21 as the elements 2k + 41 and k2 + 41 of
1/41. If / is a (Z/2Z)-bilinear form such that (1) is non-degenerate, then the set
H — V x 1/41 endowed with the multiplication

(xuk1)(x2,k2) = (xx +x2,^i + k2 + 2f(xux2))

defines a group//(/) = 4o21+2", where 2/(*i, x2) is viewed as an element of 1/41.
If a e Aut(£),thena fixes (0,1), so there exist maps ga : V —> V andqa : V —> F2

defined by (x, k)a = (xga, k + qa(x)). Hence a corresponds to the ordered pair
(qa,ga), and

(<7a, 8a)i.qp, gf>) = tic + Vega, gag?)

where qa+qpga denotes the function* i->- qa(x)+qp(xga). Since Q(x) = f(x,x)and
(x, 0)2a = ((x, 0)a)2, ga is an element of the orthogonal group 0{Q). Furthermore,
since ((x, 0)(y, 0))a — (x, 0)a(y, 0)a, qa is a quadratic form satisfying

(2) f(xga, yga) - f(x, y) = qa(x + y) - qa(x) - qa(y)

for all x, y € V. Conversely, if ga e O(Q), then the left-hand side of (2) is an
alternating form so there exist | V \ quadratic forms qa satisfying (2), all of which differ
by a linear functional V —> F2, Given y € V, let B{—, y) denote the linear functional
x H» B(x, y). As B is non-degenerate, y !->• B{—, y) is an isomorphism between
V and its dual. Since (y, O)-1^, A.)(y, 0) = (x,k + B(x, y)), it follows that the
ordered pair (6(—, y), 1) is a typical inner automorphism and y i-> (B(—, y), 1) is
an isomorphism V —> hin(£). It is straightforward to check that

-, y), 1) (qa, ga) = (B(-, yga), 1)

and so Aut(£) is an extension V • O(Q) with the natural action of O(Q) on V.
(Greiss [6] showed that this extension is non-split if and only if n > 3.)

The elements of Aut(//) either fix or invert the central element (0,1). Thus the
centralizer A of (0,1), has index 2 in Aat(H), and Aut(//) is a split extension of A by
the subgroup (£) where £ is the automorphism (x,k) \-> (x, —k). ifaeA then there
exist maps ga : V —>• V and qa : V —> 1/41 defined by (x, k)a = (xga, k + qa(x)).
Since a preserves commutators, so ga e Sp(B), and since a preserves products, qa

satisfies
(2') 2f(xga, yga) - 2f(x, y) = qa(x + y) - qa(x) - qa{y).

Conversely, if g e Sp(fl), then B(xg, yg) = B(x, y) or

f(xg, yg) + f(yg, xg) = f(x, y) + / (y , x).
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So the function F : V x V —> F2 defined by (x, y) H* f(xg, yg) — f(x, y) is
symmetric (skew-symmetry equals symmetry in characteristic 2). As above, it is not
hard to construct a function q : V ->• 2/42 such that

2F(x, y) = q(x + y) - q(x) - q(y) for all x, y e V.

Indeed, if ex,..., e^ is a basis for V, then

is such a function. (As usual, the *, and F(e,, e,) are viewed as elements of Z/22
while F(e,-,e,-)2, *,2 and 2F(e,,e;)*,.*, are viewed as elements of 2/4Z.) Hence
V = Inn(//) and A is an extension of V by Sp(B). (Greiss [6] showed that this
extension is non-split for n > 3.)

The formula (3') is useful for constructing explicit isomorphisms. For example, if
E(f() = 2\+2n, then we can show 4o2}.+2" = 4o2i+2" by constructing an isomorphism
H(f+) -*• / / ( /_) . Assume, without loss of generality, that

/+(*, y) - f+(y,x) = /_(*, j ) - f.(y,x) for all JC, y e V ,

then (x, y) i->- /+(x,y) + /_(y, x) is symmetric. Using (3') there is a function
q : V —>• 2/42 satisfying

2/+(JC, y) + 2/_(JC, y) = <?(JC + y) - ?(*) - <?(y).

Hence (x, X) t-+ (x, X + q(x)) is an isomorphism H(f+) -*• / / ( /_) .

3. Extending representations of H and E

Let p — pf be a faithful absolutely irreducible representation 2]+2" -> GLm(K).
It follows from [5, Theorem 5.5.5] that p is (equivalent to) a tensor product of n
two-dimensional irreducible representations of D% or Q%. Hence m = 2" and K has
characteristic ^ 2. It follows from the absolute irreducibility of p that the m2 linear
transformations {p(x, 0) \ x € V] of the m-dimensional representation space over K,
are linearly independent and hence form a basis. Ward [12] used this fact applied to the
exponent-p extraspecial group to describe the Weil representation of S p ^ p ) where
p is odd. Using similar techniques, we will explicitly describe analogous projective
representations of Aut(£) and A when p = 2.

Let E = 2\+2n. If a e Aut(£), then denote by pa the representation e \-+ p(ea)
of E. Since E has only one faithful absolutely irreducible representation of degree
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236 S. P. Glasby [5]

2" (see [5, Theorem 5.5.5]), p and pa are equivalent. Therefore there exists a linear
transformation s(a), defined up to a scalar, such that s(a)~lp(e)s(a) — pa(e) for
all e € E. Hence a \-> s(a) is a projective representations of Aut(£) extending the
projective representation (B(—, y), 1) i-> p(y, 0) of Inn(£). Similarly, we obtain a
projective representation of A.

If a 6 Aut(£) or A, then define / (a) and K (a) to be the subspaces {v(l +ga) | v e
V}and{t> € V | u(l +ga) = 0}, and set i(a) = dimF2 /(a)andfc(a) — dimF2

THEOREM 1. The restriction of qa to K{a) is ¥2-linear so there exists y e V such
that qa{x) = B(x, v) for all x e K{a). If y' e V has a similar property, then
y + y' e I (a). Let s = s(a, y) be the linear transformation

— l X ^ j^t-,, r\\ rt/-., r\\ rta/n n \~ 's = \K(a)\-
ueV

Then
s-lp(x,X)s = pa(x,k)

forall(x,X) € Eand

(4) * = V (-l)*(")+B("->)+'("+>-*)p(jc + y, 0),

where u depends on x and satisfies x = u(l + ga). Furthermore, s(a, v) = ±s(a, y').

PROOF. If xux2 e AT (a) , then qa{xi + x2) = qa{xx) + <7a(x2) follows from (2).
If qa(x) = B{x, y) = B(x, / ) for all x e K(a), then y + / e ^ ( a ) 1 . It is shown
in [4, Lemma 5.2], that Kia)-*- = I (a).

Note that \K(a)\~l = 2~Ha) and 2 ^ 0. Since p(0, 1) = p"(0, 1) = - 1 , it is
straightforward to show that p(x, X)s — spa(x, X.) for all (x, k) e E. Hence, using
the absolute irreducibility of p and Schur's lemma, we need only show s ^ 0 in order
to conclude that s is invertible. It follows that s ^ 0 once we have established (4), as
{p(x, 0) | x e V} is linearly independent and the coefficient of p(x + y, 0) is ±1 if
x e I (a). Now

p(u, 0)p(y, 0)pa(u, 0)-1 = p(u + y, / ( « , y))p(uga, qa(u) + / (« , «))

= p(ii(l + go)+y, qa(u) + B(u, y)+f(u + y, «(

= p(x + y, ?a(ii) + B(u, y) + f(u + y, x)),

where x = w(l + ga). Since there are |^(of)| vectors u satisfying x = w(l + ga),
it suffices to establish (4) by showing that for a fixed y, the expression qa(u) +
B(u, v) + / (« , x) depends on x and not on the element u satisfying x = w(l + ga).
lfx = u{\ + ga) = u'{\ + ga), then u + u' € K{a) so it follows from (2) that

f(u + u', x) = f((u + u')ga, u'ga) + f(u + u', «') = qa{u) + qa(u + u) + qa(u')-
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Adding the equation qa{u + «') = B(u + u', y) to the previous equation gives

qa{u) + B(u, y) + f(u, x) = qa(u') + B(u', y) + /(«', x),

as desired. Finally, since the coefficients in (4) of the basis elements are ± 1, it follows
that s(a, y) = ±s(a, y'). This completes the proof.

Suppose now that p is an absolutely irreducible faithful representation of H. Then
p has degree 2" and K is any field of characteristic ^ 2 containing a square root i of
— 1. If a € Aut(//), then p is equivalent to p" if and only if a e A. Let s(a, y) be
defined as above. The proof of Theorem V is similar to that of Theorem 1 and hence
is omitted.

THEOREM V. If a e A, then

s{a, yrlp(x, k)s(fx, y) = pa(x, k)

forall(x,k) € H and

(4') s(a, y)=J2 iqAu)+2B(u'y)+2f{u+y'x)p{x + y , 0),
xe/(a)

where u depends on x and satisfies x = «(1 + ga). Furthermore, s(a, y) ands{a, y')
differ by a multiple of a fourth root of 1.

4. Constructing the 2-cocycles

Letflequal£ = 2>+2" or// = 4o21+2n andletC = CAutW(Z(/?)). Foreacha e C
choose some fixed y such that qa(x) = B(x,y)foTal\x € £(a),anddenote.s(a!, y)by
s(a). Let Kc denote the multiplicative group {±1} if R = E,md{±l, ±i}if R = H.
Then s is a projective representation of C satisfying s(a)s(P) — a(a, P)s(a/}) and a
is a 2-cocycle C xC ^- K. In this section, we define a new projective representation
t of C whose corresponding 2-cocycle r takes values in Kc. Using Schur's idea [9],
we may construct a central extension Cr of Kc by C, where multiplication in Cr is
defined by

(A.i,ai)(A.2,a2) = (XiX2T(a1,Q!2),aia2), (A.,-, a,) G ATC x C.

Given a fixed u 6 V, let #„ denote that symplectic transvection gv : x i-> JC +
BO, u)u. The set {#„ | v e V} is known to generate Sp2 Î(2) (see [2]). Using the
method outlined above, we may construct functions qv : V -*• 14 such that (x, k) i->
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(xgv, X + qv(x)) defines an automorphism of H. It is straightforward to verify that if
qv is defined by

f /(*, v)2 + f[v, x)2 + 2f(x, v) if f(v, v) = 0,
2f(x,v)f(v,x) + 2f(x,v) if f(v,v) = l,

then gv and qv satisfy (2). Let av be the automorphism corresponding to the ordered
pair {qv, gv). Clearly K{av) = ker(l + gv) = (v)\ and if x € K(av), then 0 =
B(x, v) = f(x, v) + f(v, x). Hence, if JC e K(av) then

f(x,v)2 + f(v,x)2 = 2f{x,v)2 = 2f(x,v) and
2f(x,v)f(v,x) = 2f(x,v)2 = 2f(x,v)

so the restriction of qv to K(av) is zero. If u satisfies v — «(1 + gv), then B(u, v) = 1
and calculations similar to those above show that

2f{u,v)(l + f(u,v)) =0 if f(v,v) =

Setting y = 0 in equation (4') gives

(5') s(av) = I p(0, 0) + ip(v, 0) if /(v, v) =
p(0, 0) + p(v, 0) if /(v, v) =

The following lemma provides useful information about symplectic (and orthogonal)
transvections and underpins the proofs of Theorems 4 (and 4'). The proof of Lemma
2 is standard but is included here for the reader's convenience.

LEMMA 2. Let B be a non-degenerate alternating bilinear form and let g,h €

Sp(B) where h is the symplectic transvection x i-»- x + B(x, v)v with v ^ 0.

(a) Ifv <£ im(l — g), then im(l — gh) = im(l — g) © (u).
(b) //t> = w(l - g) artrf B(M, V) / 1, r/i^n im(l - gh) = im(l - g).
(c) / / u = M(1 - g) and B(u, v) = 1, rAe/i im(l - gh) = im(l - g) n (u)1.

Hence, dim(im(l — gh)) = dim(im(l — g)) + e where € = 1, 0, —1 depending on
which of the above cases arise.

PROOF. If w e ker(l — gh), then wgh = w and so wg = wh~l = w — B(w, v)v.
Hence,
(6) *

Suppose first that v £ im(l — g). Then u>(l — g) = 0 and B(w, v) = 0, so
w e ker(l - g) n ker(l - /i). Conversely, if iy e ker(l - g) f~l ker(l - /i), then

= u; and w e ker(l — g/i). Therefore,

ker(l - gh) = ker(l -g)D ker(l -
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and taking orthogonal complements with respect to B gives

im(l — gh) = im(l — g) + im(l — h).

This proves (a) because im(l - h) = (v) £ im(l — g).
Suppose now that v = M(1 - g). Ifwe ker(l — gh), then it follows from (6) that

(w — B(w, v)u)(l — g) = 0. Hence, w — B(w, v)u e ker(l - g) and ker(l - gh) c
ker(l— g)+(u). Taking orthogonal complements gives im(l-grt) 2 im(l—g)n{u)±.

Clearly im(l - gh) c im(l — g) because

JC(1 -gh) = x- (xg)h

= x - xg - B(xg, v)v

= (x- B(xg, v)u)(l - g).

Also im(l — gh) c (w)1 is equivalent to (w) c ker(l — gh), or ug = uh~l, or
u — v = u — B(u, v)v, or B(u, v) = 1.

Nowim(l— g)n(w)-Lhascodimension 1 inim(l—^) because («)-Lhascodimension
1 in V, and u <£ ker(l - g) as v ^ 0. It follows from im(l - g) 2 im(l - gh) 2
im(l - g) n (M)1 and the previous paragraph that im(l - gh) = im(l — g) precisely
when B(u, v) ^ 1 and im(l — gh) = im(l — g) D {M)X precisely when B(M, U) = 1.

LEMMA 3. Let a, yS e C = CAut(Jf) (Z(/?)), and /sTc = (-1) if R = E and (i) if

(i) / / / ( a ) n 7(0) = {0}, /ten j(a)s(jB) = CT(QT, jS)5(a^) w/jere a(a, j8) e A:C-
(ii) IfI(a)ni(P) = I(fi)ni(fi-laP) = {0},thens(/irls(a)s(P) = as^afi)

where o e Kc.

PROOF, (i) By (4) and (4'), s(a) and s(fi) have the form Y,^xP(x,0) and
^2lXyP(y, 0) where A: and _y range over cosets a + I (a) and & + I(fi) respectively,
and where Xx, \xy e Kc. If z e a + b + I (a) + 7(/J)> then the coefficient of p(z, 0)
in the product s(a)s(P) is
(7) £ A,^(-l)/(*!>).

x+y=z

Since / (or) fl / (/J) = {0}, each z can be written uniquely asx + y with * € a + / (a)
and y e A + / (5). Therefore, the sum (7) has one summand and so is an element of
Kc. Therefore by (4) or (4'), a e Kc.

(ii) It follows from part (i) that s(a)s(P) = o^siaP) and siP^iP^aP) = o2s{uP)
where au a2 € Kc. Thus s(a)s(P) = as(P)s{p~laP) where a = axa~x e Kc. This
completes the proof.
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240 S. P. Glasby [9]

Recall that i(a) is the F2-dimension of I (a) = im(l + ga).

THEOREM 4. Let s{a) be defined as in (4') and let t be the projective representation

t : A^> GL2»(K) given by m ( l + i)~i(a)s(a).

Ift(a)t(ft) = x(a, ft)t(aft), then r(or, yS)4 = 1. Furthermore, the group

G = {ikt(a) \k el, a e A}

normalizes p{H) and is an extension of H = 4 o 21+2n by Sp(B) = Sp2«(2).

PROOF. Let

s(a) = J^ Kp(x,0), s(ft) =
x€a+I(a)

and s(aft) = ^ vzp(z,0)
zec+I(aP)

where by (4') kx, \xy, vz e Kc. If z e c + I (aft), then equating the coefficient of
p(z, 0) in the equation t(a)t(P) = z(a, f})t(afi) gives

,xfiy(-l)
nx'y> = x(a,

Hence to show that x(a, ft) e Kc, it suffices to show that

(8) rz = (1 + /)'(««-'(«)-'^

is an element if Kc for some z e c + I {aft). If X is the set of inner automorphisms
together with the av, v € V, then A = (X) (see [2]). It suffices to show that
r(a, ftj) e Kc for all a e A and ftt e X because it follows by induction and the
2-cocycle condition

x{a, ft, • • •ftr_l)x{aftx • .-ftr_u ftr) = r(a, ftx • ••ftr)x{fti • • • ftr.u ftr)

that r (a ,£ , •••#.) e Kc.
If ft is inner, then gp = 1 so I (ft) = {0} and i(aft) - i(a) - i(ft) = 0, also

a {a, ft) e Kc by Lemma 3(i). Similarly, if ft — av and v £ I (a), then I (a) HI (ft) =
{0}. By Lemma 2(a), i(aft) = i(a) + 1 so i(aft) - i(a) - i(ft) = 0. Hence, in both
cases TZ

4 = 1 holds.
We now consider cases (b) and (c) of Lemma 2. Suppose that ft = av and

v = u(\ + ga). An argument as in the previous paragraph shows that r(y, a) e Kc

for all inner automorphisms y. Since

x(y,a)x(ya, ft) = x(y,otft)x(a, ft)
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and T(y, a), T(y, afi) € Kc, it follows that r (a, fi) e Kcif andonlyif z(ya, ft) e Kc

for some inner automorphism y. Therefore, by Theorem 1 there is no loss of generality
in assuming that qa(K(a)) = 0 and hence by (4') that k0 = 1 and kv = j<7.(«)+2/(«.").
Putting z = 0 in (8) gives

(9) T0 = (1 + ,-)'(«»-'(«)-'W (koixo + kvixv(-\)
f(v'v))

where by (5') /J,0 = 1 and

i if f(v, v) = 0,
1 if f(v, v) = 1.

It follows from the definition of qa that <7a(0) = 0 and it follows by setting x = y = u
in (2') that 2qa(u) — 2f(uga, uga) + 2f(u, u). Substituting u + v for uga shows

2qa(u) = 2f(u + v, u + v) + 2/(«, u)

= 2(B(u,v) + f(v,v)).

Hence,

±1 if B(u, v) + f(v, v) = 0,
v~ ~ ~\±i if

Consider case (b) of Lemma 2. Suppose that fl = av where v = u{\ + ga) and
B(u, v) = 0. By Lemma 2(b), i(a/3) = i(a) and

{ ±1 if f(v,v) = 0,
v \ ±i if / (« ,«) = 1,

and so substituting into (9) gives r0 = (1 + / )" ' (1 ± i) e Kc as claimed.
Suppose now that ^ = av and u = u(l + ga) where B(u,v) = 1. By Lemma 2(c),

/(a/3) = /(a) - 1 and

> _ J ± ' if

" ~ 1 ±1 if

f{v, v) = 0,
f(v,v) = l,

and so substituting into (9) gives T0 = (1 + 0 2(1 ± 1) = 0 or — i. However, r0 is
non-zero and so r0 € Kc. Hence in all three cases r(a, y3) e Kc. It is straightforward
now to show that G is an extension of H by Sp(B). This completes the proof.

We now concentrate on projective representations of Aut(E). Let a be the 2-
cocycle associated with the projective representation s of Aut(£). Then the 2-cocycle
T associated with t : a \-+ kas(a) satisfies

r(a, fi) = ^-a(a, /J) for all a, p, e Aut(E).
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We will choose the ka such that x(a, B)2 = 1, that is, so that o is split up to a sign.
Since s((B(-, u), 1)) = p(u, 0) and p(u, 0)p(v, 0) = ±p(u + v, 0), we set A« = 1
for alia e Inn(£).

Now gv : x H> x + B(x, v)v is an element of the orthogonal group if and only if v
is non-singular, that is Q(v) = 1. We argue that case (b) of Lemma 2 does not arise if
g,h e O(Q). (Suppose to the contrary that g, h € O(Q) where h : x i-> x+B(x, v)v,
Q(v) = l,v = u(l- g) and B{u, v) ^ 1. Then

Q(ug) = Q(u + v) = Q(u) + Q(v) - B(u, v) ? Q(u),

a contradiction.) If a,, = (qv, gv) where Q{v) = 1, then x{av) = K(p(0, 0)+p(v, 0))
by (5'). Thus

t(av)
2 = k2

v (p(0, 0) + 2p(v, 0) - p(0, 0)) = 2A>(v, 0).

Since a2 = (B(-, v), 1) is inner, t(a2
v) = s((B(-, v), 1)) = p(v,0). Therefore

2X2 = ±1 and it is necessary that the field K contain a square root of 2 or —2.
Theorem (4') shows that this condition is also sufficient to split a up to a sign.

Let N be the set of non-singular vectors and let S be the set of singular vectors
in V. The set [gv | v 6 N] generates 0^(2), except for Of (2) where it generates
a subgroup of index 2 (see [2, 11]). We consider this exceptional case. Let V be a
4-dimensional vector space with basis ex,..., e4 over F2. Lee / be the bilinear form

( 4 4 \ 2

^ x , e , , ^2y^i I = ^ (x2,-iy2,-i +*2;-i.y2; +^2,>'2/) •
1 = 1 i = l / i = \

Then E(f) = Q% o Qs and Of (2) preserves the corresponding quadratic form.
Now Of(2) permutes the set N = {e{,ei + e2, e2, e3, e3 + e4, e4] of non-singular
vectors and is isomorphic to 53 wr S2 [8, 2.5.9]. The transvections stabilize the
sets {eu ex + e2, e2] and {e3, e3 + e4, e4] and generate the subgroup S3 x S3, while
the orthogonal transformation h' : ex <-> e2, e3 •<->• e4 interchanges these sets. Thus
{gv\veN)U W) generates O4

+(2). Furthermore, as f(xh', yh') - f(x, y) = 0 for
all x, y e V, there is an automorphism ft such that gp = h' and qp. = 0. Let X be the
set of inner automorphisms together with the av, v e N. Then X generates Aut(£)
except when E = Qs o Q%, in which case X U {ft} does.

THEOREM 4'. Let s (a) be defined as in (4) and let t be the projective representation

t : Aut(£) -> GL2,(K), a^0-ms{a)
where9 e K satisfies62 = r}2,r} = ±. Ift(a)t(B) = x(a, B)t(aB), thenx(a, B? = \.
Furthermore, the group

Gf,, = [±t(a) | a e Aut(£)}

normalizes p(E) and is an extension of E = 2\+2n by O(Q) = O€
2n{2).
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PROOF. Let

s(a)

Representations of

= J^ kxP(x,0)
xea+Ua)

and

extensions <

1, s(P) =

s(aB) =

243

where by (4), kx, iiy, vz e Kc. If z e c + I{afi), then equating the coefficient of
p(z, 0) in the equation t(a)t(P) = r(a, P)t(a/8) gives

Hence to show that r(a, P) e Kc,ii suffices to show that

(8') xz = 0«««-'<«>-'-w £ ^ ( - 1 ) ' < * »
x+;y=z

is an element in Ac for some z e c +1 (aft). Let X be the set of inner automorphisms
together with the av, v e N. Then X generates Aut(£) if E ¥ Q% ° Gs, and X U {$'}
generates Aut(£) otherwise. As in Theorem 4, it suffices to show that r(a, fi) e Kc

for all a e A and y3 in some generating set for Aut(£).
If 0 is inner, then gp = 1 so 7(̂ 8) = {0} and i(aP) - /(or) - J(/3) = 0. Moreover,

a(a, P) e Kc by Lemma 3(i). Suppose now that p = av and v £ 7(or), so 7(a) D
I(P) = {0}. Since O(Q) is a subgroup of Sp(B), i(aP) = i(a) + 1 by Lemma 2(a),
so /(a)8) - /(a) - i(P) — 0. Hence, in both cases rz e Kc.

We now consider case (c) of Lemma 2. Suppose that P = av where Q{v) = 1 and
u = H(1 + go). Arguing as in Theorem 4, we may assume that qa{K{a)) = 0 and
hence by (4) that Xo = 1 and Xv = (-l)*.<">+/(«.»). Putting z = 0 in (8') gives

(9') T0 = 0'<««-'<«)-'(« (Xof^o + KHv(-l)mv)) .

where by (5'), fi0 = 1 and (iv = 1. By Lemma 2(c), we have i(aP) = i(a) — 1 and so
T0 = 0~2(\ ± 1). Therefore T0 = 0 or jjl. However, T0 is non-zero, so it equals ±1.
This is sufficient to prove the theorem in the case when E £ Qg o Q%. If E = Q% o Q8,
then our proof constructs an extension of 2++4 by £2^(2) rather than an extension of
2l+* by the full orthogonal group O4

+(2).
To complete the proof, it suffices to show that x(a, P') = ±1 for all a in this sub-

group of index 2 where P' is the automorphism described before this proof. Applying
(4) to the automorphism /?' = (0, h') gives

s(P') = p(0, 0) - p(e, + e3, 0) - p(e2 + e4, 0) - p(e, + e2 + e3 + e4, 0).

The restriction of / to I(P') = (ex + e-},e2 + e4) is zero. Hence, in particular,
I(P') is totally singular and s(P')2 = 4p(0, 0). Therefore both P' and t(P') =
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6~2s(fi') = t]s{fi')/2 are involutions. To complete our proof, it suffices to show that
t{P')-lt{a)t{P) = t{p'-laP') for all a e (X). Equivalently, we may show that

= s{P'-laP') where a e X. If a is inner, then /(a) = {0}, and if
a — av for some v e N, then /(a) D I (ft) = {0} as I (ft') is totally singular and v is
non-singular. The result follows in either case by Lemma 3(ii).

5. Properties of G and Gft]

The groups G and Gf,, in Theorem 4 and 4' were constructed from a representation
p, and so their isomorphism type could conceivably depend on the associated field K.
The notation G(K) and G€t){K) takes into account the possible dependence on K.

THEOREM 5. The isomorphism type ofG(JI is independent of the field K but depends
on both € and r\.

PROOF. NOW E = 2\+2n is a characteristic subgroup of G(tt]{K). (If n = 1, and
E S D8, then E is the subgroup generated by all the elements of order 2; otherwise
E = O2(G(,n{K)).) Since 2l+2n ¥ 21+2", the isomorphism type of G(ri(K) depends
on €.

We show that the isomorphism type of Gert(K) is independent of K by showing
the value of r(a, /?)(= ±1) is independent of K. Now r(or, p) satisfies the linear
equation
(10) vzr(a, 0) = 0'(<*«-'(<»-'(

Since /(a£) — i(a) — i(fi) is even, and 92 = r}2, (10) may be viewed as an integer
equation. If K and K' have characteristic zero, then the solution for x{a, 0) is
independent of the field. If K and K' have odd characteristic p, then reading (10)
modulo p shows that the value of x{a, fi) is independent of the field.

We now show that G(+ ¥ Gf,_. Suppose that 0 e Ant(G(,,) and </> maps ?(a)
to ±f (0). Since £ is characteristic, so is its centre Z, and 0 maps [f(a), £] Z/Z to
[±f (0), £] Z/Z. This show /(a) = /(£). Now - 1 generates Z and so is fixed by
every automorphism. Thus the sets

Ge,n\t(a)2 = -l and i(a) = 1}

are characteristic. We will show that Ae>+ and Af _ have different cardinalities
and so Ge + ^ Ge_. By Theorem 4', elements of these sets have the form .s =
9~\Xxp{x, 0) + kyp(y, 0)) where x±y. Since

y, 0)},
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we see that s e A(,+ if and only if

(11) f{x, x) = f{y, y) = 1 and B(x, y) = f(x, y) + f(y, x) = 1

and s e A ( . if and only if

(12) f(x,x) = f(y,y) = 0 and B(x, y) = f(x, y) + f(y, x) = 1.

In either case, Q(x + y) = Q(x) + Q(y) + B(x, y) = 1.
Let S = {JC e V | (?(•*) = 0} and N = [x e V | Q(x) = 1}. Given subsets X, Y

and Z of V, define {X, Y; Z] to be the set {(x, y) e X x 7 | x + y e Z}. It follows
from (11) and (12) that |A€,+ | = 4 | { N , N ; N } | and |A€,_| = 4 |{S, 5; N}\. Letv,s
and n denote the number of elements in V, S and N respectively. Then v = s + n. If
JC 7̂  0 is fixed, then the equation B(x, y) = 1 has v/2 solutions for y. Thus the set

{(x,y) e N x V | B(x, >>) = 1}

has nu/2 elements and is a disjoint union of {N, S; S} and {N, N; N}. Since 0 e S,
a similar argument shows that the set {(x, y) e V x 5 | B(x, y) = 1} has cardinality
v(s — l)/2 and is a disjoint union of {N, S; S} and {5, S; N}. Subtracting the equation
\{N, S; S}\ + \{S, S\ N}\ = v(s - l)/2 from \{N, S; S}\ + \{N, N; N}\ = vn/2 gives

|{A ,̂ N; N}\ - \[S, S; N}\ = v(n - s + l)/2 = v(v -2s + l)/2.

Since v — 2s + 1 is an odd integer, this difference is non-zero. Hence Ae<+ and A€ _
have different cardinalities and so G(+ ^ Ge>_.

THEOREM 6. lft (a) e G(,n then

(a)) = 0,
0 otherwise.

lft (a) e G then

trace(r(a)) -I 0 otherwise.

PROOF. AS p is a tensor product of n two-dimensional representations of D% or Q&,
it follows that

2" if qa(K (a)) = 0,trace(p(Af,O)) = .
VA^V ' 0 otherwise."

Itfollows from (4) and (4') that p(0, 0) is a summand of t(a) if and only if <7a(̂ C(or)) = 0.
The proof now follows from the fact that 2n — i(a) = k(a).
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It is shown in [4, Section 2] that p{E) preserves a non-degenerate symmetric form
if E = 2^.+2n, and preserves a non-degenerate skew-symmetric form if E = 2l_+2". The
groups G and G(i^ preserve this form up to a scalar multiple. (See [8] for a different
approach. )

THEOREM 7. / / / ' is a bilinear form preserved by p(E), then Gf + preserves f,
G(< _ preserves f up to a sign, and G preserves f up to a multiple of a fourth root of 1.

PROOF. First consider the groups G(Jt. Let / be the matrix of / ' relative to some
choice of basis for V. Then

p(x, k)'Jp(x, k) = J for all (x, k) g E.

Let v be non-singular. Then t(av) = 0~'(p(O,0) + p(v, 0)) and

P(V, oyj = jp(v, or1 = -jp(v, o).

Hence

t(av)'Jt(av) = 9~2 [J + p{v, 0)'J + Jp(v, 0) + p(v, 0)'Jp(v, 0)]

= r,J

as 29~2 = r]\. This proves our claim provided E ^ Q% o Qs. A straightforward
calculation shows that

t{fi'yjt(fi') =46~4J = J.

Now consider the group G. Then

p(x, k)'Jp(x, k) = i2kj for all (x, k) g H.

Since G is generated by p{H) and the (1 + i)~ls(av), v e V, the result follows from
(5') and the facts

(1 + I)"1 [p(0, 0) + ip(v, 0)'] J{\ + i)"1 [p(0, 0) + ip(v, 0)] = / if f(v, v) = 0,

and

(1 + /)"• [p(0, 0) + ip(v, 0)'] /(I + /)"' [p(0, 0) + p(v, 0)] = -iJ if /(w, u) = 1.
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